Effects of Carrier Trapping and Noise in Triangular-Shaped GaN Nanowire Wrap-Gate Transistor
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salahuddin, S.; Ni, K.; Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 2018, 1, 442–450. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; Wei, Y.; Feng, S.; Sun, D.; Chen, H. Three-dimensional transistors and integration based on low-dimensional materials for the post-Moore’s law era. Mater. Today 2023, 63, 172–187. [Google Scholar] [CrossRef]
- Chau, R.; Doyle, B.; Datta, S.; Kavalieros, J.; Zhang, K. Integrated nanoelectronics for the future. Nat. Mater. 2007, 6, 810–812. [Google Scholar] [CrossRef]
- Fatahilah, M.F.; Yu, F.; Strempel, K.; Romer, F.; Maradan, D.; Meneghini, M.; Baki, A.; Hohls, F.; Schumacher, H.W.; Witzigmann, B.; et al. Top-down GaN nanowire transistors with nearly zero gate hysteresis for parallel vertical electronics. Sci. Rep. 2019, 9, 10301. [Google Scholar] [CrossRef] [PubMed]
- Ruzzarin, M.; Santi, C.D.; Yu, F.; Fatahilah, M.F.; Strempel, K.; Waisto, H.S.; Waag, A.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Highly stable threshold voltage in GaN nanowire FETs: The advantages of p-GaN channel/Al2O3 gate insulator. Appl. Phys. Lett. 2020, 117, 203501. [Google Scholar] [CrossRef]
- Lorenz, L.; Mauder, A. Technology Guide: Principles—Applications—Trends; Springer: Berlin/Heidelberg, Germany, 2009; p. 78. [Google Scholar]
- Millan, J.; Godignon, P.; Perpina, X.; Perex-Tomas, A.; Rebollo, J. A survey of wide bandgap power semiconductor devise. IEEE Trans. Power Electron. 2014, 29, 2155–2163. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Y.; Sun, M.; Piedra, D.; Chowdhury, N.; Palacios, T. Materials and processing issues in vertical GaN power electronics. Mater. Sci. Semicond. Process 2018, 78, 75–84. [Google Scholar] [CrossRef]
- Yuvaraja, S.; Khandelwal, V.; Tang, X.; Li, X. Wide bandgap semiconductor-based integrated circuits. Chip 2023, 2, 100072. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, M.; Yang, L.; Hou, B.; Martinez, R.P.; Mi, M.; Du, J.; Deng, L.; Wu, M.; Chowdhury, S.; et al. A review of GaN RF devices and power amplifiers for 5G communication applications. Fundam. Res. 2025, 5, 315–331. [Google Scholar] [CrossRef]
- Murugan, C.A.; Murugapandiyan, P.; Sivamani, C.; Haripriya, D. Advancing the frontiers of N-polar GaN HEMT technology: Materials, architectures, and applications in RF and power electronics. Mater. Sci. Semicond. Process 2025, 199, 109874. [Google Scholar] [CrossRef]
- Fan, K.; Guo, J.; Huang, Z.; Xu, Y.; Huang, Z.; Xu, W.; Wang, Q.; Lin, Q.; Li, X.; Liu, H.; et al. GaN-on-diamond technology for next generation power devices. Moore. More 2025, 2, 8. [Google Scholar] [CrossRef]
- Herbecq, N.; Roch-Jeune, I.; Linge, A.; Grimbert, B.; Zegaoui, M.; Medidoub, F. GaN-on-silicon high electron mobility transistors with blocking voltage of 3 kV. Electron. Lett. 2015, 51, 1532–1534. [Google Scholar] [CrossRef]
- Tian, Z.; Ji, X.; Yang, D.; Liu, P. Research progress in breakdown enhancement for GaN-based high electron-mobility transistors. Electronics 2023, 12, 4435. [Google Scholar] [CrossRef]
- Wu, Y.H.; Kim, H.H.; Shin, J.C. Improved mobility in InAs nanowire FETs with sulfur-based surface treatment. Curr. Appl. Phys. 2025, 70, 81–86. [Google Scholar] [CrossRef]
- Arjmand, T.; Legallais, M.; Nguyen, T.T.T.; Serre, P.; Vallejo-Perez, M.; Morisot, F.; Salem, B.; Ternon, C. Functional devices from bottom-up silicon nanowires: A review. Nanomaterials 2022, 12, 1043. [Google Scholar] [CrossRef]
- Salhi, B.; Hossain, M.K.; Mukhaimer, A.W.; Al-Sulaiman, F.A. Nanowires: A new pathway to nanotechnology-based applications. J. Electroceram. 2016, 37, 34–49. [Google Scholar] [CrossRef]
- Mallem, S.P.R.; Im, K.-S.; Thingujam, T.; Lee, J.-H.; Caulmilone, R.; Cristoloveanu, S. Gate architecture effects on the gate leakage characteristics of GaN wrap-gate nanowire transistors. Electron. Mater. Lett. 2020, 16, 433–440. [Google Scholar] [CrossRef]
- Mallem, S.P.R.; Puneetha, P.; Choi, Y.; Baek, S.M.; Lee, D.Y.; Im, K.-S.; An, S.J. Barrier height, ideality factor and role of inhomogeneities at the AlGaN/GaN interface in GaN nanowire wrap-gate transistor. Nanomaterials 2023, 13, 3159. [Google Scholar] [CrossRef]
- Singh, S.; Dhar, R.S.; Banerjee, A.; Gupta, V. Design and analysis of high-K wrapped GaN gate all around FET as high-frequency device in IOT systems. IEEE Access 2025, 13, 78833. [Google Scholar] [CrossRef]
- Mallem, S.P.R.; Puneetha, P.; Lee, D.Y.; Kim, Y.; Kim, H.J.; Im, K.-S.; An, S.J. Carrier trap and their effects on the surface and core of AlGaN/GaN nanowire wrap-gate transistor. Nanomaterials 2023, 13, 2132. [Google Scholar] [CrossRef]
- Li, M.; Chen, G.; Huang, R. High performance GAA SNWT with a triangular cross section: Simulation and experiments. Appl. Sci. 2018, 8, 1553. [Google Scholar] [CrossRef]
- Narita, T.; Ito, K.; Iguchi, H.; Kikuta, D.; Kanechika, M.; Tomita, K.; Iwasaki, S.; Kataoka, K.; Kano, E.; Ikarashi, N. Engineered interface charges and traps in GaN MOSFETs providing high channel mobility and E-mode operation. Jpn. J. Appl. Phys. 2024, 63, 120801. [Google Scholar] [CrossRef]
- Reddy, M.S.P.; Im, K.-S.; Lee, J.-H.; Caulimione, R.; Cristoloveanu, S. Trap and 1/f-noise effects at the surface and core of GaN nanowire gate-all-around FET structure. Nano Res. 2019, 12, 809–814. [Google Scholar] [CrossRef]
- Kang, H.S.; Reddy, M.S.P.; Kim, D.S.; Kim, K.W.; Ha, J.B.; Lee, Y.S.; Choi, H.C.; Lee, J.H. Effect of oxygen species on the positive flat-band voltage shift in Al2O3/GaN metal-insulator-semiconductor capacitors with post-deposition annealing. J. Phys. D Appl. Phys. 2013, 46, 155101. [Google Scholar] [CrossRef]
- Matys, M.; Adamowich, B.; Domanowska, A.; Michalewicz, A.; Stoklas, R.; Akazawa, M.; Yatabe, Z.; Hashizume, T. On the origin of interface states at oxide/III-nitride heterojunction interfaces. J. Appl. Phys. 2016, 120, 225305. [Google Scholar] [CrossRef]
- Bülbül, M.M.; Zeyrek, S. Frequency dependent capacitance and conductance—Voltage characteristics of Al/Si3N4/p-Si (100) MIS diodes. Microelectron. Eng. 2006, 83, 2522–2526. [Google Scholar] [CrossRef]
- Taoka, N.; Kubo, T.; Yamada, T.; Egawa, T.; Shimizu, M. Understanding of frequency dispersion in C–V curves of metal-oxide-semiconductor capacitor with wide-bandgap semiconductor. Microelectron. Eng. 2017, 178, 182–185. [Google Scholar] [CrossRef]
- Güçlü, Ç.Ş.; Özdemir, A.F.; Kökce, A.; Altindal, Ş. Frequency and voltage-dependent dielectric properties and AC electrical conductivity of (Au/Ti)/Al2O3/n-GaAs with thin Al2O3 interfacial layer at room temperature. Acta Phys. Pol. A 2016, 130, 325–330. [Google Scholar] [CrossRef]
- Nicollian, E.H.; Brews, J.R. MOS (Metal-Oxide-Semiconductor) Physics and Technology; John Wiley & Sons: New York, NY, USA, 1982. [Google Scholar]
- Hill, W.A.; Coleman, C.C. A single-frequency approximation for interface state density determination. Solid State Electron. 1980, 23, 987–993. [Google Scholar] [CrossRef]
- Balandin, A.; Cai, S.; Li, R.; Wang, K.L.; Rao, V.R.; Viswanathan, C.R. Flicker noise in GaN/Al0.15Ga0.85N doped channel heterostructure field effect transistors. IEEE Electron Device Lett. 1998, 19, 475–477. [Google Scholar] [CrossRef]
- Levinshtein, M.E.; Rumyantsev, S.L.; Gaska, R.; Yang, J.W.; Shur, M.S. AlGaN/GaN high electron mobility field effect transistors with low 1/f noise. Appl. Phys. Lett. 1998, 73, 1089–1091. [Google Scholar] [CrossRef]
- Theodorou, C.G.; Fasarakis, N.; Hoffman, T.; Chiarella, T.; Ghibaudo, G.; Dimitriadis, C.A. Origin of the low-frequency noise in n-channel FinFETs. Solid State Electron. 2013, 82, 21–24. [Google Scholar] [CrossRef]
- Theodorou, C.G.; Ioannidis, E.G.; Andrieu, F.; Poiroux, T.; Faynot, O.; Dimitriadis, C.A.; Ghibaudo, G. Low-frequency noise sources in advanced UTBB FD-SOI MOSFETs. IEEE Trans. Electron. Devices 2014, 61, 1161–1167. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallem, S.P.R.; Puneetha, P.; Choi, Y.; Mesheha, M.M.; Zafer, M.; Kang, K.-S.; Lee, D.-Y.; Shim, J.; Im, K.-S.; An, S.J. Effects of Carrier Trapping and Noise in Triangular-Shaped GaN Nanowire Wrap-Gate Transistor. Nanomaterials 2025, 15, 1336. https://doi.org/10.3390/nano15171336
Mallem SPR, Puneetha P, Choi Y, Mesheha MM, Zafer M, Kang K-S, Lee D-Y, Shim J, Im K-S, An SJ. Effects of Carrier Trapping and Noise in Triangular-Shaped GaN Nanowire Wrap-Gate Transistor. Nanomaterials. 2025; 15(17):1336. https://doi.org/10.3390/nano15171336
Chicago/Turabian StyleMallem, Siva Pratap Reddy, Peddathimula Puneetha, Yeojin Choi, Mikiyas Mekete Mesheha, Manal Zafer, Kab-Seok Kang, Dong-Yeon Lee, Jaesool Shim, Ki-Sik Im, and Sung Jin An. 2025. "Effects of Carrier Trapping and Noise in Triangular-Shaped GaN Nanowire Wrap-Gate Transistor" Nanomaterials 15, no. 17: 1336. https://doi.org/10.3390/nano15171336
APA StyleMallem, S. P. R., Puneetha, P., Choi, Y., Mesheha, M. M., Zafer, M., Kang, K.-S., Lee, D.-Y., Shim, J., Im, K.-S., & An, S. J. (2025). Effects of Carrier Trapping and Noise in Triangular-Shaped GaN Nanowire Wrap-Gate Transistor. Nanomaterials, 15(17), 1336. https://doi.org/10.3390/nano15171336