Next Issue
Volume 14, July-2
Previous Issue
Volume 14, June-2
 
 

Foods, Volume 14, Issue 13 (July-1 2025) – 255 articles

Cover Story (view full-size image): Thermal-processed foods like baked, smoked, and fried products are popular for their unique aroma, taste, and color. However, thermal processing can generate various contaminants via Maillard reaction, lipid oxidation, and thermal degradation, negatively impacting human health. This review summarizes the formation pathways, influencing factors, and tracing approaches of potential hazards in thermally processed foods, such as PAHs, HAAs, AA, TFAs, AGEs and sterol oxide. The formation pathways are explored through understanding high free radical activity and multiple active intermediates. Control patterns are uncovered by adjusting processing conditions and food composition and adding antioxidants, aiming to inhibit hazards and enhance the safety of thermal-processed foods. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 640 KiB  
Article
Mid-Infrared Spectroscopy for Predicting Goat Milk Coagulation Properties
by Arianna Goi, Silvia Magro, Luigi Lanni, Carlo Boselli and Massimo De Marchi
Foods 2025, 14(13), 2403; https://doi.org/10.3390/foods14132403 - 7 Jul 2025
Viewed by 268
Abstract
The assessment of milk coagulation properties (MCPs) is crucial for enhancing goat cheese production and quality. In this study, 501 bulk goat milk samples were collected from various farms to evaluate the MCPs. Traditionally, cheesemaking aptitude is evaluated using lactodynamographic analysis, a reliable [...] Read more.
The assessment of milk coagulation properties (MCPs) is crucial for enhancing goat cheese production and quality. In this study, 501 bulk goat milk samples were collected from various farms to evaluate the MCPs. Traditionally, cheesemaking aptitude is evaluated using lactodynamographic analysis, a reliable but time-consuming laboratory method. Mid-infrared spectroscopy (MIRS) offers a promising alternative for the large-scale prediction of goat milk’s technological traits. Reference MCP measurements were paired with mid-infrared spectra, and prediction models were developed using partial least squares regression, with accuracy evaluated through cross- and external validation. The ability of MIRS to classify milk samples by coagulation aptitude was evaluated using partial least squares discriminant analysis. Only the model for rennet coagulation time obtained sufficient accuracy to be applied for screening (R2CrV = 0.68; R2Ext = 0.66; RPD = 2.05). Lower performance was observed for curd-firming time (R2CrV = 0.33; R2Ext = 0.27; RPD = 1.42) and curd firmness (R2CrV = 0.55; R2Ext = 0.43; RPD = 1.35). Classification of high coagulation aptitude achieved balanced accuracy values of 0.81 (calibration) and 0.74 (validation). With further model refinement and larger calibration datasets, MIRS may become a resource for the dairy-goat sector to monitor and improve milk suitability for cheesemaking. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

17 pages, 1596 KiB  
Article
Flavonoids of Mao Jian Green Tea Ameliorate Glycemic Metabolism in Type-2-Diabetic Rats via AMPK Signaling Pathways and Gut Microbiota Regulation
by Lei Wu, Yao Niu, Fei Liu, Jiongling Tian, Zhilin Ma, Jiahui Yang, Xiaomeng Guo and Yaogui Sun
Foods 2025, 14(13), 2402; https://doi.org/10.3390/foods14132402 - 7 Jul 2025
Viewed by 121
Abstract
Mao Jian Green Tea flavonoids (MJGT_F) contain luteolin, luteolin-7-O-glucoside, eriodictyol, and eriodictyol-7-O-glucoside, among which the first three components have hypoglycemic effects; however, the overall hypoglycemic potential of MJGT_F remains unclear. This study demonstrated that MJGT_F inhibited α-glucosidase in vitro and improved metabolic parameters [...] Read more.
Mao Jian Green Tea flavonoids (MJGT_F) contain luteolin, luteolin-7-O-glucoside, eriodictyol, and eriodictyol-7-O-glucoside, among which the first three components have hypoglycemic effects; however, the overall hypoglycemic potential of MJGT_F remains unclear. This study demonstrated that MJGT_F inhibited α-glucosidase in vitro and improved metabolic parameters in a dose-dependent manner in T2DM (type 2 diabetes mellitus) rats (reducing blood glucose, triglyceride, total cholesterol, low-density lipoprotein, insulin, and the homeostatic model assessment of insulin resistance; increasing high-density lipoprotein, insulin sensitivity index, and glucagon-like peptide-1). High-dose MJGT_F (MJGT_F_H) showed optimal efficacy. Mechanistically, MJGT_F_H activated the AMPK pathway, evidenced by a significant increase in the p-AMPK/AMPK ratio and downregulation of hepatic gluconeogenic enzymes G6Pase and PEPCK. These coordinated effects collectively suggest enhanced hepatic glucose utilization and suppression of glucose overproduction. MJGT_F_H also modulated gut microbiota by enriching beneficial taxa (e.g., Akkermansia muciniphila, 11.17-fold vs. metformin) and reducing pathogens like Enterobacteriaceae. These findings highlight MJGT_F’s dual regulatory roles in glucose metabolism and microbiota, supporting its potential for diabetes management. Full article
Show Figures

Figure 1

19 pages, 591 KiB  
Article
Development of a Guava Jelly Drink with Potential Antioxidant, Anti-Inflammation, Neurotransmitter, and Gut Microbiota Benefits
by Hai-Ha Nguyen, Jintanaporn Wattanathorn, Wipawee Thukham-Mee, Supaporn Muchimapura and Pongsatorn Paholpak
Foods 2025, 14(13), 2401; https://doi.org/10.3390/foods14132401 - 7 Jul 2025
Viewed by 171
Abstract
Due to the roles of oxidative stress, inflammation, and neurotransmitter imbalances in cognitive and mental dysfunction, we aimed to develop a functional drink with antioxidant and anti-inflammatory properties as well as the potential to support neurotransmitter balance for improved cognition and mental health. [...] Read more.
Due to the roles of oxidative stress, inflammation, and neurotransmitter imbalances in cognitive and mental dysfunction, we aimed to develop a functional drink with antioxidant and anti-inflammatory properties as well as the potential to support neurotransmitter balance for improved cognition and mental health. The Teng Mo, Fen Hong Mee, and Hong Chon Su guava varieties were screened for their polyphenol and flavonoid contents, antioxidant and anti-inflammatory effects, and suppressive effects on acetylcholinesterase (AChE), monoamine oxidase (MAO), GABA transaminase (GABA-T), and glutamate decarboxylase (GAD). Juice from the cultivar with the highest potential was selected and mixed with mint and honey syrups, pomelo-derived dietary fiber, ascorbic acid, agar, water, and fruit puree (pear/apple/orange) to create three guava jelly drink formulations. The formulation with pear puree showed the highest biological potential and was selected as the final product. It is rich in vitamin C, gallic acid, and dietary fiber, and provides approximately 37 Kcal/100 g. It also promotes the growth of lactic acid-producing bacteria in the culture. Thus, our drink shows the potential to reduce oxidative stress and inflammation, improve neurotransmitter regulation, and stimulate the gut–brain axis, thereby promoting cognition and mental wellness. However, clinical research is essential to confirm these potential benefits. Full article
Show Figures

Figure 1

22 pages, 3310 KiB  
Article
Revealing the Response Mechanism of Pediococcus pentosaceus Under Acid and Alcohol Stresses via a Combined Transcriptomic and Metabolomic Analysis
by Pan Huang, Huan Yang, Yiyang Zhou, Siyuan Zeng, Rongqing Zhou and Chongde Wu
Foods 2025, 14(13), 2400; https://doi.org/10.3390/foods14132400 - 7 Jul 2025
Viewed by 185
Abstract
Pediococcus pentosaceus, an important lactic acid bacterium in the brewing of Chinese Baijiu (liquor), usually encounters environmental stresses including ethanol and lactic acid, which severely impact cellular growth and metabolism. In this study, a combined physiological and omics analysis was employed to [...] Read more.
Pediococcus pentosaceus, an important lactic acid bacterium in the brewing of Chinese Baijiu (liquor), usually encounters environmental stresses including ethanol and lactic acid, which severely impact cellular growth and metabolism. In this study, a combined physiological and omics analysis was employed to elucidate the response mechanisms of P. pentosaceus under ethanol and lactic acid stress conditions. The results showed that the biomass of cells decreased by about 40% under single-stress conditions and 70% under co-stress conditions. Analysis of the differentially expressed genes revealed that the cells adjusted various cellular processes to cope with environmental stresses, including modifications in cell wall synthesis, membrane function, and energy production pathways. Meanwhile, the increased expression of genes involved in DNA repair system and protein biosynthesis ensured the normal physiological function of cells. Notably, under ethanol stress, P. pentosaceus upregulated genes involved in unsaturated fatty acid biosynthesis, enhancing membrane stability and integrity. Conversely, under lactic acid stress, cells downregulated F-type ATPase, reducing H+ influx to maintain intracellular pH homeostasis. The metabolomic analysis revealed DNA damage under co-stress conditions and further validated the transcriptomic results. Our findings elucidate the molecular and physiological strategies of P. pentosaceus under acid and ethanol stress, providing a foundation for optimizing fermentation processes and enhancing microbial resilience in industrial settings. Full article
(This article belongs to the Special Issue Emerging Trends in Food Microbiology and Food Safety)
Show Figures

Figure 1

14 pages, 239 KiB  
Article
The Willingness to Pay for Non-Alcoholic Beer: A Survey on the Sociodemographic Factors and Consumption Behavior of Italian Consumers
by Antonietta Baiano
Foods 2025, 14(13), 2399; https://doi.org/10.3390/foods14132399 - 7 Jul 2025
Viewed by 187
Abstract
The Italian market for non-alcoholic beer is very small, with a volume per capita of around 0.7 L. However, there are interesting prospects for future growth for reasons ranging from strict traffic code rules on the quantity of alcohol ingested to simple curiosity. [...] Read more.
The Italian market for non-alcoholic beer is very small, with a volume per capita of around 0.7 L. However, there are interesting prospects for future growth for reasons ranging from strict traffic code rules on the quantity of alcohol ingested to simple curiosity. This research aimed to investigate the willingness of Italian consumers/potential consumers to pay for non-alcoholic beer. To accomplish this, a questionnaire was administered using the Google Forms application. Three hundred and ninety-two people participated in this survey voluntarily and without monetary compensation. A probit regression model was used to estimate the impact of certain sociodemographic characteristics (number of inhabitants of the place of residence, region of residence, age group, gender, education level, employment situation, and annual net income), participants’ consumption habits with respect to alcoholic beer, and participants’ knowledge of and preference for non-alcoholic beers with respect to willingness to pay for non-alcoholic beers. The prices respondents were willing to pay ranged from EUR 1.51 to 2.00 for a 33 cL glass bottle. Only two factors significantly affected (p < 0.1) non-alcoholic beer WTP, namely, “Age” and “Non-alcoholic beer color”. WTP decreased as the age of the respondents increased and was higher for the darker beer. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
17 pages, 2159 KiB  
Article
Exploring Cross-Cultural Sensory Acceptance of Vinegar-Based Dipping Sauces: A Taiwanese Consumer Study with Dumplings
by Jung-Kuei Ker, Ming-Chen Chiang, Ching-Sung Lee and Yen-Cheng Chen
Foods 2025, 14(13), 2398; https://doi.org/10.3390/foods14132398 - 7 Jul 2025
Viewed by 206
Abstract
Vinegar functions not only as a sensory enhancer but also as a culturally embedded culinary element across global food systems. In Taiwanese cuisine, black vinegar represents a traditional staple, particularly associated with dumpling consumption, whereas Italian balsamic vinegar is renowned for its aromatic [...] Read more.
Vinegar functions not only as a sensory enhancer but also as a culturally embedded culinary element across global food systems. In Taiwanese cuisine, black vinegar represents a traditional staple, particularly associated with dumpling consumption, whereas Italian balsamic vinegar is renowned for its aromatic complexity and nuanced sweetness, highly esteemed in Western gastronomy. Despite their culinary significance, limited empirical research has examined how these culturally distinct condiments are perceived when applied beyond their traditional contexts, especially in iconic national dishes. This study investigates Taiwanese consumers’ cross-cultural sensory responses to dumplings paired with either local black vinegar or imported balsamic vinegar. Through a structured sensory evaluation encompassing appearance, aroma, taste, and overall impression, this research explores how sensory cues and cultural expectations interact to shape flavor preferences. The results indicate that although visual attributes were rated similarly, balsamic vinegar’s distinctive aroma and taste elicited significantly greater sensory engagement, suggesting a latent openness to reinterpretation and hybridization within established food practices. These findings were supported by one-way ANOVA results, which revealed significant differences among the three groups for aroma (F = 6.30, p < 0.01), taste (F = 7.21, p < 0.01), and overall evaluation (F = 15.15, p < 0.001). By integrating sensory analysis with cultural food studies, this research advances the understanding of how multisensory cues influence consumer acceptance across cultural contexts. It further highlights the dynamic interplay between cultural familiarity and sensory novelty in flavor perception. These insights yield practical implications for culinary innovation, global flavor localization, and the development of culturally responsive food products. Full article
(This article belongs to the Special Issue The Role of Taste, Smell or Color on Food Intake and Food Choice)
Show Figures

Figure 1

28 pages, 3298 KiB  
Review
Comprehensive New Insights into Sweet Taste Transmission Mechanisms and Detection Methods
by Yuanwei Sun, Shengmeng Zhang, Tianzheng Bao, Zilin Jiang, Weiwei Huang, Xiaoqi Xu, Yibin Qiu, Peng Lei, Rui Wang, Hong Xu, Sha Li and Qi Zhang
Foods 2025, 14(13), 2397; https://doi.org/10.3390/foods14132397 - 7 Jul 2025
Viewed by 265
Abstract
Sweet taste plays a pivotal role in human dietary behavior and metabolic regulation. With the increasing incidence of metabolic disorders linked to excessive sugar intake, the development and accurate evaluation of new sweeteners have become critical topics in food science and public health. [...] Read more.
Sweet taste plays a pivotal role in human dietary behavior and metabolic regulation. With the increasing incidence of metabolic disorders linked to excessive sugar intake, the development and accurate evaluation of new sweeteners have become critical topics in food science and public health. However, the structural diversity of sweeteners and their complex interactions with sweet taste receptors present major challenges for standardized sweetness detection. This review offers a comprehensive and up-to-date overview of sweet taste transmission mechanisms and current detection methods. It outlines the classification and sensory characteristics of both conventional and emerging sweeteners, and explains the multi-level signaling pathway from receptor binding to neural encoding. Key detection techniques, including sensory evaluation, electronic tongues, and biosensors, are systematically compared in terms of their working principles, application scope, and limitations. Special emphasis is placed on advanced biosensing technologies utilizing receptor–ligand interactions and nanomaterials for highly sensitive and specific detection. Furthermore, an intelligent detection framework integrating molecular recognition, multi-source data fusion, and artificial intelligence is proposed. This interdisciplinary approach provides new insights and technical solutions to support precise sweetness evaluation and the future development of healthier food systems. Full article
(This article belongs to the Special Issue Novel Insights into Food Flavor Chemistry and Analysis)
Show Figures

Graphical abstract

16 pages, 466 KiB  
Article
Occurrence of Aflatoxin M1 over Three Years in Raw Milk from Croatia: Exposure Assessment and Risk Characterization in Consumers of Different Ages and Genders
by Nina Bilandžić, Ines Varga, Bruno Čalopek, Božica Solomun Kolanović, Ivana Varenina, Maja Đokić, Marija Sedak, Luka Cvetnić, Damir Pavliček and Ana Končurat
Foods 2025, 14(13), 2396; https://doi.org/10.3390/foods14132396 - 7 Jul 2025
Viewed by 175
Abstract
In this study, the frequency of aflatoxin M1 (AFM1) occurrence in raw milk was investigated across different seasons over a three-year period from 2022 to 2024 in Croatia. Risk assessment was conducted using estimated daily intake (EDI), hazard index (HI), and margin of [...] Read more.
In this study, the frequency of aflatoxin M1 (AFM1) occurrence in raw milk was investigated across different seasons over a three-year period from 2022 to 2024 in Croatia. Risk assessment was conducted using estimated daily intake (EDI), hazard index (HI), and margin of exposure (MOE) for various age groups and both genders. The frequency of AFM1 detection above the maximum level (ML) ranged from 1.60% to 15.1%. The average incidence of AFM1 exceeding the ML was 5.67%, with the highest incidence recorded in autumn 2024. AFM1 levels within the limit of detection (LOD) and ML were found in 13% of the samples. The average mean value of AFM1 over the three-year period was 19.2 ng/kg. The highest mean AFM1 EDI values were determined for toddlers (0.61–0.67 ng/kg bw/day) and children (0.41–0.43 ng/kg bw/day). The lowest EDI values were observed in elderly females and males (0.058–0.074 ng/kg bw/day). The EDI values for females and males were slightly different. The risk assessment, based on the HI and MOE, indicated that toddlers and children are at the highest risk of exposure to AFM1, which raises significant health concerns. Additionally, consumers of large quantities of milk face a high risk of exposure, particularly during the spring and autumn seasons. For adults and the elderly, milk consumption does not pose a serious health risk. Full article
Show Figures

Figure 1

16 pages, 1103 KiB  
Article
Effect of Artichoke Outer Bract Powder Addition on the Nutritional Profile of Gluten-Free Rusks
by Valentina Melini, Francesca Melini, Alessandro Salvati, Francesca Luziatelli and Maurizio Ruzzi
Foods 2025, 14(13), 2395; https://doi.org/10.3390/foods14132395 - 7 Jul 2025
Viewed by 198
Abstract
This study investigates the effect of incorporating outer bract powder on the bioactive compound content of gluten-free (GF) rusks, in terms of undigestible carbohydrates and phenolic compound content. The production of the artichoke powder as a functional ingredient was optimized by evaluating two [...] Read more.
This study investigates the effect of incorporating outer bract powder on the bioactive compound content of gluten-free (GF) rusks, in terms of undigestible carbohydrates and phenolic compound content. The production of the artichoke powder as a functional ingredient was optimized by evaluating two key processing variables: drying time and pre-treatment of artichoke bracts with food-grade citric acid. Two distinct composite GF flour blends were used to formulate the GF rusks, and the nutritional quality thereof was systematically assessed. Results demonstrated that pre-treating the artichoke outer bracts with citric acid, followed by drying at 40 °C for 20 h, allowed for the production of a powder characterized by a lighter and reddish appearance, low fat content, and high dietary fiber level. The formulated rusks were rich in dietary fiber, whose intake is generally a deficiency in the diet of coeliac subjects. Furthermore, the enrichment with artichoke powder contributed to the production of a low-fat snack, in contrast with the GF snacks available on the market. The artichoke powder also showed a high content of free phenolic compounds, suggesting an enhanced dietary intake of antioxidants for consumers. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

19 pages, 808 KiB  
Article
Nutritional and Organoleptic Characterization of Two Quinoa (Chenopodium quinoa) Cultivars Grown in Quebec, Canada
by Aria Haiying Huang, Sophie Turcot, Nancy Graveline, Marylène Pelletier, Hugues Plourde, Sébastien Villeneuve and Isabelle Germain
Foods 2025, 14(13), 2394; https://doi.org/10.3390/foods14132394 - 7 Jul 2025
Viewed by 260
Abstract
Quinoa (Chenopodium quinoa) cultivation and consumption have been increasing globally for its nutritional value and agricultural adaptability, with over 120 countries involved in its production. In Canada, quinoa is cultivated as a specialty crop to increase crop diversity and support agroresilience. [...] Read more.
Quinoa (Chenopodium quinoa) cultivation and consumption have been increasing globally for its nutritional value and agricultural adaptability, with over 120 countries involved in its production. In Canada, quinoa is cultivated as a specialty crop to increase crop diversity and support agroresilience. This study is the first to examine quinoa cultivars grown under northern Quebec conditions and to provide a nutritional and sensory characterization of two Quebec (Canada) varieties (Sweet and Bitter) in comparison to the Bolivian reference cultivar, Royal White. Analyses included proximate composition, amino acids, fatty acids, phenolics, and anti-nutrients. Sensory evaluations involved hedonic and bitterness ranking tests. Bolivian cultivar had higher omega-3 content, while the Quebec cultivars showed favorable protein and lipid profiles, with better lipid health indexes. Protein quality was comparable between the Bolivian and Sweet cultivars. The overall flavor appreciation was similar among twice-brushed Bitter cultivar and Bolivian samples. The Bolivian sample received a better score for texture. Descriptive flavor data support the development of a quinoa flavor lexicon. Notably, total saponins content, commonly used as a bitterness indicator, did not consistently correlate with perceived bitterness, emphasizing the need for a standardized quantification method for cultivar selection and further investigation into other flavor-contributing compounds. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

17 pages, 2449 KiB  
Article
Miniaturized NIRS Coupled with Machine Learning Algorithm for Noninvasively Quantifying Gluten Quality in Wheat Flour
by Yuling Wang, Chen Zhang, Xinhua Li, Longzhu Xing, Mengchao Lv, Hongju He, Leiqing Pan and Xingqi Ou
Foods 2025, 14(13), 2393; https://doi.org/10.3390/foods14132393 - 7 Jul 2025
Viewed by 168
Abstract
This research implemented a miniaturized near-infrared spectroscopy (NIRS) system integrated with machine learning approaches for the quantitative evaluation of dry gluten content (DGC), wet gluten content (WGC), and the gluten index (GI) in wheat flour in a noninvasive manner. Five different algorithms were [...] Read more.
This research implemented a miniaturized near-infrared spectroscopy (NIRS) system integrated with machine learning approaches for the quantitative evaluation of dry gluten content (DGC), wet gluten content (WGC), and the gluten index (GI) in wheat flour in a noninvasive manner. Five different algorithms were employed to mine the relationship between the full-range spectra (900–1700 nm) and three parameters, with support vector regression (SVR) demonstrating the best prediction performance for all gluten parameters (RP = 0.9370–0.9430, RMSEP = 0.3450–0.4043%, and RPD = 3.1348–3.4998). Through a comparative evaluation of five wavelength selection techniques, 25–30 optimal wavelengths were identified, enabling the development of optimized SVR models. The improved whale optimization algorithm iWOA-based SVR (iWOA-SVR) model exhibited the strongest predictive capability among the five optimal wavelengths-based models, achieving comparable accuracy to the full-range spectra SVR for all gluten parameters (RP = 0.9190–0.9385, RMSEP = 0.3927–0.5743%, and RPD = 3.0424–3.2509). The model’s robustness was confirmed through external validation and statistical analyses (p > 0.05 for F-test and t-test). The results highlight the effectiveness of micro-NIRS combined with iWOA-SVR for the nondestructive gluten quality assessment of wheat flour, providing a more valuable reference for expanding the use of NIRS technology and developing portable specialized NIRS equipment for industrial-level applications in the future. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

21 pages, 2164 KiB  
Review
Prebiotic Potential of Dietary Polyphenols in Colorectal Cancer Immunomodulation
by Bini Sreenesh, Elizabeth Varghese, Peter Kubatka, Samson Mathews Samuel and Dietrich Büsselberg
Foods 2025, 14(13), 2392; https://doi.org/10.3390/foods14132392 - 7 Jul 2025
Viewed by 316
Abstract
Molecular crosstalk between the gut microbiome and human diet represent a potential therapeutic avenue requiring further investigation as it can be applied to human health management and treatment. Colon cancer, the third leading cause of cancer mortality, is often linked to the gut [...] Read more.
Molecular crosstalk between the gut microbiome and human diet represent a potential therapeutic avenue requiring further investigation as it can be applied to human health management and treatment. Colon cancer, the third leading cause of cancer mortality, is often linked to the gut microbiome. In vitro and in vivo studies and metagenomic research have revealed alterations in gut microbial flora among diseased individuals. The human diet is connected to these changes in microbial inhabitants related to the pathophysiology underlying colorectal cancer (CRC). Polyphenols are well-studied, naturally occurring plant secondary metabolites recognized for their anti-inflammatory and antioxidant properties. The anticancer activities of these compounds are increasingly reported, offering insights into the administration of these natural molecules for managing various types of cancer and developing novel medications from them. Recent investigations have highlighted the prebiotic-like effects of these compounds on gut microbial dysbiosis and their metabolism concerning colorectal cancer, influencing colon cancer by interfering with multiple signaling pathways. This review will focus on the existing literature regarding the prebiotic potential of dietary polyphenols, and further research in this area would be valuable, as the integration of artificial intelligence (AI) and machine learning (ML) can enable analysis of the connections between unique gut microbiome profiles and other dependent factors such as physiological and genetic variables, paving the way for personalized treatment strategies in gut microbiome-based health management and precision medicine. Full article
(This article belongs to the Special Issue Polyphenols and Health Benefits: 2nd Edition)
Show Figures

Figure 1

22 pages, 1308 KiB  
Article
Novel Active Films with Semolina and Jatoba (Hymenaea courbaril L.): Preparation, Properties, and Sustainability Aspects
by Cristiani Viegas Brandão Grisi, Flávia Cosmo Guedes da Silva, Rita de Cassia Andrade Silva, Rene Pinto da Silva, Fábio Anderson Pereira da Silva and Angela Maria Tribuzy de Magalhães Cordeiro
Foods 2025, 14(13), 2391; https://doi.org/10.3390/foods14132391 - 6 Jul 2025
Viewed by 288
Abstract
The aim of this study was to develop and characterize antioxidant-active films for potential food packaging applications. The films were produced by casting aqueous solutions containing semolina flour (6% w/w), pectin extracted from passion fruit (1% w/w), [...] Read more.
The aim of this study was to develop and characterize antioxidant-active films for potential food packaging applications. The films were produced by casting aqueous solutions containing semolina flour (6% w/w), pectin extracted from passion fruit (1% w/w), inverted sugar (1% w/w), and sucrose (1% w/w), incorporating hydroalcoholic extracts from jatoba stem bark (X1) and pods (X2) at concentrations ranging from 0 to 1% (w/w). The films were characterized in terms of their functional, physical, chemical, structural, and degradation properties. The formulation that showed the best performance, referred to as the optimized formulation (FO), contained 0.5% X1 and 0.5% X2, presenting a high phenolic compound content (8.80 mg GAE/g), strong antioxidant activity as determined by the DPPH method (75.28%) and FRAP assay (6.02 mmol FeSO4/g), good thermal stability (350 °C), and a high soil degradation rate (83.47% in 15 days). These results indicate that the FO film has potential application as a primary packaging material with antioxidant function for oxidation-sensitive foods, meeting the demand for biodegradable and environmentally sustainable solutions in the food industry. Full article
Show Figures

Figure 1

17 pages, 2986 KiB  
Article
Modulatory Role of Hesperetin–Copper(II) on Gut Microbiota in Type 2 Diabetes Mellitus Mice
by Xi Peng, Yushi Wei, Deming Gong and Guowen Zhang
Foods 2025, 14(13), 2390; https://doi.org/10.3390/foods14132390 - 6 Jul 2025
Viewed by 243
Abstract
Background: Exploring new strategies to improve type 2 diabetes mellitus (T2DM) is one of the frontier hotspots in the field of healthy food. Flavonoid–metal complexes have become one of the research hotspots in the field of health foods due to their unique structural [...] Read more.
Background: Exploring new strategies to improve type 2 diabetes mellitus (T2DM) is one of the frontier hotspots in the field of healthy food. Flavonoid–metal complexes have become one of the research hotspots in the field of health foods due to their unique structural and functional properties. Methods: In this study, the effect of hesperetin–copper(II) complex [Hsp–Cu(II)] on the gut microbiota of mice with T2DM was investigated by the 16S rRNA high-throughput sequencing. Results: The analyses of α and β diversity indicated that the richness and diversity of gut microbiota in the T2DM mice decreased and the community structure was significantly different from the normal mice. Hsp–Cu(II) increased the abundances of the beneficial bacteria (Lactobacillus, Ligilactobacillus, Romboutsia, Faecalibaculum, and Dubosiella), and decreased the amounts of the harmful bacteria (Desulfobacterota, Corynebacterium, and Desulfovibrio) and the ratio of Firmicutes/Bacteroidetes (from 44.5 to 5.8) in the T2DM mice, which was beneficial for regulating the composition of intestinal microbiota. The linear discriminant analysis effect size analysis showed that the intervention of Hsp–Cu(II) made the short-chain fatty acid (SCFA) producers (o_Lachnospirales, f_Lachnospiraceae, g_Faecalibaculum, g_Romboutsia, and g_Turicibacter) and the lactic acid bacteria producers (f_Lactobacillaceae and o_Lactobacillales) highly enriched, and the production of its metabolite SCFAs (acetic acid, propionic acid, butyric acid, and valeric acid) were increased in a dose-dependent manner, promoting the SCFA metabolism. Conclusions: Hsp–Cu(II) may improve glucose metabolic disorders and alleviate T2DM by modulating gut microbiota composition, promoting probiotics proliferation and SCFAs production, restoring intestinal barrier integrity, and suppressing local inflammation. These research findings may provide a theoretical basis for developing Hsp–Cu(II) as a new hypoglycemic nutritional supplement, and offer new ideas for the dietary food nutritional regulation to alleviate T2DM. Full article
Show Figures

Figure 1

18 pages, 1752 KiB  
Article
Effects of Different Trehalose and Sorbitol Impregnation Methods on Freeze–Thaw Damage to Potato Slices
by Wenfang Xuan, Yiyang Qi, Xueqian Wan, Xuemei Gao, Haiou Wang and Huichang Wu
Foods 2025, 14(13), 2389; https://doi.org/10.3390/foods14132389 - 6 Jul 2025
Viewed by 235
Abstract
Fresh-cut potato slices are prone to browning. Although freezing is an effective method of preserving food, freezing and thawing cause inevitable damage to potato tissues. This study explored the freeze-protective effects of trehalose and sorbitol under atmospheric pressure impregnation and vacuum impregnation by [...] Read more.
Fresh-cut potato slices are prone to browning. Although freezing is an effective method of preserving food, freezing and thawing cause inevitable damage to potato tissues. This study explored the freeze-protective effects of trehalose and sorbitol under atmospheric pressure impregnation and vacuum impregnation by analyzing their influences on the cell structural and textural characteristics of frozen–thawed potato slices. The results showed that both trehalose and sorbitol can significantly improve the quality of frozen–thawed potato slices. Vacuum impregnation resulted in a higher total sugar content in the impregnated potato slices than atmospheric pressure impregnation (p < 0.05). Sorbitol impregnation significantly reduced cell damage and nutrient loss of frozen–thawed potato slices; specifically, under vacuum impregnation conditions, the juice loss rate and relative electrical conductivity decreased to 7.58 ± 0.47% and 32.90 ± 1.83 mS/cm, respectively. Texture analysis showed that sorbitol impregnation resulted in significantly higher puncture hardness and TPA hardness in frozen–thawed potato slices than trehalose impregnation. Furthermore, observations of cell activity and transmission electron microscopy of potato tissues verified sorbitol’s advantages in maintaining cell structure integrity and reducing ice crystal damage. Hence, sorbitol vacuum impregnation is highly recommended as a pretreatment in potato quick freezing processes. This study provides a theoretical basis and technical support for the improvement of the quality of quick-frozen potato products, and for the later processing and manufacturing of frozen potato slices. Full article
Show Figures

Figure 1

20 pages, 1007 KiB  
Article
Fatty Acids Are Responsible for the Discrepancy of Key Aroma Compounds in Naturally Dried Red Goji Berries and Hot-Air-Dried Red Goji Berries
by Yan Zheng, Claudia Oellig, Walter Vetter, Vanessa Bauer, Yuan Liu, Yanping Chen and Yanyan Zhang
Foods 2025, 14(13), 2388; https://doi.org/10.3390/foods14132388 - 6 Jul 2025
Viewed by 218
Abstract
Red goji berries, reputed worldwide as “superfruit”, are commonly marketed after natural drying or hot-air drying. A sensomics approach was applied to the aroma analysis of red goji berries under two drying methods. Fifty-two aroma-active compounds were screened and identified by aroma extract [...] Read more.
Red goji berries, reputed worldwide as “superfruit”, are commonly marketed after natural drying or hot-air drying. A sensomics approach was applied to the aroma analysis of red goji berries under two drying methods. Fifty-two aroma-active compounds were screened and identified by aroma extract dilution analysis (AEDA) coupled with gas chromatography with olfactometry (GC/O). The contents and the odor activity values (OAVs) of 49 aroma-active compounds were determined. Acetic acid was the predominant aroma compounds in both berries. Meanwhile, the key aroma compounds in both berries were (E)-2-nonenal, (Z)-4-heptenal, 3-methyl-2,4-nonanedione, hexanal, etc., which were lipid derivatives. Natural drying promoted the formation of some aldehydes that exhibited green and fatty notes. Hot-air drying facilitated the production of ketones with hay-like and cooked apple-like odor attributes due to the thermal reaction. The fatty acid patterns between naturally dried and hot-air-dried red goji berries differed not significantly and were dominated by linoleic acid, oleic acid, palmitic acid, etc. The knowledge of the impacts of different drying processes on the aroma quality in red goji berries is beneficial for the quality control and optimization of dried red goji berries. Full article
Show Figures

Figure 1

16 pages, 4449 KiB  
Article
Total Culturable Microbial Diversity of Food Contact Surfaces in Poultry and Fish Processing Industries After the Pre-Operational Cleaning Process
by Luiz Gustavo Bach, Gabriela Zarpelon Anhalt Braga, Márcia Cristina Bedutti, Layza Mylena Pardinho Dias, Emanoelli Aparecida Rodrigues dos Santos, Leonardo Ereno Tadielo, Evelyn Cristine da Silva, Jhennifer Arruda Schmiedt, Virgínia Farias Alves, Elaine Cristina Pereira De Martinis, Fábio Sossai Possebon, Vinicius Cunha Barcellos and Luciano dos Santos Bersot
Foods 2025, 14(13), 2387; https://doi.org/10.3390/foods14132387 - 6 Jul 2025
Viewed by 234
Abstract
This study assessed the viable and culturable microbial diversity that remained on equipment surfaces after hygiene procedures in Brazilian poultry and fish slaughterhouses. Food-contact surface samples were collected using sterile swabs in poultry (n = 50) and fish (Oreochromis niloticus, [...] Read more.
This study assessed the viable and culturable microbial diversity that remained on equipment surfaces after hygiene procedures in Brazilian poultry and fish slaughterhouses. Food-contact surface samples were collected using sterile swabs in poultry (n = 50) and fish (Oreochromis niloticus, n = 50) slaughterhouses. The swab samples were used to prepare culture plates to recover viable and culturable cells. The grown plates were washed, and the total DNA of the cell suspension was extracted with a commercial kit. Sequencing of the total DNA extracted from cultures was targeted at the V3 and V4 regions of the 16S rRNA. DNA reads were analyzed by QIIME2 software, with results expressed in relative frequency (%RF). Alpha and beta diversity indexes were analyzed considering the spots of sample collection, type of industry, surfaces (smooth or modular), and materials (polypropylene, stainless steel, or polyurethane). The results showed that in the poultry slaughterhouse, the most abundant genera were Acinetobacter (27.4%), Staphylococcus (7.7%), and Pseudomonas (5.3%), while for the fish slaughterhouse, there was a higher abundance of Staphylococcus (27.7%), Acinetobacter (17.2%), and Bacillus (12.5%). Surface characteristics influenced the microbial diversity, with Acinetobacter spp. dominating modular surfaces and Staphylococcus spp. prevailing on smooth surfaces. The results obtained indicate there is an important resident microbiota that persists even after hygiene processes, and surface-specific cleaning strategies should be developed. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 1546 KiB  
Article
Nutritional and Antioxidant Valorization of Grape Pomace from Argentinian Vino De La Costa and Italian Cabernet Wines
by Luciano M. Guardianelli, María V. Salinas, María C. Puppo, Alyssa Hidalgo and Gabriella Pasini
Foods 2025, 14(13), 2386; https://doi.org/10.3390/foods14132386 - 5 Jul 2025
Viewed by 244
Abstract
Wine production generates by-products that require proper management and reuse to minimize their environmental impact. Grape pomace, a by-product of winemaking, holds significant nutritional and bioactive potential. This study evaluated the nutritional and antioxidant profiles of pomace from Isabella grapes (La Plata, Argentina) [...] Read more.
Wine production generates by-products that require proper management and reuse to minimize their environmental impact. Grape pomace, a by-product of winemaking, holds significant nutritional and bioactive potential. This study evaluated the nutritional and antioxidant profiles of pomace from Isabella grapes (La Plata, Argentina) and Cabernet grapes (Veneto, Italy). Both varieties contain high levels of dietary fiber, especially Cabernet. However, Cabernet showed lower protein and lipid levels than Isabella. Calcium, potassium, and phosphorus were the major minerals in both by-products. Isabella exhibited a higher content of essential polyunsaturated fatty acids, particularly α-linoleic acid, while Cabernet shows a greater proportion of saturated and monounsaturated fatty acids. Additionally, Isabella exhibited significantly higher levels of caffeic acid derivatives (506.4 vs. 38.2 mg/kg dry weight), catechin (1613.2 vs. 294.8 mg/kg dry weight), epicatechin (1229.2 vs. 230.3 mg/kg dry weight), and total anthocyanins (2649 vs. 607.5 mg kuromanin/kg dry weight), as well as a greater total polyphenol content and antioxidant activity compared to Cabernet. These results highlight grape pomace’s potential as a valuable functional ingredient. Full article
Show Figures

Figure 1

15 pages, 5506 KiB  
Article
Discrimination of Polygonatum Species via Polysaccharide Fingerprinting: Integrating Their Chemometrics, Antioxidant Activity, and Potential as Functional Foods
by Zhiguo Liu, Wei Zhang and Bin Wang
Foods 2025, 14(13), 2385; https://doi.org/10.3390/foods14132385 - 5 Jul 2025
Viewed by 227
Abstract
Polygonati Rhizoma, a renowned edible homologous material, encompasses an array of widely distributed species. Despite their morphological and medicinal similarities, their overlapping distribution and evolving varieties present challenges for their classification and identification. This study provides a comprehensive characterization of the physicochemical and [...] Read more.
Polygonati Rhizoma, a renowned edible homologous material, encompasses an array of widely distributed species. Despite their morphological and medicinal similarities, their overlapping distribution and evolving varieties present challenges for their classification and identification. This study provides a comprehensive characterization of the physicochemical and antioxidant properties of polysaccharides extracted from three common species: P. sibiricum, P. cyrtonema, and P. kingianum. An analysis of their monosaccharide composition reveals distinct profiles, with P. kingianum polysaccharides (PKPs) demonstrating a significantly higher glucose content compared to P. sibiricum polysaccharides (PSPs) and P. cyrtonema polysaccharides (PCPs). Infrared (IR) spectroscopy and derivative spectral processing affirm both structural similarities and quantitative differences in functional groups among the species. Multivariate analyses, including HCA, PCA, and OPLS-DA, confidently classify the 12 batches of polysaccharides into three distinct groups (PSPs, PCPs, and PKPs), exhibiting strong model robustness (PCA: R2X = 0.951, Q2 = 0.673; OPLS-DA: R2Y = 0.953, Q2 = 0.922). Importantly, PKPs from number S11 show exceptional in vitro antioxidant activity (DPPH scavenging), which directly correlates with their high monosaccharide content and distinctive spectral features. These findings establish a robust foundation for the quality assessment of Polygonatum polysaccharides as potential natural antioxidants in functional foods, positioning PKPs as leading candidates for dietary supplement development. Full article
Show Figures

Figure 1

16 pages, 1155 KiB  
Article
Measuring Viscosity and Consistency in Thickened Liquids for Dysphagia: Is There a Correlation Between Different Methods?
by Javier Marín-Sánchez, Sofía Gimeno-Ruiz, Alejandro Berzosa, Javier Raso and Cristina Sánchez-Gimeno
Foods 2025, 14(13), 2384; https://doi.org/10.3390/foods14132384 - 5 Jul 2025
Viewed by 200
Abstract
Dysphagia is a common clinical condition, especially among older adults, associated with an increased risk of malnutrition, aspiration, and respiratory complications. A key therapeutic approach involves modifying liquid consistency using thickening agents to achieve safer swallowing. Although rotational rheometry offers accurate viscosity characterization, [...] Read more.
Dysphagia is a common clinical condition, especially among older adults, associated with an increased risk of malnutrition, aspiration, and respiratory complications. A key therapeutic approach involves modifying liquid consistency using thickening agents to achieve safer swallowing. Although rotational rheometry offers accurate viscosity characterization, its complexity and cost limit routine application in clinical or domestic settings. This study evaluates and correlates different methods for measuring the viscosity of thickened liquids, comparing rheological data with empirical techniques such as the Ford cup, Bostwick consistometer, and Line-Spread Test (LST). Several thickeners were tested—guar gum, xanthan gum, a guar/xanthan blend, maltodextrin-based mixtures, and a commercial thickener—across a range of concentrations, temperatures, and preparation times. The results demonstrate that simple methods, particularly the Bostwick consistometer and LST, show strong correlations with rheometer measurements within the International Dysphagia Diet Standardisation Initiative (IDDSI) Level 2 (mildly thick) and Level 3 (moderately thick) ranges. However, limitations were observed at extreme viscosities, where certain methods lacked sensitivity or operational feasibility. These findings support the potential of empirical tools for practical viscosity screening in dysphagia management, especially where rheometry is unavailable. This work provides evidence-based guidance for clinicians, caregivers, and food service professionals seeking safe, reproducible, and standardized approaches to fluid consistency assessment. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

27 pages, 4515 KiB  
Article
Effects of Different Farming Models on Muscle Quality, Intestinal Microbiota Diversity, and Liver Metabolism of Rice Field Eel (Monopterus albus)
by Yifan Zhao, Wenzong Zhou, Muyan Li, Yuning Zhang, Weiwei Lv, Weiwei Huang, Hang Yang, Quan Yuan and Mingyou Li
Foods 2025, 14(13), 2383; https://doi.org/10.3390/foods14132383 - 5 Jul 2025
Viewed by 235
Abstract
As consumer demand for quality fish products continues to rise, quality has become a key factor in market competition. Ecological aquaculture research is exploring various farming methods to balance high-quality demand with environmental protection. This study compared three aquaculture models—cage culture (CG), recirculating [...] Read more.
As consumer demand for quality fish products continues to rise, quality has become a key factor in market competition. Ecological aquaculture research is exploring various farming methods to balance high-quality demand with environmental protection. This study compared three aquaculture models—cage culture (CG), recirculating aquaculture (RAG), and rice–fish co-culture (RG)—by analyzing muscle quality (AOAC, GC-MS), intestinal microbiota (16S rRNA), and liver metabolism (LC-MS) to assess their effects on M. albus. In terms of muscle quality, the RG group showed increased levels of EPA and DHA, reduced muscle moisture and crude lipid content, and enhanced crude protein accumulation. The crude protein content was significantly higher in the RAG group than in the CG group (p < 0.05). The RG group also had the highest levels of total, essential, and umami amino acids, followed by the RAG and CG groups. In terms of intestinal microbiota, the RG group had the highest microbial diversity and stability, with increased abundance of Firmicutes and Bacteroidetes and decreased levels of Proteobacteria. Compared to the CG, the RAG group also showed increased microbial diversity and a reduction in pathogenic genera. Liver metabolomics analysis demonstrated that the RG group had significant advantages over the CG group in amino acid, lipid, and energy metabolism. The RAG group exhibited upregulation of glycerophospholipid metabolism and a decrease in oxidative stress marker levels. Overall, the RG group enhanced muscle quality and optimized intestinal and liver metabolism in M. albus. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

26 pages, 4558 KiB  
Article
Enrichment of Rice Flour with Almond Bagasse Powder: The Impact on the Physicochemical and Functional Properties of Gluten-Free Bread
by Stevens Duarte, Janaina Sánchez-García, Joanna Harasym and Noelia Betoret
Foods 2025, 14(13), 2382; https://doi.org/10.3390/foods14132382 - 5 Jul 2025
Viewed by 264
Abstract
Almond bagasse, a by-product of almond milk production, is rich in fibre, protein, polyunsaturated fatty acids, and bioactive compounds. Its incorporation into food products provides a sustainable approach to reducing food waste while improving nutritional quality. This study explored the impact of enriching [...] Read more.
Almond bagasse, a by-product of almond milk production, is rich in fibre, protein, polyunsaturated fatty acids, and bioactive compounds. Its incorporation into food products provides a sustainable approach to reducing food waste while improving nutritional quality. This study explored the impact of enriching rice flour with almond bagasse powders—either hot air-dried (HAD60) or lyophilised (LYO)—at substitution levels of 5%, 10%, 15%, 20%, 25%, and 30% (w/w), to assess effects on gluten-free bread quality. The resulting flour blends were analysed for their physicochemical, techno-functional, rheological, and antioxidant properties. Gluten-free breads were then prepared using these blends and evaluated fresh and after seven days of refrigerated storage. The addition of almond bagasse powders reduced moisture and water absorption capacities, while also darkening the bread colour, particularly in HAD60, due to browning from thermal drying. The LYO powder led to softer bread by disrupting the starch structure more than HAD60. All breads hardened after storage due to starch retrogradation. The incorporation of almond bagasse powder reduced the pasting behaviour—particularly at substitution levels of ≥ 25%—as well as the viscoelastic moduli of the flour blends, due to fibre competing for water and thereby limiting starch gelatinisation. Antioxidant capacity was significantly enhanced in HAD60 breads, particularly in the crust and at higher substitution levels, due to Maillard reactions. Furthermore, antioxidant degradation over time was less pronounced in formulations with higher substitution levels, with HAD60 proving more stable than LYO. Overall, almond bagasse powder improves the antioxidant profile and shelf-life of gluten-free bread, highlighting its value as a functional and sustainable ingredient. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

32 pages, 16283 KiB  
Article
Artemisia absinthium L. Extract Targeting the JAK2/STAT3 Pathway to Ameliorate Atherosclerosis
by Jiayi Yang, Tian Huang, Lijie Xia and Jinyao Li
Foods 2025, 14(13), 2381; https://doi.org/10.3390/foods14132381 - 5 Jul 2025
Viewed by 236
Abstract
Artemisia absinthium L. contributes to ecological stabilization in arid regions through its deep root system for sand fixation and soil microenvironment modulation, thereby effectively mitigating desertification. Total terpenoids have been extracted from A. absinthium (AATP) and found to have antioxidant and anti-inflammatory activities. [...] Read more.
Artemisia absinthium L. contributes to ecological stabilization in arid regions through its deep root system for sand fixation and soil microenvironment modulation, thereby effectively mitigating desertification. Total terpenoids have been extracted from A. absinthium (AATP) and found to have antioxidant and anti-inflammatory activities. Terpenoids are a class of natural products derived from methyl hydroxypropanoic acid, for which their structural units consist of multiple isoprene (C5) units. They are one of the largest and most structurally diverse classes of natural compounds. However, there are still large gaps in knowledge regarding their exact biological activities and effects. Atherosclerosis (AS) is a prevalent cardiovascular disease marked by the chronic inflammation of the vascular system, and lipid metabolism plays a key role in its pathogenesis. This study determined the extraction and purification processes of AATP through single-factor experiments and response surface optimization methods. The purity of AATP was increased from 20.85% ± 0.94 before purification to 52.21% ± 0.75, which is 2.5 times higher than before purification. Studies have shown that the total terpenoids of A. absinthium significantly reduced four indices of serum lipids in atherosclerosis (AS) rats, thereby promoting lipid metabolism, inhibiting inflammatory processes, and hindering aortic wall thickening and hepatic fat accumulation. It is known from network pharmacology studies that AATP regulates the Janus kinase/signal transducer (JAK/STAT) signaling axis. Molecular docking studies have indicated that the active component of AATP effectively binds to Janus kinase (JAK2) and signal transducer (STAT3) target proteins. The results indicate that AATP can inhibit the release of pro-inflammatory mediators (such as reactive oxygen species (ROS)) in LPS-induced RAW264.7 macrophages. It also inhibits the M1 polarization of RAW264.7 macrophages. Protein immunoblotting analysis revealed that it significantly reduces the phosphorylation levels of Janus kinase (JAK2) and the signal transducer and activator of transcription 3 (STAT3). Research indicates that the active components in A. absinthium may exert anti-atherosclerotic effects by regulating lipid metabolism and inhibiting inflammatory responses. It holds potential value for development as a functional food or drug for the prevention and treatment of atherosclerosis. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

24 pages, 1637 KiB  
Review
Entomophagy: Nutritional Value, Benefits, Regulation and Food Safety
by Noélia A. Pinheiro, Liliana J. G. Silva, Angelina Pena and André M. P. T. Pereira
Foods 2025, 14(13), 2380; https://doi.org/10.3390/foods14132380 - 4 Jul 2025
Viewed by 155
Abstract
The consumption of insects as food is an ancient practice that remains widespread in many regions of Asia, Africa, Latin America, and Oceania. However, this tradition has largely disappeared in Western countries, where it is often met with aversion. Nutritionally, insects can contain [...] Read more.
The consumption of insects as food is an ancient practice that remains widespread in many regions of Asia, Africa, Latin America, and Oceania. However, this tradition has largely disappeared in Western countries, where it is often met with aversion. Nutritionally, insects can contain up to 60–70% protein (dry weight), along with beneficial fats, minerals, and vitamins, making them comparable to commonly consumed protein sources. Additionally, they contain bioactive compounds that offer health benefits and can contribute to reducing social inequalities in food access. As a sustainable protein source, insects have the potential to meet the demands of a projected global population of 9.7 billion by 2050. From a regulatory perspective, legislation on edible insects is still emerging in many parts of the world, with significant regional differences in the approval process, safety requirements, and permitted species. However, ensuring their safety—particularly in terms of production, preservation, storage, and potential health risks—is crucial. By addressing these concerns, it may be possible to shift the prevailing negative perception in Western societies and enhance consumer acceptance. Thus, we performed a literature review encompassing several issues regarding entomophagy, like insects’ nutritional composition, legislation, benefits, and food safety, and also addressing future perspectives. Full article
Show Figures

Figure 1

19 pages, 8164 KiB  
Article
A Novel PCR-Based Tool to Trace Oenological Saccharomyces cerevisiae Yeast by Monitoring Strain-Specific Nucleotide Polymorphisms
by Anna Baldisseri, Davide Santinello, Sara Granuzzo, Martina Frizzarin, Fabio De Pascale, Geppo Sartori, Paolo Antoniali, Stefano Campanaro and Raffaele Lopreiato
Foods 2025, 14(13), 2379; https://doi.org/10.3390/foods14132379 - 4 Jul 2025
Viewed by 199
Abstract
Saccharomyces cerevisiae plays a fundamental role in winemaking, not only driving alcoholic fermentation but also producing secondary metabolites that contribute to the organoleptic properties of wine. To ensure consistent quality and process efficiency, wineries commonly employ selected starter strains. Accordingly, the ability to [...] Read more.
Saccharomyces cerevisiae plays a fundamental role in winemaking, not only driving alcoholic fermentation but also producing secondary metabolites that contribute to the organoleptic properties of wine. To ensure consistent quality and process efficiency, wineries commonly employ selected starter strains. Accordingly, the ability to control strain purity and traceability is of critical importance. Currently, the inter-delta PCR method is widely used for the strain-specific genotyping of S. cerevisiae. However, its resolution diminishes when analyzing genetically similar strains, such as those isolated from related grape types or during genotyping of large yeast collections. To address this limitation, we developed a novel strategy that integrates computational and experimental approaches to identify highly specific allelic variants (single nucleotide polymorphisms, SNPs) within the S. cerevisiae genome. Comparative genomic analysis of twenty-eight different strains led to the identification of multiple strain-specific SNPs. From these, nine SNPs spanning five strains were selected and validated through targeted PCR assays. These assays confirmed the feasibility of using SNPs as reliable genetic markers for strain discrimination and traceability. Overall, our findings demonstrate that this SNP-based approach, implemented via multiplex allele-specific (AS) PCR assays, offers a rapid, cost-effective, and highly discriminatory alternative to current genotyping methods, particularly for differentiating closely related strains. Full article
Show Figures

Figure 1

22 pages, 9642 KiB  
Article
Bacillus thuringiensis Exopolysaccharide BPS-2 Ameliorates Ulcerative Colitis in a Murine Model Through Modulation of Gut Microbiota and Suppression of the NF-κB Cascade
by Zexin Gao, Huan Li, Jungang Wen, Wenping Ding, Jie Yu, Yue Zhang, Xiaojuan Song and Jianrong Wu
Foods 2025, 14(13), 2378; https://doi.org/10.3390/foods14132378 - 4 Jul 2025
Viewed by 255
Abstract
This study investigated the therapeutic potential of Bacillus thuringiensis extracellular polysaccharide BPS-2 in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) murine models. BPS-2 demonstrated significant efficacy in ameliorating UC-associated pathologies through three principal mechanisms: (1) attenuating histopathological damage while preserving colon epithelial integrity, [...] Read more.
This study investigated the therapeutic potential of Bacillus thuringiensis extracellular polysaccharide BPS-2 in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) murine models. BPS-2 demonstrated significant efficacy in ameliorating UC-associated pathologies through three principal mechanisms: (1) attenuating histopathological damage while preserving colon epithelial integrity, (2) modulating immune marker expression patterns in colon tissues, and (3) restoring gut microbiota homeostasis. BPS-2 exhibited multi-faceted protective effects on the gut by mitigating oxidative stress responses and enhancing short-chain fatty acid biosynthesis, leading to an improved gut microbial community structure. Molecular docking analysis displayed strong binding affinity (ΔG = −7.8 kcal/mol) between the BPS-2U fragment and the Nuclear Factor κB (NF-κB) p50/p65 heterodimer, suggesting the potential disruption of NF-κB signaling pathways. Complementary molecular dynamics simulations revealed exceptional conformational stability in the p65-BPS-2U complex. These findings establish BPS-2 as a natural food additive that modulates the microbiota-barrier–inflammation axis through dietary intervention, offering a novel strategy to alleviate UC. Full article
(This article belongs to the Special Issue Natural Polysaccharides: Structure and Health Functions)
Show Figures

Graphical abstract

1 pages, 786 KiB  
Article
Development of Pesto Sauce with Moringa Leaves and Baru Almonds: A Strategy to Incorporate Underutilized Ingredients with Nutritional and Sensory Viability
by Renata Moraes Brito, Eliara Acipreste Hudson, Jaqueline de Paula Rezende, Andréa Alves Simiqueli, Maria do Carmo Gouveia Peluzio, Márcia Cristina Teixeira Ribeiro Vidigal and Ana Clarissa dos Santos Pires
Foods 2025, 14(13), 2377; https://doi.org/10.3390/foods14132377 - 4 Jul 2025
Viewed by 236
Abstract
The growing demand for healthy and sensorially pleasing foods is accompanied by increasing sustainability concerns among consumers and industry. Therefore, exploring native and underutilized resources for traditional preparations is important. This study evaluated the incorporation of Moringa oleifera leaves and baru almonds ( [...] Read more.
The growing demand for healthy and sensorially pleasing foods is accompanied by increasing sustainability concerns among consumers and industry. Therefore, exploring native and underutilized resources for traditional preparations is important. This study evaluated the incorporation of Moringa oleifera leaves and baru almonds (Dipteryx alata) in pesto sauce, comparing them to the traditional recipe regarding composition, color, total phenolics, volatiles, sensory characteristics, and acceptability. The following four formulations were developed: basil with cashew nuts (B/CN); basil with baru almonds (B/BA); and two versions with 50% basil replaced by moringa, combined with cashew (BM/CN) or baru (BM/BA). BM/BA presented the highest protein content (9.0%), compared to B/CN (7.9%). BM/CN showed a greener color. BM/CN and BM/BA showed total phenolics and antioxidant capacities similar to B/CN. BM/BA showed elevated condensed tannins (113.28 mg CE/100 g). All samples contained 1,8-Cineole and linalool, key to the aroma of basil. Pesto with moringa and/or baru showed good sensory acceptance, rated as “liked moderately”, with no difference from the conventional version (p > 0.05). There were no differences in the basil aroma, nutty flavor, or greasiness. Pesto sauce is a promising matrix for incorporating regional, underused ingredients such as moringa leaves and baru almonds, expanding their potential in new food development. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

21 pages, 1507 KiB  
Article
Physicochemical Properties, Antioxidant and Antibacterial Activities and Anti-Hepatocarcinogenic Effect and Potential Mechanism of Schefflera oleifera Honey Against HepG2 Cells
by Jingjing Li, Jie Wang, Yicong Wang and Wenchao Yang
Foods 2025, 14(13), 2376; https://doi.org/10.3390/foods14132376 - 4 Jul 2025
Viewed by 265
Abstract
Schefflera oleifera honey (SH) is produced from the nectar of S. Oleifera by worker bees. Due to its unique properties and potential biological activities, this winter honey has attracted much attention. In this study, the physicochemical characteristics, antioxidant and antibacterial activities, antitumor effect [...] Read more.
Schefflera oleifera honey (SH) is produced from the nectar of S. Oleifera by worker bees. Due to its unique properties and potential biological activities, this winter honey has attracted much attention. In this study, the physicochemical characteristics, antioxidant and antibacterial activities, antitumor effect against HepG2 cells, and its potential mechanisms of SH were systematically evaluated. The results showed that different SH samples differed significantly in their physicochemical characteristics. The 910 chemical components, including 52 kinds of phenols, phenolic acids, and flavonoids, were detected in the methanol extract of SH using UHPLC-MS/MS by non-targeted metabolomics. Based on our limited knowledge, solanine and soyasaponin I are the first determined components in honey, and they may be used as characteristic substances of SH for identification and adulteration. SH had a weaker inhibitory effect against Salmonella typhimurium and Staphylococcus aureus than MH (UMF 10+), analyzed by MBC and MIC assays. Network pharmacology analysis showed that 95 overlapping targets were found between the active ingredients of SH and liver cancer cells (HepG2), which were enriched in KEGG of the PI3K-Akt pathway, Lipid and atherosclerosis, Proteoglycans in cancer, etc. The IC50 of SH against HepG2 cells was 5.07% (dw/v), which is lower than the glucose, fructose, and sucrose contents in SH on HepG2 cells, of 16.24%, 9.60% dw/v, and 9.94% dw/v, respectively. SH significantly down-regulated the expression of EGFR, AKT1, and SRC in HepG2 cells (p < 0.05), determined by an enzyme-linked immunosorbent assay kit, and induced cell cycle arrest and apoptosis by multiple pathways. These results provide a theoretical basis for its potential application in developing functional foods and additives. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

15 pages, 274 KiB  
Article
In Vitro Gastrointestinal Bioaccessibility of the Phenolic Fraction from Agave inaequidens Flower
by Imelda N. Monroy-García, Laura Lucely González-Galván, Catalina Leos-Rivas, Mayra Z. Treviño-Garza, Eduardo Sánchez-García and Ezequiel Viveros-Valdez
Foods 2025, 14(13), 2375; https://doi.org/10.3390/foods14132375 - 4 Jul 2025
Viewed by 222
Abstract
Edible flowers are gaining recognition as rich sources of nutrients and phytochemicals. In Mexico, the flower of Agave inaequidens has been traditionally consumed since pre-Hispanic times. This study investigated its nutritional profile and the in vitro gastrointestinal bioaccessibility of its phenolic fraction. During [...] Read more.
Edible flowers are gaining recognition as rich sources of nutrients and phytochemicals. In Mexico, the flower of Agave inaequidens has been traditionally consumed since pre-Hispanic times. This study investigated its nutritional profile and the in vitro gastrointestinal bioaccessibility of its phenolic fraction. During in vitro digestion (oral, gastric, and intestinal), the total phenolic content of A. inaequidens significantly decreased from 138 to 21 mg GAE/100 g DW (15.22% bioaccessibility), while total flavonoid content dropped from 8 to 4.6 mg CE/100 g DW (57.5% bioaccessibility). Consequently, antioxidant activity, assessed by ABTS, DPPH, and hemolysis inhibition assays, also declined post-digestion. Interestingly, the digestive process modulated the flower’s inhibitory activity against digestive enzymes before and after in vitro digestion: α-amylase inhibition slightly decreased (IC50 1.8 to 2.1 mg/mL), but α-glucosidase (IC50 2.7 to 1.6 mg/mL) and lipase (IC50 > 3 to 1.4 mg/mL) inhibition increased. The A. inaequidens flower is a good source of fiber and low in fat. These findings underscore its potential as a functional food ingredient, offering bioaccessible phenolic compounds with antioxidant and enzyme inhibitory properties. Full article
36 pages, 1129 KiB  
Review
The Effect of Non-Thermal Processing on the Fate of Pathogenic Bacteria and Hidden Hazardous Risks
by Yanan Wu, Xinxin Li, Xinyu Ma, Qing Ren, Zhanbin Sun and Hanxu Pan
Foods 2025, 14(13), 2374; https://doi.org/10.3390/foods14132374 - 4 Jul 2025
Viewed by 333
Abstract
Non-thermal processing encompasses a range of emerging food technologies, including high-pressure processing (HPP), pulsed electric field (PEF), cold atmospheric plasma (CAP), high-pressure carbon dioxide (HPCD), and ultrasound (US). Unlike traditional thermal processing or chemical preservatives, these methods offer advantages such as lower energy [...] Read more.
Non-thermal processing encompasses a range of emerging food technologies, including high-pressure processing (HPP), pulsed electric field (PEF), cold atmospheric plasma (CAP), high-pressure carbon dioxide (HPCD), and ultrasound (US). Unlike traditional thermal processing or chemical preservatives, these methods offer advantages such as lower energy consumption, enhanced environmental sustainability, and effective microbial inactivation, thereby extending food shelf life. Moreover, they can better preserve the nutritional integrity, color, flavor, and texture of food products. However, a critical concern associated with non-thermal processing is its potential to induce microorganisms into a viable but nonculturable (VBNC) state. These VBNC cells evade detection via conventional culturing techniques and may remain metabolically active and retain virulence, posing hidden food safety risks. Despite these implications, comprehensive reviews addressing the induction of a VBNC state by non-thermal treatments remain limited. This review systematically summarizes the microbial inactivation effects and mechanisms of non-thermal processing techniques, the VBNC state, and their associated hazards. This review aims to support technological innovation and sustainable advancement in non-thermal food processing. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop