Comprehensive New Insights into Sweet Taste Transmission Mechanisms and Detection Methods
Abstract
1. Introduction
2. Classification and Characteristics of Sweeteners
Category | Sweetener | Relative Sweetness | Characteristic | Sweetness Description | References |
---|---|---|---|---|---|
Traditional carbohydrate | Lactose | 0.25 | Improves taste, a reducing sugar, low solubility in water | Mild sweetness | [33] |
Maltose | 0.33 | Enhances flavor and aroma, relatively slow rate of digestion and absorption | Mild sweetness | [34] | |
Trehalose | 0.45 | Improves texture, with good pH and thermal stability, and can be used as a food stabilizer | Mild and pleasant sweetness | [35] | |
Galactose | 0.6 | Essential for human metabolism | Longer-lasting sweetness compared to lactose | [36] | |
Glucose | 0.7 | Highly associated with blood glucose levels and dental caries | Pure sweetness, no adverse sensory characteristics | [37] | |
Tagatose | 0.92 | Low calorie | Pure sweetness, no adverse sensory characteristics | [38] | |
Sucrose | 1 | Serves as the sensory standard for sweetness and enhances flavor | Pure sweetness, no adverse sensory characteristics | [38] | |
Fructose | 1.5 | Relative sweetness decreases as the temperature is raised | Cool sensation with a quick disappearance of sweetness | [39] | |
Sugar alcohol | Lactitol | 0.25–0.4 | Possesses good moisture retention, stability, and acid resistance | Mild, refreshing sweetness similar to sucrose, with no aftertaste | [40] |
D-Mannitol | 0.5–0.7 | Good fluidity and does not affect blood glucose levels | Pleasant sweetness | [41] | |
Sorbitol | 0.6 | Good solubility, high stability, and strong hygroscopicity | Cool and refreshing mouthfeel | [41] | |
Erythritol | 0.6–0.8 | Low hygroscopicity and low water activity | Mild and cooling sweetness | [42] | |
Maltitol | 0.75–0.9 | Does not affect blood glucose levels, has excellent emulsifying stability, significant hygroscopicity, and is non-cariogenic | Pure, smooth and harmonious sweetness; sweetness intensity is proportional to concentration | [43] | |
Xylitol | 1 | Does not significantly affect insulin levels and has dental health benefits | Compared to sucrose, the sweetness begins faster but lasts for a shorter duration. | [44,45] | |
Artificial sweeteners | Cyclamate | 30–50 | The recommended maximum daily intake of cyclamate is 11 milligrams per kilogram of body weight. Excessive consumption of cyclamate can severely damage the liver and nervous system. | Good flavor with a slightly sour taste, commonly used in synergy with sodium saccharin | [46] |
Aspartame | 160–220 | Non-glycemic, excellent stability in solid form, contraindicated in patients with phenylketonuria | Clean sweet taste similar to sucrose, longer aftertaste than sucrose | [47] | |
Acesulfame K | 200 | Acid- and heat-resistant, non-glycemic | Has a slight bitter aftertaste and is often used in combination with aspartame and cyclamate | [48] | |
Sodium saccharin | 300–450 | There are potential risks of genotoxicity and carcinogenicity associated with saccharin. It is non-glycemic. | Bitter or metallic aftertaste | [49] | |
Sucralose | 400–700 | Non-nutritive, zero-calorie, and excellent thermal stability | Pure sweetness similar to sucrose, no adverse sensory characteristics | [48] | |
Neotame | 6000–10,000 | Non-glycemic, excellent stability in solid form | Pure sweetness similar to sucrose, longer aftertaste than sucrose | [47] | |
Advantame | 7000–47,000 | Advantame exhibits higher stability than aspartame, especially under relatively high temperature and pH conditions. | Pure sweetness similar to aspartame, but with a weak bitter and sour aftertaste | [47] | |
Natural non-nutritive sweeteners | Stevioside | 100–350 | Low calorie, with good biosafety. Commonly, steviosides include rebaudioside A and rebaudioside M. | Has bitterness and an unpleasant aftertaste, which intensify with increasing concentration; therefore, it needs to be blended with other sweeteners for use. | [38,50] |
Compound Glycyrrhizin | 100–500 | Low calorie | Sweetness perception is slow after ingestion, with a long-lasting sweetness and a licorice-like aftertaste. | [51] | |
Neohesperidin dihydrochalcone | 300–500 | Low calorie and great stability | Fruit-like sweetness with a refreshing mouthfeel | [50] | |
Mogroside | 300–563 | Low calorie and great stability | Slow onset | [51] | |
Natural nutritive sweet-tasting proteins | Miraculin/Neoculin | / | Relatively stable within the pH range of 3 to 12 and at temperatures below 100 °C | Possesses taste-modulating functionality, capable of transforming the perception of sourness into sweetness | [52] |
Sweet peptides | 6–8 | The sweetness intensity of sweet peptides is closely related to the number of sweet-tasting amino acids and the hydrophilicity of the peptide. | The sweetness is relatively mild and may be accompanied by an umami taste. | [53] | |
Mabinlin | 400 | Mabinlin consists of five isoforms, among which Mabinlin II exhibits the highest thermal stability. Its sweetness can be retained for 48 h at 80 °C. | Induces a long-lasting sweetness | [54] | |
Pentadin | 500 | The molecular weight of Pentadin is approximately twice that of its homolog Brazzein, but its sweetness is significantly lower than that of Brazzein | Intensely sweet tasting | [54,55] | |
Neoculin/Curculin | 550 | A homologous dimer composed of two basic subunits, which is unstable and loses activity at temperatures of 50 °C or higher. | A sweet protein with both intense sweetness and flavor-modulating properties. | [52] | |
Honey truffle sweetener | 2000 | Predicted to be non-allergenic, non-toxic, and easily digestible | Apart from its sweetness, no other sensory characteristics have been described | [29] | |
Brazzein | 2000 | Smallest, heat-stable and intensely sweet protein (MW: 6473 Da) | Intense sweetness with no off-flavors and a long-lasting sweet taste | [56] | |
Thaumatin | 3000 | Intensely sweet protein with high thermal stability and pH stability | A slow onset of sweetness followed by a long lingering sweet liquorice-like aftertaste | [57] | |
Monelin | 3000 | Natural monellin consists of two peptide chains of 44 and 50 aa, held together by non-covalent bonds. At low pH and temperatures above 50 °C, monellin becomes inactive and loses its sweetness. | Intense sweetness, but short in duration | [58] |
3. Mechanisms of Sweet Taste Transduction
3.1. Development of Sweetness Models
3.2. Sweeteners and Sweet Taste Receptors
3.3. Cellular Signaling Pathways of Sweet Taste
3.4. Neural Pathways of Sweet Taste Signal Transduction
4. Sweetness Detection Methods
4.1. Sensory Evaluation
4.1.1. Discrimination Tests
4.1.2. Descriptive Analyses
4.1.3. Consumer Tests
4.1.4. Advancements in Sensory Evaluation Enabled by Novel Technologies
4.2. Electronic Tongue Technology
4.2.1. Classification and Structure of Electronic Tongues
4.2.2. Applications of Electronic Tongues in Sweetness Detection
4.2.3. Effect of Electronic Tongues on Combined Detection
4.3. Biosensors
4.3.1. Enzyme Biosensors
4.3.2. Non-Enzymatic Biosensors
4.3.3. Taste Bud Tissue Biosensors
4.3.4. Taste Cell Biosensors
4.3.5. Sweet Taste Receptor Biosensors
5. Challenges and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, Z.; Gong, R.; Rodriguez, V.; Quach, K.T.; Chen, X.Y.; Sternson, S.M. Hedonic eating is controlled by dopamine neurons that oppose GLP-1R satiety. Science 2025, 387, eadt0773. [Google Scholar] [CrossRef]
- Wong, T.H.T.; Luo, S.; Au, Y.S.L.; Louie, J.C.Y. Association between coffee consumption and metabolic syndrome: A cross-sectional and Mendelian randomization study. J. Diabetes 2024, 16, e70004. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.L.; Zheng, H.Y.; Lu, Y.J.; Zhang, N.; Soladoye, O.P.; Zhang, Y.H.; Fu, Y. Sweet taste receptors and associated sweet peptides: Insights into structure and function. J. Agric. Food Chem. 2023, 71, 13950–13964. [Google Scholar] [CrossRef] [PubMed]
- Kilcast, D. Sensory quality and consumer acceptability. In Chilled Foods, 3rd ed.; Woodhead Publishing: Cambridge, UK, 2008; pp. 599–619. [Google Scholar]
- Rousseau, B.; O’Mahony, M. Sensory difference tests: Thurstonian and SSA predictions for vanilla flavored yogurts. J. Sens. Stud. 1997, 12, 127–146. [Google Scholar] [CrossRef]
- Tahara, Y.; Toko, K. Electronic tongues—A review. IEEE Sens. J. 2013, 13, 3001–3011. [Google Scholar] [CrossRef]
- Xiao, Z.B.; Gao, J.W.; Niu, Y.W.; Wang, Z.G.; Zhou, R.J.; Zhang, J.; Zhu, J.C. Elucidation of the sweetening mechanism of sweet orange fruit aroma compounds on sucrose solution using sensory evaluation, electronic tongue, molecular docking, and molecular dynamics simulation. LWT-Food Sci. Technol. 2024, 205, 116555. [Google Scholar] [CrossRef]
- Max, M.; Shanker, Y.G.; Huang, L.; Rong, M.; Liu, Z.; Campagne, F.; Weinstein, H.; Damak, S.; Margolskee, R.F. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat. Genet. 2001, 28, 58–63. [Google Scholar] [CrossRef]
- Jiang, P.; Ji, Q.; Liu, Z.; Snyder, L.A.; Benard, L.M.; Margolskee, R.F.; Max, M. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J. Biol. Chem. 2004, 279, 45068–45075. [Google Scholar] [CrossRef]
- Belloir, C.; Brule, M.; Tornier, L.; Neiers, F.; Briand, L. Biophysical and functional characterization of the human TAS1R2 sweet taste receptor overexpressed in a HEK293S inducible cell line. Sci. Rep. 2021, 11, 22238. [Google Scholar] [CrossRef]
- Ye, J.; Fan, M.Z.; Zhang, X.Y.; Liang, Q.; Zhang, Y.S.; Zhao, X.Y.; Lin, C.T.; Zhang, D.M. A novel biomimetic electrochemical taste-biosensor based on conformational changes of the taste receptor. Biosens. Bioelectron. 2024, 249, 116001. [Google Scholar] [CrossRef]
- Zheng, H.; Xu, X.; Fang, Y.; Sun, R.; Liu, B. The molecular rheory of sweet taste: Revisit, update, and beyond. J. Med. Chem. 2024, 67, 3232–3243. [Google Scholar] [CrossRef]
- Babu, A.S.; Adeyeye, S.A.O. Extraction of sugar from sugar beets and cane sugar. In Extraction Processes in the Food Industry; CRC Press: Boca Raton, FL, USA, 2024; pp. 177–196. [Google Scholar]
- Waclawovsky, A.J.; Sato, P.M.; Lembke, C.G.; Moore, P.H.; Souza, G.M. Sugarcane for bioenergy production: An assessment of yield and regulation of sucrose content. Plant Biotechnol. J. 2010, 8, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Papini-Terzi, F.S.; Rocha, F.R.; Vencio, R.Z.; Felix, J.M.; Branco, D.S.; Waclawovsky, A.J.; Del Bem, L.E.; Lembke, C.G.; Costa, M.D.; Nishiyama, M.Y., Jr.; et al. Sugarcane genes associated with sucrose content. BMC Genom. 2009, 10, 120. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.F.W.; Rifas-Shiman, S.L.; Young, J.; Oken, E. Associations of prenatal and child sugar intake with child cognition. Am. J. Prev. Med. 2018, 54, 727–735. [Google Scholar] [CrossRef]
- Bray, G.A.; Popkin, B.M. Dietary sugar and body weight: Have we reached a crisis in the epidemic of obesity and diabetes? Health be damned! Pour on the sugar. Diabetes Care 2014, 37, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Gasmi Benahmed, A.; Gasmi, A.; Arshad, M.; Shanaida, M.; Lysiuk, R.; Peana, M.; Pshyk-Titko, I.; Adamiv, S.; Shanaida, Y.; Bjorklund, G. Health benefits of xylitol. Appl. Microbiol. Biotechnol. 2020, 104, 7225–7237. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Raychaudhuri, U.; Chakraborty, R. Artificial sweeteners—A review. J. Food Sci. Technol. 2014, 51, 611–621. [Google Scholar] [CrossRef]
- Filho, A.L.d.S.; Freitas, H.V.; Rodrigues, S.; Abreu, V.K.G.; Lemos, T.d.O.; Gomes, W.F.; Narain, N.; Pereira, A.L.F. Production and stability of probiotic cocoa juice with sucralose as sugar substitute during refrigerated storage. LWT-Food Sci. Technol. 2019, 99, 371–378. [Google Scholar] [CrossRef]
- Wu, W.; Sui, W.; Chen, S.; Guo, Z.; Jing, X.; Wang, X.; Wang, Q.; Yu, X.; Xiong, W.; Ji, J.; et al. Sweetener aspartame aggravates atherosclerosis through insulin-triggered inflammation. Cell Metab. 2025, 37, 1075–1088. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Thomas, D.B. Assessment of the carcinogenicity of the nonnutritive sweetener cyclamate. Crit. Rev. Toxicol. 1992, 22, 81–118. [Google Scholar] [CrossRef]
- Chi, L.; Yang, Y.; Bian, X.; Gao, B.; Tu, P.; Ru, H.; Lu, K. Chronic sucralose consumption inhibits farnesoid X receptor signaling and perturbs lipid and cholesterol homeostasis in the mouse livers, potentially by altering gut microbiota functions. Sci. Total Environ. 2024, 919, 169603. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Guo, X. Natural sweeteners: Biosynthesis and pharmacological. Life Sci. Technol. 2025, 1, 1–23. [Google Scholar] [CrossRef]
- Orellana-Paucar, A.M. Steviol glycosides from stevia rebaudiana: An updated overview of their sweetening activity, pharmacological properties, and safety aspects. Molecules 2023, 28, 1258. [Google Scholar] [CrossRef]
- Chatsudthipong, V.; Muanprasat, C. Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacol. Ther. 2009, 121, 41–54. [Google Scholar] [CrossRef]
- Su, Y.; Li, Z.; Zhao, Y.; Chen, Y.; Luo, C.; Wu, X. Enzymatic hydrolyzation of mogrosides in Luo Han Guo extract by NKA-adsorbed snailase improves its sensory profile. Food Chem. 2022, 390, 133205. [Google Scholar] [CrossRef] [PubMed]
- Amanful, B.; Dogbe, E.S.; Bosman, C.E.; Görgens, J.F. Stochastic techno-economic analysis for the co-production of alternative sweeteners in sugarcane biorefineries. Food Bioprod. Process. 2024, 143, 9–20. [Google Scholar] [CrossRef]
- McFarland, C.; Alkotaini, B.; Cowen, C.P.; Edwards, M.G.; Grein, E.; Hahn, A.D.; Jennings, J.C.; Patnaik, R.; Potter, S.M.; Rael, L.T.; et al. Discovery, expression, and In silico safety evaluation of honey truffle sweetener, a sweet protein derived from Mattirolomyces terfezioides and produced by peterologous expression in Komagataella phaffii. J. Agric. Food Chem. 2024, 72, 19470–19479. [Google Scholar] [CrossRef]
- Joseph, J.A.; Akkermans, S.; Nimmegeers, P.; Van Impe, J.F.M.; Joseph, J.A.; Akkermans, S.; Nimmegeers, P.; Van Impe, J.F. Bioproduction of the recombinant sweet protein thaumatin: Current state of the art and perspectives. Front. Microbiol. 2019, 10, 695. [Google Scholar] [CrossRef]
- Ma, M.; Shi, S.; Huang, Z.; Qi, T.; You, T.; Wang, Y.; Zhang, G.; Liu, J.; Liu, J.; Guan, F.; et al. Enhancing the stability of sweet protein neoculin for food applications using computational strategies. J. Agric. Food Chem. 2025, 73, 6867–6877. [Google Scholar] [CrossRef]
- Song, X.; Yi, Y.; Liu, L.; He, M.; Deng, S.; Tian, H.; Yao, W.; Gao, X. Design and development of a high temperature stable sweet protein base on monellin. Process Biochem. 2020, 89, 29–36. [Google Scholar] [CrossRef]
- Fox, P. Lactose: Chemistry and properties. In Advanced Dairy Chemistry: Volume 3: Lactose, Water, Salts and Minor Constituents; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–15. [Google Scholar]
- Lewthwaite, S.L.; Sutton, K.H.; Triggs, C.M. Free sugar composition of sweetpotato cultivars after storage. N. Z. J. Crop Hortic. Sci. 1997, 25, 33–41. [Google Scholar] [CrossRef]
- Higashiyama, T.; Richards, A.B. Trehalose. In Sweeteners and Sugar Alternatives in Food Technology; Wiley-Blackwell: London, UK, 2012; pp. 417–431. [Google Scholar]
- Harrison, S.K.; Bernhard, R.A. Time-intensity sensory characteristics of saccharin, xylitol and galactose and their effect on the sweetness of lactose. J. Food Sci. 1984, 49, 780–786. [Google Scholar] [CrossRef]
- Yudkin, J. Sugar and disease. Nature 1972, 239, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Fujimaru, T.; Park, J.H.; Lim, J. Sensory characteristics and relative sweetness of tagatose and other sweeteners. J. Food Sci. 2012, 77, S323–S328. [Google Scholar] [CrossRef] [PubMed]
- Birch, G.G. Structural relationships of sugars to taste. C R C Crit. Rev. Food Sci. Nutr. 1977, 8, 57–95. [Google Scholar] [CrossRef] [PubMed]
- Zacharis, C. Lactitol. In Sweeteners and Sugar Alternatives in Food Technology; Wiley-Blackwell: London, UK, 2012; pp. 275–293. [Google Scholar]
- Deis, R.C.; Kearsley, M.W. Sorbitol and mannitol. In Sweeteners and Sugar Alternatives in Food Technology; Wiley-Blackwell: London, UK, 2012; pp. 331–346. [Google Scholar]
- Regnat, K.; Mach, R.L.; Mach-Aigner, A.R. Erythritol as sweetener—Wherefrom and whereto? Appl. Microbiol. Biotechnol. 2018, 102, 587–595. [Google Scholar] [CrossRef]
- Dobreva, V.; Hadjikinova, M.; Slavov, A.; Hadjikinov, D.; Dobrev, G.; Zhekova, B. Functional properties of maltitol. Agricultural Sci. Technol. 2013, 5, 168. [Google Scholar]
- Zacharis, C. Xylitol. In Sweeteners and Sugar Alternatives in Food Technology; Wiley-Blackwell: London, UK, 2012; pp. 347–382. [Google Scholar]
- Park, H.-W.; Kim, M.-J.; Seo, S.; Yoo, S.; Hong, J.-H. Relative sweetness and sweetness quality of Xylobiose. Food Sci. Biotechnol. 2017, 26, 689–696. [Google Scholar] [CrossRef]
- Liu, C.C.; Ko, C.H.; Fu, L.M.; Jhou, Y.L. Light-shading reaction microfluidic PMMA/paper detection system for detection of cyclamate concentration in foods. Food Chem. 2023, 400, 134063. [Google Scholar] [CrossRef]
- O’donnell, K. Aspartame, neotame and advantame. In Sweeteners and Sugar Alternatives in Food Technology; Wiley-Blackwell: London, UK, 2012; pp. 117–136. [Google Scholar]
- WIET, S.G.; BEYTS, P.K. Sensory characteristics of sucralose and other high intensity sweeteners. J. Food Sci. 1992, 57, 1014–1019. [Google Scholar] [CrossRef]
- Uçar, A.; Yilmaz, S. Saccharin genotoxicity and carcinogenicity: A review. Adv. Food Sci. 2015, 37, 138–142. [Google Scholar]
- Choi, Y.; Manthey, J.A.; Park, T.H.; Cha, Y.K.; Kim, Y.; Kim, Y. Correlation between in vitro binding activity of sweeteners to cloned human sweet taste receptor and sensory evaluation. Food Sci. Biotechnol. 2021, 30, 675–682. [Google Scholar] [CrossRef]
- Laffitte, A.; Neiers, F.; Briand, L. Characterization of taste compounds: Chemical structures and sensory properties. In Flavour: Food Perception; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 154–191. [Google Scholar]
- Akter, S.; Huq, M.A.; Jung, Y.-J.; Cho, Y.-G.; Kang, K.-K. Application of sweet and taste modifying genes for development in plants: Current status and prospects. J. Plant Biotechnol. 2016, 43, 397–404. [Google Scholar] [CrossRef]
- Bian, Y.R.; Li, W.J.; Pan, L.H.; Peng, Q.M.; You, S.; Sheng, S.; Wang, J.; Wu, F.A. Sweet-flavored peptides with biological activities from mulberry seed protein treated by multifrequency countercurrent ultrasonic technology. Food Chem. 2022, 367, 130647. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, B.F.; Alli, I.; Mulligan, C. Sweet and taste-modifying proteins: A review. Nutr. Res. 1996, 16, 1619–1630. [Google Scholar] [CrossRef]
- Wel, H.v.d.; Larson, G.; Hladik, A.; Hladik, C.M.; Hellekant, G.; Glaser, D. Isolation and characterization of pentadin, the sweet principle of Pentadiplandra brazzeana Baillon. Chem. Senses 1989, 14, 75–79. [Google Scholar] [CrossRef]
- Singarapu, K.K.; Tonelli, M.; Markley, J.L.; Assadi-Porter, F.M. Structure-function relationships of brazzein variants with altered interactions with the human sweet taste receptor. Protein Sci. 2016, 25, 711–719. [Google Scholar] [CrossRef]
- Dahal, N.R.; Xu, X. Sweetest protein-thaumatin. J. Food Sci. Technol. Nepal 2012, 7, 112–118. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, C.; Zheng, Y.; Liu, B. New insight into the structure-activity relationship of sweet-tasting proteins: Protein sector and its role for sweet properties. Front. Nutr. 2021, 8, 691368. [Google Scholar] [CrossRef]
- Shallenberger, R.; Acree, T. Molecular theory of sweet taste. Nature 1967, 216, 480–482. [Google Scholar] [CrossRef]
- Kier, L.B. A molecular theory of sweet taste. J. Pharm. Sci. 1972, 61, 1394–1397. [Google Scholar] [CrossRef] [PubMed]
- Nofre, C.; Tinti, J.-M. Sweetness reception in man: The multipoint attachment theory. Food Chem. 1996, 56, 263–274. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Zhang, Y.; Hoon, M.A.; Chandrashekar, J.; Erlenbach, I.; Ryba, N.J.P.; Zuker, C.S. The receptors for mammalian sweet and umami taste. Cell 2003, 115, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Nuemket, N.; Yasui, N.; Kusakabe, Y.; Nomura, Y.; Atsumi, N.; Akiyama, S.; Nango, E.; Kato, Y.; Kaneko, M.K.; Takagi, J.; et al. Structural basis for perception of diverse chemical substances by T1r taste receptors. Nat. Commun. 2017, 8, 15530. [Google Scholar] [CrossRef]
- Koehl, A.; Hu, H.; Feng, D.; Sun, B.; Zhang, Y.; Robertson, M.J.; Chu, M.; Kobilka, T.S.; Laeremans, T.; Steyaert, J.; et al. Structural insights into the activation of metabotropic glutamate receptors. Nature 2019, 566, 79–84. [Google Scholar] [CrossRef]
- Lin, S.; Han, S.; Cai, X.; Tan, Q.; Zhou, K.; Wang, D.; Wang, X.; Du, J.; Yi, C.; Chu, X.; et al. Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature 2021, 594, 583–588. [Google Scholar] [CrossRef]
- Du, J.; Wang, D.; Fan, H.; Xu, C.; Tai, L.; Lin, S.; Han, S.; Tan, Q.; Wang, X.; Xu, T.; et al. Structures of human mGlu2 and mGlu7 homo- and heterodimers. Nature 2021, 594, 589–593. [Google Scholar] [CrossRef]
- Jeong, J.-Y.; Cha, Y.K.; Ahn, S.R.; Shin, J.; Choi, Y.; Park, T.H.; Hong, S. Ultrasensitive bioelectronic tongue based on the venus flytrap domain of a human sweet taste receptor. ACS Appl. Mater. Interfaces 2022, 14, 2478–2487. [Google Scholar] [CrossRef]
- Koizumi, A.; Nakajima, K.-I.; Asakura, T.; Morita, Y.; Ito, K.; Shmizu-Ibuka, A.; Misaka, T.; Abe, K. Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. Biochem. Biophys. Res. Commun. 2007, 358, 585–589. [Google Scholar] [CrossRef]
- Koizumi, A.; Tsuchiya, A.; Nakajima, K.-i.; Ito, K.; Terada, T.; Shimizu-Ibuka, A.; Briand, L.; Asakura, T.; Misaka, T.; Abe, K. Human sweet taste receptor mediates acid-induced sweetness of miraculin. Proc. Natl. Acad. Sci. USA 2011, 108, 16819–16824. [Google Scholar] [CrossRef]
- Xu, H.; Staszewski, L.; Tang, H.; Adler, E.; Zoller, M.; Li, X. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc. Natl. Acad. Sci. USA 2004, 101, 14258–14263. [Google Scholar] [CrossRef] [PubMed]
- Ohta, K.; Masuda, T.; Tani, F.; Kitabatake, N. The cysteine-rich domain of human T1R3 is necessary for the interaction between human T1R2–T1R3 sweet receptors and a sweet-tasting protein, thaumatin. Biochem. Biophys. Res. Commun. 2011, 406, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Taguchi, W.; Sano, A.; Ohta, K.; Kitabatake, N.; Tani, F. Five amino acid residues in cysteine-rich domain of human T1R3 were involved in the response for sweet-tasting protein, thaumatin. Biochimie 2013, 95, 1502–1505. [Google Scholar] [CrossRef] [PubMed]
- von Molitor, E.E.; Riedel, K.; Krohn, M.; Hafner, M.; Rudolf, R.; Cesetti, T. Sweet taste is complex: Signaling cascades and circuits involved in sweet sensation. Front. Hum. Neurosci. 2021, 15, 667709. [Google Scholar] [CrossRef]
- Ohla, K.; Yoshida, R.; Roper, S.D.; Di Lorenzo, P.M.; Victor, J.D.; Boughter, J.D.; Fletcher, M.; Katz, D.B.; Chaudhari, N. Recognizing taste: Coding patterns along the neural axis in mammals. Chem. Senses 2019, 44, 237–247. [Google Scholar] [CrossRef]
- Winnig, M.; Bufe, B.; Kratochwil, N.A.; Slack, J.P.; Meyerhof, W. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor. BMC Struct. Biol. 2007, 7, 66. [Google Scholar] [CrossRef]
- Huang, L.; Shanker, Y.G.; Dubauskaite, J.; Zheng, J.Z.; Yan, W.; Rosenzweig, S.; Spielman, A.I.; Max, M.; Margolskee, R.F. Gγ13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat. Neurosci. 1999, 2, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, S.K.; Palayyan, S.R. Sweet taste signaling: The core pathways and regulatory mechanisms. Int. J. Mol. Sci. 2022, 23, 8225. [Google Scholar] [CrossRef]
- Zhang, Y.; Hoon, M.A.; Chandrashekar, J.; Mueller, K.L.; Cook, B.; Wu, D.; Zuker, C.S.; Ryba, N.J. Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell 2003, 112, 293–301. [Google Scholar] [CrossRef]
- Miyoshi, M.A.; Abe, K.; Emori, Y. IP3 receptor type 3 and PLCβ2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells. Chem. Senses 2001, 26, 259–265. [Google Scholar] [CrossRef]
- Pérez, C.A.; Huang, L.; Rong, M.; Kozak, J.A.; Preuss, A.K.; Zhang, H.; Max, M.; Margolskee, R.F. A transient receptor potential channel expressed in taste receptor cells. Nat. Neurosci. 2002, 5, 1169–1176. [Google Scholar] [CrossRef]
- Liu, D.; Liman, E.R. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc. Natl. Acad. Sci. USA 2003, 100, 15160–15165. [Google Scholar] [CrossRef]
- Dutta Banik, D.; Martin, L.E.; Freichel, M.; Torregrossa, A.-M.; Medler, K.F. TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proc. Natl. Acad. Sci. USA 2018, 115, E772–E781. [Google Scholar] [CrossRef]
- Taruno, A.; Vingtdeux, V.; Ohmoto, M.; Ma, Z.; Dvoryanchikov, G.; Li, A.; Adrien, L.; Zhao, H.; Leung, S.; Abernethy, M. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 2013, 495, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Taruno, A.; Ohmoto, M.; Jyotaki, M.; Lim, J.C.; Miyazaki, H.; Niisato, N.; Marunaka, Y.; Lee, R.J.; Hoff, H. CALHM3 is essential for rapid ion channel-mediated purinergic neurotransmission of GPCR-mediated tastes. Neuron 2018, 98, 547–561.e10. [Google Scholar] [CrossRef] [PubMed]
- Abaffy, T.; Trubey, K.R.; Chaudhari, N. Adenylyl cyclase expression and modulation of cAMP in rat taste cells. Am. J. Physiol.-Cell Physiol. 2003, 284, C1420–C1428. [Google Scholar] [CrossRef] [PubMed]
- Yee, K.K.; Sukumaran, S.K.; Kotha, R.; Gilbertson, T.A.; Margolskee, R.F. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proc. Natl. Acad. Sci. USA 2011, 108, 5431–5436. [Google Scholar] [CrossRef]
- Tonosaki, K.; Funakoshi, M. Cyclic nucleotides may mediate taste transduction. Nature 1988, 331, 354–356. [Google Scholar] [CrossRef]
- Avenet, P.; Hofmann, F.; Lindemann, B. Transduction in taste receptor cells requires cAMP-dependent protein kinase. Nature 1988, 331, 351–354. [Google Scholar] [CrossRef]
- Contreras, R.J.; Beckstead, R.M.; Norgren, R. The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: An autoradiographic study in the rat. J. Auton. Nerv. Syst. 1982, 6, 303–322. [Google Scholar] [CrossRef]
- Shimemura, T.; Fujita, K.; Kashimori, Y. A neural mechanism of taste perception modulated by odor information. Chem. Senses 2016, 41, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Chen, X.; Chai, C.; Feng, M.; Hu, Y.; Yi, Z.; Gu, Y.; Ruan, L.; Yi, L. Identifying key contributors to the sweet aftertaste of raw Pu-erh tea through analytical and sensory methods. Food Chem. 2025, 481, 144067. [Google Scholar] [CrossRef]
- Sharif, M.K.; Butt, M.S.; Sharif, H.R.; Nasir, M. Sensory evaluation and consumer acceptability. Handb. Food Sci. Technol. 2017, 10, 362–386. [Google Scholar]
- Zhang, M.X.; Wang, X.C.; Liu, Y.; Xu, X.L.; Zhou, G.H. Isolation and identification of flavour peptides from Puffer fish (Takifugu obscurus) muscle using an electronic tongue and MALDI-TOF/TOF MS/MS. Food Chem. 2012, 135, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, M.J.; Hong, J.H. Exploration of an effective method to determine the relative sweetness of natural alternative sweeteners: Comparison of two-alternative forced-choice test and generalized labeled magnitude scale. J. Sens. Stud. 2022, 37, e12714. [Google Scholar] [CrossRef]
- Gridgeman, N.T. A reexamination of the two-stage triangle test for the perception of sensory differencesa. J. Food Sci. 1970, 35, 87–91. [Google Scholar] [CrossRef]
- Ruiz-Aceituno, L.; Hernandez-Hernandez, O.; Kolida, S.; Moreno, F.J.; Methven, L. Sweetness and sensory properties of commercial and novel oligosaccharides of prebiotic potential. LWT-Food Sci. Technol. 2018, 97, 476–482. [Google Scholar] [CrossRef]
- Wada, H.; Matsumoto, H.; Takagiwa, M.; Sato, H.; Ishiguchi, K.; Inoue, A.; Goto, T.K. Differences in time-intensity sensory profiles of sweet taste intensity of glucose between older and young adults. Front. Nutr. 2024, 11, 1273055. [Google Scholar] [CrossRef]
- Sun, Y.L.; Ma, Y.; Chen, S.; Xu, Y.; Tang, K. Exploring the mystery of the sweetness of baijiu by sensory evaluation, compositional analysis and multivariate data analysis. Foods 2021, 10, 2843. [Google Scholar] [CrossRef]
- Lawless, H.T. Descriptive analysis of complex odors: Reality, model or illusion? Food Qual. Prefer. 1999, 10, 325–332. [Google Scholar] [CrossRef]
- Li, N. Analysis on use of sodium cyclamate and its maximum levels in food in internal and external countries. Chin. J. Food Hyg. 2007, 5, 455–457. [Google Scholar]
- Zampini, M.; Wantling, E.; Phillips, N.; Spence, C. Multisensory flavor perception: Assessing the influence of fruit acids and color cues on the perception of fruit-flavored beverages. Food Qual. Prefer. 2008, 19, 335–343. [Google Scholar] [CrossRef]
- Dadalı, C.; Elmacı, Y. Sweetness enhancement and sucrose reduction in cookies by inhomogeneous sucrose distribution. J. Food Meas. Charact. 2021, 15, 5000–5007. [Google Scholar] [CrossRef]
- Bian, J.; Xia, Y.; Han, R.; Wang, C.; He, J.; Zhong, F. How to determine Iso-sweet concentrations for various sweeteners: Insights from consumers and trained panels. Food Qual. Prefer. 2023, 107, 104824. [Google Scholar] [CrossRef]
- Crown, E.; Rovai, D.; Racette, C.M.; Barbano, D.M.; Drake, M.A. Consumer perception of sweeteners in yogurt. J. Dairy Sci. 2024, 107, 10552–10570. [Google Scholar] [CrossRef]
- Fan, Z.; Hasing, T.; Johnson, T.S.; Garner, D.M.; Schwieterman, M.L.; Barbey, C.R.; Colquhoun, T.A.; Sims, C.A.; Resende, M.F.R.; Whitaker, V.M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Hortic. Res. 2021, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Leitch, K.A.; Duncan, S.E.; O’Keefe, S.; Rudd, R.; Gallagher, D.L. Characterizing consumer emotional response to sweeteners using an emotion terminology questionnaire and facial expression analysis. Food Res. Int. 2015, 76, 283–292. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, A.X.; Faber, I.; Makransky, G.; Perez-Cueto, F.J.A. Assessing the influence of visual-taste congruency on perceived sweetness and product liking in immersive VR. Foods 2020, 9, 465. [Google Scholar] [CrossRef]
- Al-Mashhadany, S.A.; Hasan, H.A.; Al-Sammarraie, M.A. Using machine learning algorithms to predict the sweetness of bananas at different drying times. J. Ecol. Eng. 2024, 25, 231–238. [Google Scholar] [CrossRef]
- Otto, M.; Thomas, J.D.R. Model studies on multiple channel analysis of free magnesium, calcium, sodium, and potassium at physiological concentration levels with ion-selective electrodes. Anal. Chem. 1985, 57, 2647–2651. [Google Scholar] [CrossRef]
- Jr, A.R.; Dantas, C.A.R.; Miyazakic, C.M.; Jr, O.N.O. Recent advances in electronic tongues. Analyst 2010, 135, 2481–2495. [Google Scholar]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, A. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl. Chem. 2005, 77, 1965–1983. [Google Scholar] [CrossRef]
- Lu, L.; Hu, Z.Q.; Hu, X.Q.; Li, D.; Tian, S.Y. Electronic tongue and electronic nose for food quality and safety. Food Res. Int. 2022, 162, 112214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.X.; Guo, M.J.; Chen, N.; Tang, Z.Q.; Xiang, J.J.; Yang, L.X.; Wang, G.H.; Yang, B.; Li, H. An integration of UPLC-Q-TOF-MS, GC-MS, electronic nose, electronic tongue, and molecular docking for the study of the chemical properties and flavor profiles of Moringa oleifera leaves. Chemosensors 2024, 12, 199. [Google Scholar] [CrossRef]
- Yu, H.Y.; Guo, W.; Xie, J.R.; Ai, L.Z.; Chen, C.; Tian, H.X. Evaluation of taste characteristics of chinese rice wine by quantitative description analysis, dynamic description sensory and electronic tongue. J. Food Meas. Charact. 2022, 17, 824–835. [Google Scholar] [CrossRef]
- Silva, J.D.; Prudencio, S.; Carrão-Panizzi, M.; Gregorut, C.; Fonseca, F.; Mattoso, L. Study on the flavour of soybean cultivars by sensory analysis and electronic tongue. Int. J. Food Sci. Technol. 2012, 47, 1630–1638. [Google Scholar] [CrossRef]
- Chen, L.; Lu, D.; Wan, Y.; Zou, Y.; Zhang, R.; Zhou, T.; Long, B.; Zhu, K.; Wang, W.; Tian, X. Metabolite profiling and identification of sweet/bitter taste compounds in the growth of cyclocarya paliurus leaves using multiplatform metabolomics. Foods 2024, 13, 3089. [Google Scholar] [CrossRef]
- Choi, Y.; Wong, R.R.; Cha, Y.K.; Park, T.H.; Kim, Y.; Chung, S.-J. Sweet–bitter taste interactions in binary mixtures of sweeteners: Relationship between taste receptor activities and sensory perception. Food Chem. 2024, 459, 140343. [Google Scholar] [CrossRef]
- Tian, H.; Feng, T.; Xiao, Z.; Song, S.; Li, Z.; Liu, Q.; Mao, D.; Li, F. Comparison of intensities and binary interactions of four basic tastes between an electronic tongue and a human tongue. Food Sci. Biotechnol. 2015, 24, 1711–1715. [Google Scholar] [CrossRef]
- Ouyang, J.; Jiang, R.; Liu, Q.; Chen, H.; Yi, X.; Yang, Y.; Huang, F.; Li, J.; Wen, H.; Xiong, L.; et al. Characterization of key odorants during processing of minty-like aroma ‘rucheng baimaocha’ black tea. Foods 2025, 14, 1941. [Google Scholar] [CrossRef]
- Diez-Simon, C.; Mumm, R.; Hall, R.D. Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. Metabolomics 2019, 15, 41. [Google Scholar] [CrossRef] [PubMed]
- Borchers, A.; Pieler, T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes 2010, 1, 413–426. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, J. Application of sensory evaluation, HS-SPME GC-MS, E-Nose, and E-Tongue for quality detection in citrus fruits. J. Food Sci. 2015, 80, S2296–S2304. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. New York Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef]
- Wang, J. Glucose biosensors: 40 years of advances and challenges. Electroanalysis 2001, 13, 983–988. [Google Scholar] [CrossRef]
- Guilbault, G.G.; Lubrano, G.J. An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta 1973, 64, 439–455. [Google Scholar] [CrossRef]
- Rohaizad, N.; Mayorga-Martinez, C.C.; Sofer, Z.; Pumera, M. 1T-Phase transition metal dichalcogenides (MoS2, MoSe2, WS2, and WSe2) with fast heterogeneous electron transfer: Application on second-generation enzyme-based biosensor. ACS Appl. Mater. Interfaces 2017, 9, 40697–40706. [Google Scholar] [CrossRef]
- Wang, X.Y.; Gu, H.F.; Yin, F.; Tu, Y.F. A glucose biosensor based on Prussian blue/chitosan hybrid film. Biosens. Bioelectron. 2009, 24, 1527–1530. [Google Scholar] [CrossRef]
- Cass, A.E.G.; Davis, G.; Francis, G.D.; Hill, H.A.O.; Aston, W.J.; Higgins, I.J.; Plotkin, E.V.; Scott, L.D.L.; Turner, A.P.F. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 1984, 56, 667–671. [Google Scholar] [CrossRef]
- Jayakumar, K.; Reichhart, T.M.B.; Schulz, C.; Ludwig, R.; Felice, A.K.G.; Leech, D. An oxygen insensitive amperometric glucose biosensor based on an engineered cellobiose dehydrogenase: Direct versus mediated electron transfer responses. Chemelectrochem 2022, 9, e202200418. [Google Scholar] [CrossRef]
- Yan, X.M.; Ma, S.; Tang, J.; Tanner, D.; Ulstrup, J.; Xiao, X.X.; Zhang, J.D. Direct electron transfer of fructose dehydrogenase immobilized on thiol-gold electrodes. Electrochim. Acta 2021, 392, 138946. [Google Scholar] [CrossRef]
- Radulescu, M.-C.; Bucur, B.; Bucur, M.-P.; Radu, G.L. Bienzymatic biosensor for rapid detection of aspartame by flow injection analysis. Sensors 2014, 14, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.P.; Shangguan, Y.G.; Zheng, Q. Ferrocene-modified polyelectrolyte film-coated electrode and its application in glucose detection. Polymers 2019, 11, 551. [Google Scholar] [CrossRef]
- Cohen, R.; Bitton, R.E.; Herzallh, N.S.; Cohen, Y.; Yehezkeli, O. Utilization of FAD-glucose dehydrogenase from T. emersonii for amperometric biosensing and biofuel cell devices. Anal. Chem. 2021, 93, 11585–11591. [Google Scholar] [CrossRef]
- Biscay, J.; Rama, E.C.; García, M.B.G.; Reviejo, A.J.; Carrazón, J.M.P.; García, A.C. Amperometric fructose sensor based on ferrocyanide modified screen-printed carbon electrode. Talanta 2012, 88, 432–438. [Google Scholar] [CrossRef]
- Ammam, M.; Fransaer, J. Two-enzyme lactose biosensor based on β-galactosidase and glucose oxidase deposited by AC-electrophoresis: Characteristics and performance for lactose determination in milk. Sens. Actuators B Chem. 2010, 148, 583–589. [Google Scholar] [CrossRef]
- Guémas, Y.; Boujtita, M.; Murr, N.E. Biosensor for determination of glucose and sucrose in fruit juices by flow injection analysis. Appl. Biochem. Biotechnol. 2000, 89, 171–181. [Google Scholar] [CrossRef]
- Takeda, K.; Matsumura, H.; Ishida, T.; Yoshida, M.; Igarashi, K.; Samejima, M.; Ohno, H.; Nakamura, N. pH-dependent electron transfer reaction and direct bioelectrocatalysis of the quinohemoprotein pyranose dehydrogenase. Biochem. Biophys. Res. Commun. 2016, 477, 369–373. [Google Scholar] [CrossRef]
- Bagal-Kestwal, D.R.; Chiang, B.-H. Electrochemical invertase probes with nanocomposite of microfibrillated cellulose-tragacanth gum-metal nanoparticles for direct sucrose analysis in sweetened beverages. J. Electrochem. Soc. 2019, 166, B720. [Google Scholar] [CrossRef]
- Wijayanti, S.D.; Schachinger, F.; Ludwig, R.; Haltrich, D. Electrochemical and biosensing properties of an FAD-dependent glucose dehydrogenase from Trichoderma virens. Bioelectrochemistry 2023, 153, 108480. [Google Scholar] [CrossRef] [PubMed]
- Leong, K.L.; Ho, M.Y.; Lee, X.Y.; Yee, M.S.-L. A review on the development of non-enzymatic glucose sensor based on graphene-based nanocomposites. Nano 2020, 15, 2030004. [Google Scholar] [CrossRef]
- Naikoo, G.A.; Salim, H.; Hassan, I.U.; Awan, T.; Arshad, F.; Pedram, M.Z.; Ahmed, W.; Qurashi, A. Recent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for diabetes management-A review. Front Chem 2021, 9, 748957. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Qiao, Y.; Zhao, H.; Liang, J.; Li, T.; Luo, Y.; Lu, S.; Shi, X.; Lu, W.; Sun, X. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives. Chem Commun 2020, 56, 14553–14569. [Google Scholar] [CrossRef]
- Shen, L.; Liang, Z.; Chen, Z.; Wu, C.; Hu, X.; Zhang, J.; Jiang, Q.; Wang, Y. Reusable electrochemical non-enzymatic glucose sensors based on Au-inlaid nanocages. Nano Res. 2022, 15, 6490–6499. [Google Scholar] [CrossRef]
- Wang, X.; Hao, L.; Du, R.; Wang, H.; Dong, J.; Zhang, Y. Synthesis of unique three-dimensional CoMn(2)O(4)@Ni(OH)(2) nanocages via Kirkendall effect for non-enzymatic glucose sensing. J. Colloid Interface Sci. 2024, 653 Pt A, 730–740. [Google Scholar] [CrossRef]
- Kousseff, C.J.; Wustoni, S.; Silva, R.K.S.; Lifer, A.; Savva, A.; Frey, G.L.; Inal, S.; Nielsen, C.B. Single-component electroactive polymer architectures for non-enzymatic glucose sensing. Adv. Sci. 2024, 11, e2308281. [Google Scholar] [CrossRef]
- Golsanamlou, Z.; Mahmoudpour, M.; Soleymani, J.; Jouyban, A. Applications of advanced materials for non-enzymatic glucose monitoring: From invasive to the wearable device. Crit. Rev. Anal. Chem. 2023, 53, 1116–1131. [Google Scholar] [CrossRef]
- Jarnda, K.V.; Wang, D.; Qurrat Ul, A.; Anaman, R.; Johnson, V.E.; Roberts, G.P.; Johnson, P.S.; Jallawide, B.W.; Kai, T.; Ding, P. Recent advances in electrochemical non-enzymatic glucose sensor for the detection of glucose in tears and saliva: A Review. Sens. Actuators A Phys. 2023, 363, 114778. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Li, Y.; Wen, Z.; Peng, X.; He, Y.; Hou, Y.; Fan, J.; Zang, G.; Zhang, Y. A wearable non-enzymatic sensor for continuous monitoring of glucose in human sweat. Talanta 2024, 278, 126499. [Google Scholar] [CrossRef]
- Kang, J.L.; Liu, J.J.; Geng, Y.F.; Yuan, Y.X.; Liu, S.G.; Tan, Y.S.; Du, L.P.; Wu, C.S. Recent advances in biomimetic taste-based biosensors and their applications. Sens. Diagn. 2025, 4, 24–34. [Google Scholar] [CrossRef]
- Huang, Y.J.; Maruyama, Y.; Lu, K.S.; Pereira, E.; Plonsky, I.; Baur, J.E.; Wu, D.; Roper, S.D. Using biosensors to detect the release of serotonin from taste buds during taste stimulation. Arch. Ital. De Biol. 2005, 143, 87. [Google Scholar]
- Fan, Y.X.; Huang, Y.L.; Zhang, N.L.; Chen, G.L.; Jiang, S.; Zhang, Y.; Pang, G.C.; Wang, W.L.; Liu, Y. Study on the distribution of umami receptors on the tongue and its signal coding logic based on taste bud biosensor. Biosens. Bioelectron. 2022, 197, 113780. [Google Scholar] [CrossRef]
- Wu, C.S.; Du, L.P.; Zou, L.; Zhao, L.H.; Huang, L.Q.; Wang, P. Recent advances in taste cell- and receptor-based biosensors. Sens. Actuators B Chem. 2014, 201, 75–85. [Google Scholar] [CrossRef]
- Hui, G.H.; Mi, S.S.; Deng, S.P. Sweet and bitter tastants specific detection by the taste cell-based sensor. Biosens. Bioelectron. 2012, 35, 429–438. [Google Scholar] [CrossRef]
- Li, X.D.; Servant, G. Functional Characterization of the Human Sweet Taste Receptor: High-Throughput Screening Assay Development and Structural Function Relation; ACS Publications: Washington, DC, USA, 2008; pp. 368–385. [Google Scholar]
- Ahn, S.R.; An, J.H.; Song, H.S.; Park, J.W.; Lee, S.H.; Kim, J.H.; Jang, J.; Park, T.H. Duplex bioelectronic tongue for sensing umami and sweet tastes based on human taste receptor nanovesicles. ACS Nano 2016, 10, 7287–7296. [Google Scholar] [CrossRef]
- Wang, T.H.; Hui, G.H.; Deng, S.P. A novel sweet taste cell-based sensor. Biosens. Bioelectron. 2010, 26, 929–934. [Google Scholar] [CrossRef]
- Song, H.S.; Jin, H.J.; Ahn, S.R.; Kim, D.; Lee, S.H.; Kim, U.-K.; Simons, C.T.; Hong, S.; Park, T.H. Bioelectronic tongue using heterodimeric human taste receptor for the discrimination of sweeteners with human-like performance. ACS Nano 2014, 8, 9781–9789. [Google Scholar] [CrossRef]
- Palmer, R.K.; Servant, G. The Pharmacology of Taste; Springer: Berlin/Heidelberg, Germany, 2022; Volume 275. [Google Scholar]
- Wang, Y.L.; Kong, L.Q.; Shu, G.Q.; Sun, G.Q.; Feng, Y.Z.; Zhu, M. Development of sensitive and stable electrochemical impedimetric biosensor based on T1R1 receptor and its application to detection of umami substances. Food Chem. 2023, 423, 136233. [Google Scholar] [CrossRef]
- Huang, Y.L.; Lu, D.Q.; Liu, H.; Liu, S.; Jiang, S.; Pang, G.C.; Liu, Y. Preliminary research on the receptor-ligand recognition mechanism of umami by an hT1R1 biosensor. Food Funct. 2019, 10, 1280–1287. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, M.; Cao, Z.; Sun, Z.; Derkach, T.; Liu, B. Decoding the Molecular Mechanism of Sweet Taste of Amino Acids by Their Intrinsic Properties and Interactions with Human Sweet Taste Receptor. Chem. Sel. 2024, 9, e202403468. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, S.; Bao, T.; Jiang, Z.; Huang, W.; Xu, X.; Qiu, Y.; Lei, P.; Wang, R.; Xu, H.; et al. Comprehensive New Insights into Sweet Taste Transmission Mechanisms and Detection Methods. Foods 2025, 14, 2397. https://doi.org/10.3390/foods14132397
Sun Y, Zhang S, Bao T, Jiang Z, Huang W, Xu X, Qiu Y, Lei P, Wang R, Xu H, et al. Comprehensive New Insights into Sweet Taste Transmission Mechanisms and Detection Methods. Foods. 2025; 14(13):2397. https://doi.org/10.3390/foods14132397
Chicago/Turabian StyleSun, Yuanwei, Shengmeng Zhang, Tianzheng Bao, Zilin Jiang, Weiwei Huang, Xiaoqi Xu, Yibin Qiu, Peng Lei, Rui Wang, Hong Xu, and et al. 2025. "Comprehensive New Insights into Sweet Taste Transmission Mechanisms and Detection Methods" Foods 14, no. 13: 2397. https://doi.org/10.3390/foods14132397
APA StyleSun, Y., Zhang, S., Bao, T., Jiang, Z., Huang, W., Xu, X., Qiu, Y., Lei, P., Wang, R., Xu, H., Li, S., & Zhang, Q. (2025). Comprehensive New Insights into Sweet Taste Transmission Mechanisms and Detection Methods. Foods, 14(13), 2397. https://doi.org/10.3390/foods14132397