Mid-Infrared Spectroscopy for Predicting Goat Milk Coagulation Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Bulk Milk Sampling and Reference Standard Analysis
2.2. Development of the MIRS Prediction Models
2.3. Discriminant Analysis
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Predicting Milk Coagulation Properties Using MIRS
3.3. Discriminating High Milk Coagulation Aptitude Using MIRS
3.4. Future Perspectives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cabral, C.F.S.; Veiga, L.B.E.; Araújo, M.G.; de Souza, S.L.Q. Environmental Life Cycle Assessment of goat cheese production in Brazil: A path towards sustainability. LWT 2020, 129, 109550. [Google Scholar] [CrossRef]
- Moises, R.M.M.; Salgueiro, C.C.M.; Leitão, M.S.P.; Nunes, J.F. Exploring goat’s milk cheese: A systematic review of production techniques and innovations (2013–2023). Braz. J. Food Technol. 2024, 27, e2023152. [Google Scholar] [CrossRef]
- Andueza, D.; Rouel, J.; Chilliard, Y.; Leroux, C.; Ferlay, A. Prediction of the goat milk fatty acids by near infrared reflectance spectroscopy. Eur. J. Lipid Sci. Technol. 2013, 115, 612–620. [Google Scholar] [CrossRef]
- Pazzola, M. Coagulation Traits of Sheep and Goat Milk. Animals 2019, 9, 540. [Google Scholar] [CrossRef]
- Hovjecki, M.; Miloradovic, Z.; Barukčić, I.; Blažić, M.; Miocinovic, J. Rheological Properties of Goat Milk Coagulation as Affected by Rennet Concentration, pH and Temperature. Fermentation 2022, 8, 291. [Google Scholar] [CrossRef]
- Bittante, G.; Penasa, M.; Cecchinato, A. Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci. 2012, 95, 6843–6870. [Google Scholar] [CrossRef]
- Bittante, G.; Amalfitano, N.; Bergamaschi, M.; Patel, N.; Haddi, M.L.; Benabid, H.; Pazzola, M.; Vacca, G.M.; Tagliapietra, F.; Schiavon, S. Composition and aptitude for cheese-making of milk from cows, buffaloes, goats, sheep, dromedary camels, and donkeys. J. Dairy Sci. 2022, 105, 2132–2152. [Google Scholar] [CrossRef]
- Pazzola, M.; Amalfitano, N.; Bittante, G.; Dettori, M.L.; Vacca, G.M. Composition, coagulation properties, and predicted cheesemaking traits of bulk goat milk from different farming systems, breeds, and stages of production. J. Dairy Sci. 2022, 105, 6724–6738. [Google Scholar] [CrossRef]
- Hoxha, M.; Mara, K.; Mara, V.; Shumka, S. Milk clotting properties of liqenasi goat, milk syneresis kinetics and recovery of protein and casein on curd. J. Hyg. Eng. Des. 2022, 38, 204–212. [Google Scholar]
- Ferragina, A.; Cipolat-Gotet, C.; Cecchinato, A.; Pazzola, M.; Dettori, M.L.; Vacca, G.M.; Bittante, G. Prediction and repeatability of milk coagulation properties and curd-firming modeling parameters of ovine milk using Fourier-transform infrared spectroscopy and Bayesian models. J. Dairy Sci. 2017, 100, 3526–3538. [Google Scholar] [CrossRef]
- Ozaki, Y. Infrared spectroscopy—Mid-infrared, near-infrared, and far-infrared/terahertz spectroscopy. Anal. Sci. 2021, 37, 1193–1212. [Google Scholar] [CrossRef] [PubMed]
- Rueda-Robles, A.; Lozano-Sánchez, J. Analysis of milk and dairy products by non-destructive techniques. In Non-Invasive and Non-Destructive Methods for Food Integrity; Jiménez-Carvelo, A.M., Arroyo-Cerezo, A., Cuadros-Rodríguez, L., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2024; p. 255. [Google Scholar]
- Bonfatti, V.; Degano, L.; Menegoz, A.; Carnier, P. Mid-infrared spectroscopy prediction of fine milk composition and technological properties in Italian Simmental. J. Dairy Sci. 2016, 99, 8216–8221. [Google Scholar] [CrossRef] [PubMed]
- Cellesi, M.; Coreddu, F.; Manca, M.G.; Serdino, J.; Gaspa, G.; Dimauro, C.; Maciotta, N.P.P. Coagulation properties and individual cheese yield in sheep using partial least squares regression. Animals 2019, 9, 663. [Google Scholar] [CrossRef] [PubMed]
- Dadousis, C.; Cipolat-Gotet, C.; Stocco, G.; Ferragina, A.; Dettori, M.L.; Pazzola, M.; do Nascimento Rangel, A.H.; Vacca, G.M. Goat farm variability affects milk Fourier-transform infrared spectra used for predicting coagulation properties. J. Dairy Sci. 2021, 104, 3927–3935. [Google Scholar] [CrossRef]
- Stocco, G.; Dadousis, C.; Vacca, G.M.; Pazzola, M.; Paschino, P.; Dettori, M.L.; Ferragina, A.; Cipolat-Gotet, C. Breed of goat affects the prediction accuracy of milk coagulation properties using Fourier-transform infrared spectroscopy. J. Dairy Sci. 2021, 104, 3956–3969. [Google Scholar] [CrossRef]
- Ali, A.K.A.; Shook, G.E. An optimum transformation for somatic cell concentration in milk. J. Dairy Sci. 1980, 63, 487–490. [Google Scholar] [CrossRef]
- Penasa, M.; De Marchi, M.; Ton, S.; Ancilotto, L.; Cassandro, M. Reproducibility and repeatability of milk coagulation properties predicted by mid-infrared spectroscopy. Int. Dairy J. 2015, 47, 1–5. [Google Scholar] [CrossRef]
- Grewal, M.K.; Chandrapala, J.; Donkor, O.; Apostolopoulos, V.; Stojanovska, L.; Vasiljevic, T. Fourier transform infrared spectroscopy analysis of physicochemical changes in UHT milk during accelerated storage. Int. Dairy J. 2017, 66, 99–107. [Google Scholar] [CrossRef]
- Grewal, M.K.; Huppertz, T.; Vasiljevic, T. FTIR fingerprinting of structural changes of milk proteins induced by heat treatment, deamidation and dephosphorylation. Food Hydrocoll. 2018, 80, 160–167. [Google Scholar] [CrossRef]
- Grelet, C.; Dardenne, P.; Soyeurt, H.; Fernandez, J.A.; Vanlierde, A.; Stevens, F.; Gengler, N.; Dehareng, F. Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions. Methods 2021, 186, 97–111. [Google Scholar] [CrossRef]
- Shenk, J.S.; Westerhaus, M.O.; Abrams, S. Protocol for NIR calibrations: Monitoring analysis results and recalibration. In Near Infrared Spectroscopy (NIRS): Analysis of Forage Quality, 2nd ed.; Martens, G., Shenk, J., Barton, F., Eds.; USDA-ARS agriculture handbook; US Government Printing Office: Washington, DC, USA, 1989; pp. 104–110. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Sandrucci, A.; Bava, L.; Tamburini, A.; Gislon, G.; Zucali, M. Management practices and milk quality in dairy goat farms in Northern Italy. Ital. J. Anim. Sci. 2019, 18, 1–12. [Google Scholar] [CrossRef]
- Williams, P.C. A short course in the practical implementation of near-infrared spectroscopy for the user. In Near-Infrared Technology: Getting the Best Out of Light, 1st ed.; PDK Projects Inc.: Nanaimo, BC, Canada, 2003; p. 109. [Google Scholar]
- Manuelian, C.L.; Visentin, G.; Boselli, C.; Giangolini, G.; Cassandro, M.; De Marchi, M. Short communication: Prediction of milk coagulation and acidity traits in Mediterranean buffalo milk using Fourier-transform mid-infrared spectroscopy. J. Dairy Sci. 2017, 100, 7083–7087. [Google Scholar] [CrossRef]
- Guerra, A.; Boselli, C.; Galli, T.; Ciofi, L.; Fichi, G.; De Marchi, M.; Manuelian, C.L. Low Effectiveness of Mid-Infrared Spectroscopy Prediction Models of Mediterranean Italian Buffalo Bulk Milk Coagulation Traits. Foods 2024, 13, 1957. [Google Scholar] [CrossRef]
- Boselli, C.; Guerra, A.; Costa, A.; De Marchi, M. Prediction of sheep bulk milk coagulation properties from mid-infrared spectral data. Acta IMEKO 2024, 13, 1–3. [Google Scholar] [CrossRef]
- Tiezzi, F.; Pretto, D.; De Marchi, M.; Penasa, M.; Cassandro, M. Heritability and repeatability of milk coagulation properties predicted by mid-infrared spectroscopy during routine data recording, and their relationships with milk yield and quality traits. Animal 2013, 7, 1592–1599. [Google Scholar] [CrossRef]
- Kotsiou, K.; Andreadis, M.; Manessis, G.; Lazaridou, A.; Biliaderis, C.G.; Basdagianni, Z.; Bossis, I.; Moschakis, T. Effects of Farming System on the Rheological Behavior of Rennet-Induced Coagulation in Milk from Skopelos Breed Goats. Foods 2025, 14, 1316. [Google Scholar] [CrossRef]
- Williams, P. Statistical terms for evaluation of accuracy and precision. In Near Infrared Technology—Getting the Best Out of Light, 5th ed.; PDK Grain: Nanaimo, BC, Canada, 2007; Chapter 5; pp. 1–17. [Google Scholar]
- Karoui, R.; Downey, G.; Blecker, C. Mid-infrared spectroscopy coupled with chemometrics: A tool for the analysis of intact food systems and the exploration of their molecular structure—quality relationships—A review. Chem. Rev. 2010, 110, 6144–6168. [Google Scholar] [CrossRef]
- Baba, T.; Pegolo, S.; Mota, L.F.M.; Peñagaricano, F.; Bittante, G.; Cecchinato, A.; Morota, G. Integrating genomic and infrared spectral data improves the prediction of milk protein composition in dairy cattle. Genet. Sel. Evol. 2021, 53, 29. [Google Scholar] [CrossRef]
- Caponigro, V.; Marini, F.; Scannell, A.G.; Gowen, A.A. Single-drop technique for lactose prediction in dry milk on metallic surfaces: Comparison of Raman, FT-NIR, and FT-MIR spectral imaging. Food Control. 2023, 144, 109351. [Google Scholar] [CrossRef]
- Ahmad, A.; Ayub, H. Fourier transform infrared spectroscopy (FTIR) technique for food analysis and authentication. In Nondestructive Quality Assessment Techniques for Fresh Fruits and Vegetables; Springer Nature: Singapore, 2022; pp. 103–142. [Google Scholar]
- Martín-Gómez, A.; Rodríguez-Hernández, P.; Cardador, M.J.; Vega-Márquez, B.; Rodríguez-Estévez, V.; Arce, L. Guidelines to build PLS-DA chemometric classification models using a GC-IMS method: Dry-cured ham as a case of study. Talanta Open 2023, 7, 100175. [Google Scholar] [CrossRef]
- Gorla, G.; Mestres, M.; Boque, R.; Riu, J.; Spanu, D.; Giussani, B. ATR-MIR spectroscopy to predict commercial milk major components: A comparison between a handheld and a benchtop instrument. Chemom. Intell. Lab. Syst. 2020, 200, 103995. [Google Scholar] [CrossRef]
- Pu, Y.; Pérez-Marín, D.; O’Shea, N.; Garrido-Varo, A. Recent Advances in Portable and Handheld NIR Spectrometers and Applications in Milk, Cheese and Dairy Powders. Foods 2021, 10, 2377. [Google Scholar] [CrossRef]
- Guerra, A.; De Marchi, M.; Niero, G.; Chiarin, E.; Manuelian, C.L. Application of a short-wave pocket-sized near-infrared spectrophotometer to predict milk quality traits. J. Dairy Sci. 2024, 107, 3413–3419. [Google Scholar] [CrossRef] [PubMed]
Trait 1 | N 2 | Mean | SD | Range | CV (%) |
---|---|---|---|---|---|
Milk coagulation properties | |||||
RCT, min | 501 | 9.59 | 2.94 | 1.00–26.30 | 30.70 |
k20, min | 456 | 3.10 | 1.74 | 0.52–11.15 | 44.30 |
a30, mm | 501 | 29.78 | 11.96 | 2.90–62.62 | 40.16 |
IAC | 501 | 100.00 | 3.48 | 84.06–113.06 | 3.28 |
Milk quality traits | |||||
Fat, % | 476 | 4.22 | 1.15 | 1.06–12.1 | 27.31 |
Protein, % | 479 | 3.44 | 0.54 | 2.26–6.41 | 15.76 |
Casein, % | 479 | 2.64 | 0.59 | 1.39–6.23 | 22.40 |
Lactose, % | 479 | 4.34 | 0.31 | 3.37–6.04 | 7.14 |
SCS | 479 | 6.77 | 1.34 | 0.88–11.07 | 19.79 |
Trait | Calibration Set (75%) | Validation Set (25%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
LF | SC | MT | R2CrV | SECrV | Bias | Slope | R2ExV | SEP | RPDExV | |
RCT, min | 11 | SNV + D | 1,4,4,1 | 0.68 | 1.57 | −0.12 | 0.87 | 0.66 | 1.58 | 2.05 |
k20, min | 9 | SNV | 1,4,4,1 | 0.33 | 1.09 | −0.01 | 0.76 | 0.27 | 1.13 | 1.42 |
a30, mm | 8 | D | 1,4,4,1 | 0.55 | 7.90 | 0.24 | 0.91 | 0.43 | 9.03 | 1.35 |
Performance | Calibration Set (75%) | Validation Set (25%) |
---|---|---|
Prevalence | 0.51 | 0.50 |
Sensitivity | 0.79 (0.73–0.85) | 0.68 (0.55–0.79) |
Specificity | 0.82 (0.76–0.87) | 0.81 (0.69–0.90) |
Positively Predictive Value | 0.82 (0.76–0.87) | 0.78 (0.65–0.88) |
Negatively Predictive Value | 0.80 (0.73–0.85) | 0.71 (0.59–0.82) |
Balanced Accuracy | 0.81 (0.75–0.86) | 0.74 (0.62–0.85) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goi, A.; Magro, S.; Lanni, L.; Boselli, C.; Marchi, M.D. Mid-Infrared Spectroscopy for Predicting Goat Milk Coagulation Properties. Foods 2025, 14, 2403. https://doi.org/10.3390/foods14132403
Goi A, Magro S, Lanni L, Boselli C, Marchi MD. Mid-Infrared Spectroscopy for Predicting Goat Milk Coagulation Properties. Foods. 2025; 14(13):2403. https://doi.org/10.3390/foods14132403
Chicago/Turabian StyleGoi, Arianna, Silvia Magro, Luigi Lanni, Carlo Boselli, and Massimo De Marchi. 2025. "Mid-Infrared Spectroscopy for Predicting Goat Milk Coagulation Properties" Foods 14, no. 13: 2403. https://doi.org/10.3390/foods14132403
APA StyleGoi, A., Magro, S., Lanni, L., Boselli, C., & Marchi, M. D. (2025). Mid-Infrared Spectroscopy for Predicting Goat Milk Coagulation Properties. Foods, 14(13), 2403. https://doi.org/10.3390/foods14132403