Bacillus thuringiensis Exopolysaccharide BPS-2 Ameliorates Ulcerative Colitis in a Murine Model Through Modulation of Gut Microbiota and Suppression of the NF-κB Cascade
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Preparation of BPS-2
2.2. Animals
2.3. Establishment of UC Mice Models and BPS-2 Treatment
2.4. Animal Dissection
2.5. Evaluation of Disease Activity Index (DAI)
2.6. Histopathological Analysis and Injury Scoring of Colonic Tissue
2.7. Biochemical Assays
2.8. Immunohistochemical Analysis
2.9. SCFAs Analysis and 16S rRNA Gene Sequencing
2.10. Structural Fragments Construction and Molecular Docking
2.11. Molecular Dynamics Simulation Computation
2.12. Statistical Analyses
3. Results and Discussion
3.1. BPS-2 Improves Pathological Indicators in UC Mice
3.2. BPS-2 Alleviates Histopathological Damage in UC Mice
3.3. BPS-2 Maintains the Colonic Epithelial Cell Layer in UC Mice
3.4. BPS-2 Regulates Colonic Immune Markers in UC Mice
3.5. BPS-2 Reduces Oxidative Stress in UC Mice
3.6. BPS-2 Promotes the Secretion of SCFAs in UC Mice
3.7. BPS-2 Improves the Gut Microbiota of UC Mice
3.8. Model Construction and Molecular Docking of BPS-2 Oligosaccharide Fragment
3.9. Molecular Dynamics Simulation of the Oligosaccharide-p65 Protein Complex
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, T.; Zhao, R.; Yang, Y.; Shen, W.; Yuan, X.; Zhang, J.; Yuan, Y. Orally delivered Prussian blue functionalized by olsalazine-conjugated hyaluronic acid for targeted combination therapy of ulcerative colitis. Nano Today 2025, 61, 102642. [Google Scholar] [CrossRef]
- Jones, A.; Harding, S.; Seaton, N.; Hudson, J.; Duff, A.; Wroe, A.; Singh, H.; Norton, S.; Picariello, F.; Moss-Morris, R. A real-world longitudinal study implementing digital screening and treatment for distress in inflammatory bowel disease (IBD): The COMPASS-IBD study protocol. Contemp. Clin. Trials. 2024, 145, 107658. [Google Scholar] [CrossRef] [PubMed]
- Ou, G.; Zhou, T.; Zhu, P.; Zhu, W.; Wei, X.; Huang, R.; Wu, Y. Polysaccharides from Dendrobium devonianum ameliorate Salmonella typhimurium-induced ulcerative colitis by modulating ClostridiumXlVa, purine and tryptophan metabolism. J. Funct. Foods. 2024, 121, 106404. [Google Scholar] [CrossRef]
- Liu, J.; Chen, N.; Zhang, Z.; Yang, M.; Yang, Z.; Du, W.; Gu, X.; Zhang, J. Screening and evaluation of prebiotic exopolysaccharide of Lactobacillus plantarum on treating IBD in mice. Food Biosci. 2024, 59, 104098. [Google Scholar] [CrossRef]
- Cui, L.; Guan, X.; Ding, W.; Luo, Y.; Wang, W.; Bu, W.; Song, J.; Tan, X.; Sun, E.; Ning, Q.; et al. Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota. Int. J. Biol. Macromol. 2021, 166, 1035–1045. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Yu, X.; Wang, X.; Zheng, Y.; Hu, X.; Zhang, P.; Sun, Q.; Wang, Q.; Li, N. Effect of polysaccharide addition on food physical properties: A review. Food Chem. 2024, 431, 137099. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zheng, Y.; Lai, Z.; Hu, X.; Wang, L.; Wang, X.; Li, Z.; Gao, M.; Yang, Y.; Wang, Q.; et al. Effect of monosaccharide composition and proportion on the bioactivity of polysaccharides: A review. Int. J. Biol. Macromol. 2024, 254, 127955. [Google Scholar] [CrossRef]
- Sun, X.; Zheng, Y.; Tian, Y.; Xu, Q.; Liu, S.; Li, H.; Cheng, K.; Yuan, J.; Liu, H.; Zhu, P. Astragalus polysaccharide alleviates alcoholic-induced hepatic fibrosis by inhibiting polymerase I and transcript release factor and the TLR4/JNK/NF-κB/MyD88 pathway. J. Ethnopharmacol. 2023, 314, 116662. [Google Scholar] [CrossRef]
- Yang, T.; Fang, H.; Lin, D.; Yang, S.; Luo, H.; Wang, L.; Yang, B. Ganoderma lucidum polysaccharide peptide (GL-PP2): A potential therapeutic agent against sepsis-induced organ injury by modulating Nrf2/NF-κB pathways. Int. J. Biol. Macromol. 2025, 285, 138378. [Google Scholar] [CrossRef]
- Raja, K.; Suresh, K.; Anbalagan, S.; Ragini, Y.P.; Kadirvel, V. Investigating the nutritional viability of marine-derived protein for sustainable future development. Food Chem. 2024, 448, 139087. [Google Scholar] [CrossRef]
- Bhatt, S.; Gupta, M. Dietary fiber from fruit waste as a potential source of metabolites in maintenance of gut milieu during ulcerative colitis: A comprehensive review. Food. Res. Int. 2023, 164, 112329. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zheng, X.; Zhang, Q.; Renaud, S.J.; Yu, H.; Xu, Y. A postbiotic exopolysaccharide synergizes with Lactobacillus acidophilus to reduce intestinal inflammation in a mouse model of colitis. Int. J. Biol. Macromol. 2025, 291, 138931. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Xiao, Y.; Wang, H.; Zhang, H.; Lu, W. Interspecific differences and mechanisms of Lactobacillus-derived anti-inflammatory exopolysaccharides. Int. J. Biol. Macromol. 2024, 263, 130313. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, G.; Kwok, L.Y.; Sun, Z. Gut microbiome-targeted therapies for Alzheimer’s disease. Gut Microbes. 2013, 15, 2271613. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wang, Y.; Li, L.; Zhang, Z.; Gao, L.; Lai, B.; Wang, C.; Zhang, L.; Wu, H. Scallop hydrolysates/κ-carrageenan hydrogels improve the alleviating effect of curcumin on DSS-induced colitis. J. Funct. Foods. 2024, 112, 106000. [Google Scholar] [CrossRef]
- Gao, Z.; Wu, C.; Wu, J.; Zhu, L.; Gao, M.; Wang, Z.; Li, Z.; Zhan, X. Antioxidant and anti-inflammatory properties of an aminoglycan-rich exopolysaccharide from the submerged fermentation of Bacillus thuringiensis. Int. J. Biol. Macromol. 2022, 220, 1010–1020. [Google Scholar] [CrossRef]
- Gao, Z.; Tang, J.; Wu, C.; Ding, W.; Wang, X.; Long, Y.; Wang, Y.; Liu, H. In Vitro Assessment of Bacillus thuringiensis exopolysaccharides and their effects on gut microbiota from ulcerative colitis In Vitro. Int. J. Mol. Sci. 2025, 26, 1692. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Stanton, C.; Ross, R.P.; Zhao, J.; Chen, W.; Yang, B. Alleviative effects of exopolysaccharides from Limosilactobacillus mucosae CCFM1273 against ulcerative colitis via modulation of gut microbiota and inhibition of Fas/Fasl and TLR4/NF-κB pathways. Int. J. Biol. Macromol. 2024, 260, 129346. [Google Scholar] [CrossRef] [PubMed]
- Park, H.R.; Eom, D.H.; Kim, J.H.; Shin, J.C.; Shin, M.S.; Shin, K.S. Composition analysis and oral administered effects on dextran sulfate sodium-induced colitis of galactooligosaccharides bioconverted by Bacillus circulans. Carbohydr. Polym. 2021, 270, 118389. [Google Scholar] [CrossRef]
- Hu, J.; Huang, H.; Che, Y.; Ding, C.; Zhang, L.; Wang, Y.; Hao, H.; Shen, H.; Cao, L. Qingchang huashi formula attenuates DSS-induced colitis in mice by restoring gut microbiota-metabolism homeostasis and goblet cell function. J. Ethnopharmacol. 2021, 266, 113394. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, J.; Zhang, W.; Guo, X.; Li, S.; Zhang, H.; Wang, M.; Fan, B.; Wang, F. Soy polysaccharide maintains colonic homeostasis to protect from dextran sulphate sodium-induced colitis by modulating gut microbiota and intestinal epithelial regeneration. Food Sci. Hum. Wellness 2024, 13, 3284–3300. [Google Scholar] [CrossRef]
- Yang, C.; Li, J.; Luo, M.; Zhou, W.; Xing, J.; Yang, Y.; Wang, L.; Rao, W.; Tao, W. Unveiling the molecular mechanisms of Dendrobium officinale polysaccharides on intestinal immunity: An integrated study of network pharmacology, molecular dynamics and in vivo experiments. Int. J. Biol. Macromol. 2024, 276, 133859. [Google Scholar] [CrossRef]
- Xu, J.; Wang, R.; Zhang, H.; Wu, J.; Zhu, L.; Zhan, X. In vitro assessment of prebiotic properties of oligosaccharides derived from four microbial polysaccharides. Lwt-Food Sci. Technol. 2021, 147, 111544. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, J.; Wu, J.; Li, H.; Wu, C.; Yin, Z.; Xu, J.; Zhu, L.; Zhan, X. Structural characterization and in vitro evaluation of the prebiotic potential of an exopolysaccharide produced by Bacillus thuringiensis during fermentation. Lwt-Food Sci. Technol. 2022, 163, 113532. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Kulkarni, N.; Jain, P.; Shindikar, A.; Suryawanshi, P.; Thorat, N. Advances in the colon-targeted chitosan based multiunit drug delivery systems for the treatment of inflammatory bowel disease. Carbohydr. Polym. 2022, 288, 119351. [Google Scholar] [CrossRef]
- Li, M.; Huang, X.; Wen, J.; Chen, S.; Wu, X.; Ma, W.; Cui, S.; Xie, M.; Nie, S. Innate immune receptors co-recognition of polysaccharides initiates multi-pathway synergistic immune response. Carbohydr. Polym. 2023, 305, 120533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, R.; Xiao, Y.; Wang, H.; Chen, W.; Lu, W. Improvement effects of Lactobacillus-derived mannose-containing exopolysaccharides on ulcerative colitis. Food Biosci. 2024, 61, 104585. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, G.; Fang, J. Progress on the mechanisms of Lactobacillus plantarum to improve intestinal barrier function in ulcerative colitis. J. Nutr. Biochem. 2024, 124, 109505. [Google Scholar] [CrossRef]
- Huo, Z.; Li, J.; Li, X.; Xiao, H.; Lin, Y.; Ma, Y.; Li, J.; Yang, H.; Zhang, C. Functional fractions of Astragalus polysaccharides as a potential prebiotic to alleviate ulcerative colitis. Int. J. Biol. Macromol. 2024, 271, 132580. [Google Scholar] [CrossRef]
- Li, H.; Cao, W.; Xie, J.; Che, H.; Liu, L.; Dong, X.; Song, L.; Xie, W. α-D-1,6-glucan from Castanea mollissima Blume alleviates dextran sulfate sodium-induced colitis in vivo. Carbohydr. Polym. 2022, 289, 119410. [Google Scholar] [CrossRef]
- Sun, M.; Yao, L.; Yu, Q.; Duan, Y.; Huang, J.; Lyu, T.; Zhang, Y. Screening of Poria cocos polysaccharide with immunomodulatory activity and its activation effects on TLR4/MD2/NF-κB pathway. Int. J. Biol. Macromol. 2024, 273, 132931. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, X.; Bao, Y.; Wang, X.; Zhai, J.; Zhan, X.; Zhang, H. Characterization and anti-inflammation of a polysaccharide produced by Chaetomium globosum CGMCC 6882 on LPS-induced RAW 264.7 cells. Carbohydr. Polym. 2021, 251, 117129. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liao, X.; Zhu, Z.; Huang, R.; Chen, M.; Huang, A.; Zhang, J.; Wu, Q.; Wang, J.; Ding, Y. Antioxidant and anti-inflammation effects of dietary phytochemicals: The Nrf2/NF-κB signalling pathway and upstream factors of Nrf2. Phytochemistry 2022, 204, 113429. [Google Scholar] [CrossRef]
- Luu, M.; Pautz, S.; Kohl, V.; Singh, R.; Romero, R.; Lucas, S.; Visekruna, A. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 2019, 10, 760. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, L.; Wang, X.; Feng, Y.; Wang, Y. MDG-1, an Ophiopogon polysaccharide, restrains process of non-alcoholic fatty liver disease via modulating the gut-liver axis. Int. J. Biol. Macromol. 2019, 141, 1013–1021. [Google Scholar] [CrossRef]
- Dai, J.; Wang, W.; He, F.; Yu, X.; Liu, Z.; Wang, Y.; Zou, D. Discovery of anti-inflammatory molecules from Dendrobium officinale based on activity labelled molecular networking and its alleviation effect on ulcerative colitis. Food Res. Int. 2025, 203, 115888. [Google Scholar] [CrossRef]
- Schirmer, M.; Garner, A.; Vlamakis, H.; Xavier, R.J. Microbial genes and pathways inflammatory bowel disease. Nat. Rev. Microbiol. 2019, 17, 497–511. [Google Scholar] [CrossRef]
- Sayaka, F.V.; Yessenia, V.; Pamela, M.; Fabien, M.; Patricia, V.W.; Ugalde, J.A.; Martin, G. The gut microbiota of healthy chilean subjects reveals a high abundance of the phylum Verrucomicrobia. Front. Microbiol. 2017, 8, 1221. [Google Scholar] [CrossRef]
- García-Bayona, L.; Comstock, L.E. Streamlined genetic manipulation of diverse Bacteroides and Parabacteroides isolates from the human gut microbiota. mBio 2019, 10, e01762-19. [Google Scholar] [CrossRef]
- Carasso, S.; Fishman, B.; Lask, L.S.; Shochat, T.; Geva-Zatorsky, N.; Tauber, E. Metagenomic analysis reveals the signature of gut microbiota associated with human chronotypes. FASEB J. 2021, 35, e22011. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Hu, M.; Jiang, T.; Xiao, P.; Duan, J. Insights into the molecular mechanisms, structure-activity relationships and application prospects of polysaccharides by regulating Nrf2-mediated antioxidant response. Carbohydr. Polym. 2024, 333, 122003. [Google Scholar] [CrossRef] [PubMed]
- Karale, A.; Lokhande, K.B.; Shende, N.; Swamy, K.V.; Dhere, R.; Nawani, N.; Mallya, A. Transferrin binding protein-B from Neisseria meningitidis C as a novel carrier protein in glycoconjugate preparation: An in silico approach. J. Biomol. Struct. Dyn. 2022, 40, 13812–13822. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zheng, Z.; Guo, T.; Wang, K.; Zhang, Y. Molecular dynamics simulation of lentinan and its interaction with the innate receptor dectin-1. Int. J. Biol. Macromol. 2021, 171, 527–538. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Li, H.; Wen, J.; Ding, W.; Yu, J.; Zhang, Y.; Song, X.; Wu, J. Bacillus thuringiensis Exopolysaccharide BPS-2 Ameliorates Ulcerative Colitis in a Murine Model Through Modulation of Gut Microbiota and Suppression of the NF-κB Cascade. Foods 2025, 14, 2378. https://doi.org/10.3390/foods14132378
Gao Z, Li H, Wen J, Ding W, Yu J, Zhang Y, Song X, Wu J. Bacillus thuringiensis Exopolysaccharide BPS-2 Ameliorates Ulcerative Colitis in a Murine Model Through Modulation of Gut Microbiota and Suppression of the NF-κB Cascade. Foods. 2025; 14(13):2378. https://doi.org/10.3390/foods14132378
Chicago/Turabian StyleGao, Zexin, Huan Li, Jungang Wen, Wenping Ding, Jie Yu, Yue Zhang, Xiaojuan Song, and Jianrong Wu. 2025. "Bacillus thuringiensis Exopolysaccharide BPS-2 Ameliorates Ulcerative Colitis in a Murine Model Through Modulation of Gut Microbiota and Suppression of the NF-κB Cascade" Foods 14, no. 13: 2378. https://doi.org/10.3390/foods14132378
APA StyleGao, Z., Li, H., Wen, J., Ding, W., Yu, J., Zhang, Y., Song, X., & Wu, J. (2025). Bacillus thuringiensis Exopolysaccharide BPS-2 Ameliorates Ulcerative Colitis in a Murine Model Through Modulation of Gut Microbiota and Suppression of the NF-κB Cascade. Foods, 14(13), 2378. https://doi.org/10.3390/foods14132378