Next Issue
Volume 14, September-1
Previous Issue
Volume 14, August-1
 
 

Foods, Volume 14, Issue 16 (August-2 2025) – 164 articles

Cover Story (view full-size image): The colorimetric food freshness indicator (CFFI) is a promising technology in intelligent food packaging, offering the capability for real-time monitoring of food freshness through colorimetric changes. This technology holds significant promise in mitigating food waste and enhancing transparency across the supply chain. This paper provides a comprehensive review of the classification system for the CFFI, encompassing colorimetric films and sensor arrays. It explores their applications across key perishable food categories, including meats, seafoods, fruits, and vegetables. Furthermore, this paper offers an in-depth analysis of three critical challenges currently hindering technological advancement: safety concerns, stability issues, and limitations in sensitivity and selectivity. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
22 pages, 2175 KB  
Article
Probiotic Yeast and How to Use Them—Combining Traditions and New Waves in Fermented Beverages
by Adam Staniszewski, Patrycja Staniszewska, Elwira Komoń-Janczara and Monika Kordowska-Wiater
Foods 2025, 14(16), 2921; https://doi.org/10.3390/foods14162921 - 21 Aug 2025
Viewed by 664
Abstract
Potentially probiotic yeasts isolated from foodstuffs can be used as components in functional fermented beverages. To date, there have been no reports on the use of Saccharomyces cerevisiae var. boulardii, Pichia kudriavzevii, Metschnikowia pulcherrima, or Hanseniaspora uvarum isolates in the [...] Read more.
Potentially probiotic yeasts isolated from foodstuffs can be used as components in functional fermented beverages. To date, there have been no reports on the use of Saccharomyces cerevisiae var. boulardii, Pichia kudriavzevii, Metschnikowia pulcherrima, or Hanseniaspora uvarum isolates in the production of a traditional Polish beverage called underbeer (podpiwek). The aim of the study was to determine the usefulness of six isolates of the above-mentioned species as starter cultures for the fermentation of underbeer. First, the important characteristics of the yeasts, like ethanol tolerance and H2S production, were examined. In the next stage, the wort was fermented by the tested yeasts, and cell viability, fermentation vigor, sugar assimilation, and production of metabolites, as well as properties of the beverage (pH, titratable acidity, color, and turbidity), were determined. Saccharomyces yeasts tolerated the addition of ethanol up to 16% (v/v), while Pichia, Metschnikowia, and Hanseniaspora tolerated up to 10% (v/v) ethanol, and all except H. uvarum produced H2S. The yeasts remained viable in the beverages for 1 month at the required level, utilized glucose, fructose and partially complex carbohydrates, and produced ethanol (S. cerevisiae, P. kudriavzevii, and M. pulcherrima) and organic acids such as tartaric, malic, and citric acid. The underbeers became sour and showed varying turbidity and a color corresponding to pale-amber beers. All tested strains produced fermented beverages that were low- or non-alcoholic with different properties. This experiment may be a starting point for research into regional products as probiotic or synbiotic foods; however, further research is required for selection of the best strains for underbeer fermentation. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

18 pages, 9714 KB  
Article
Research on Physicochemical Properties and In Vitro Digestive Characteristics of High-Amylose Corn Starch–Ultrasound-Treated Waxy Rice Flour Blends
by Yuxing Wang, Yu Guo, Zhiting Zhu, Yan Ding, Yuchan Yang, Dongxu Wang, Zhanming Li, Yuanxin Guo and Xiaoman Chen
Foods 2025, 14(16), 2920; https://doi.org/10.3390/foods14162920 - 21 Aug 2025
Viewed by 500
Abstract
This study aimed to investigate the effect of high-amylose corn starch (HACS) addition on the physicochemical properties and in vitro digestibility of an ultrasound-treated waxy rice flour (UWRF)–HACS blend system. As the proportion of HACS increased, the amylose content in the blends significantly [...] Read more.
This study aimed to investigate the effect of high-amylose corn starch (HACS) addition on the physicochemical properties and in vitro digestibility of an ultrasound-treated waxy rice flour (UWRF)–HACS blend system. As the proportion of HACS increased, the amylose content in the blends significantly increased (p < 0.05), while their water solubility index (WSI) and swelling power (SP) significantly decreased (p < 0.05). Additionally, the average particle size of the blends increased, and the surface of starch granules became smoother. Compared to UWRF, the blends did not generate new functional groups, but increased the starch’s relative crystallinity and short-range ordered structure. Rheological results indicated that the HACS-UWRF blends were mainly elastic and exhibited a typical weak gel system. In vitro digestibility results showed that the addition of HACS significantly increased the resistant starch (RS) content in the rice cakes (p < 0.05), while substantially reducing the hydrolysis index (HI) and estimated glycemic index (eGI) (p < 0.05). This study revealed the processing characteristics and gelatinization behavior changes in the HACS-UWRF blends. It provides a theoretical basis for the development of specialized flour for slow-glycemic rice cakes. Full article
Show Figures

Graphical abstract

33 pages, 14615 KB  
Article
Spray Drying of Double-Layer Emulsion Stabilised with an Orange Residue: Effect of Process Parameters and Collection Position
by Mónica Umaña, Esperanza Dalmau, Carmen Rosselló, Valeria Eim and Susana Simal
Foods 2025, 14(16), 2919; https://doi.org/10.3390/foods14162919 - 21 Aug 2025
Viewed by 330
Abstract
This study investigated the impact of spray-drying conditions, specifically inlet air temperature (Tin: 131–159 °C) and feed rate (FR: 4.9–8.4 g/min), on the microencapsulation of oil in a double-layer emulsion stabilised with orange residue flour (ORF) and soy protein. Powders were analysed separately [...] Read more.
This study investigated the impact of spray-drying conditions, specifically inlet air temperature (Tin: 131–159 °C) and feed rate (FR: 4.9–8.4 g/min), on the microencapsulation of oil in a double-layer emulsion stabilised with orange residue flour (ORF) and soy protein. Powders were analysed separately from the drying chamber and the collector, focusing on yield, encapsulation efficiency, moisture, water activity (aw), oil oxidation, colour, and particle size. Chamber powders were more sensitive to Tin, where higher temperatures (155–159 °C) improved yield (up to 47% dry matter (dm)) but also increased oxidation (up to 134% above initial oil). Excessively high FR (8.4 g/min) reduced yield and raised aw (up to 0.39). Collector powders showed more stable yields (average 30 ± 2% dm) but lower encapsulation efficiency (80–86% for chamber vs. 70–77% for collector). Response surface methodology satisfactorily modelled key parameters (R2 up to 0.9). Optimisation showed that chamber performance was maximised at 146 °C and 4.9 g/min (predicted yield and aw of 41% and 0.25, respectively), while collector quality improved with slightly higher Tin (150 °C, predicted aw of 0.32). Separately analysing chamber and collector fractions provided novel insights into spray-drying dynamics. These findings highlight ORF as a promising wall material. Full article
(This article belongs to the Special Issue Encapsulation-Based Technologies for Bioactive Compounds in Foods)
Show Figures

Graphical abstract

19 pages, 1318 KB  
Article
Bioprotective Potential of Lactic Acid Bacteria in Pickled Pepper Rabbit Meat During Refrigerated Storage
by Jiamin Liang, Bo Wang, Jiamin Zhang, Ting Bai, Zhenguo Zhong and Zhonghua Tang
Foods 2025, 14(16), 2918; https://doi.org/10.3390/foods14162918 - 21 Aug 2025
Viewed by 347
Abstract
The impacts of Lactilactilactobacillus sakei (LS), Pediococcus acidilactici (PA), and Latilactobacillus curvatus (LC) on quality properties, protein and lipid oxidation, and microbial dynamics of pickled pepper rabbit meat during refrigerated storage (4 °C for 1, 3, 5, and 7 days) were investigated. The [...] Read more.
The impacts of Lactilactilactobacillus sakei (LS), Pediococcus acidilactici (PA), and Latilactobacillus curvatus (LC) on quality properties, protein and lipid oxidation, and microbial dynamics of pickled pepper rabbit meat during refrigerated storage (4 °C for 1, 3, 5, and 7 days) were investigated. The results showed that the addition of lactic acid bacteria bioprotective agents effectively reduced the pH of pickled pepper rabbit meat, inhibited protein and lipid oxidation, suppressed the growth and proliferation of spoilage bacteria, and maintained favorable textural characteristics. Among the tested strains, Latilactobacillus curvatus exhibited the most significant preservation effects throughout the storage period. On day 7 of storage, the TBARS value of the LC group was 20.60% lower than that of the LS group and 14.68% lower than that of the PA group. Similarly, the total carbonyl content was 12.30% lower than the LS group and 6.21% lower than the PA group, while the total sulfhydryl content was 20.81% and 10.12% higher, respectively. Additionally, the TVB-N value was 11.91% lower than the LS group and 4.37% lower than the PA group. Additionally, the Latilactobacillus curvatus group maintained a lower pH, superior elasticity, chewiness, and cohesiveness, while effectively inhibiting spoilage bacterial growth and proliferation. In conclusion, Latilactobacillus curvatus was the most effective bioprotective agent for preserving the storage characteristics of pickled pepper rabbit meat. Full article
(This article belongs to the Special Issue Safety and Quality Control in Meat Processing)
Show Figures

Figure 1

22 pages, 1145 KB  
Article
Sustainability Indicators in Rice and Wheat Supply Chain
by Anulipt Chandan and Michele John
Foods 2025, 14(16), 2917; https://doi.org/10.3390/foods14162917 - 21 Aug 2025
Viewed by 420
Abstract
Sustainability within the rice and wheat supply chain is integral to attaining the UN’s Sustainable Development Goals (SDGs), as they are the two most consumed grains as food. Rice and wheat cultivation significantly impacts the environment, with the agricultural sector employing 27% of [...] Read more.
Sustainability within the rice and wheat supply chain is integral to attaining the UN’s Sustainable Development Goals (SDGs), as they are the two most consumed grains as food. Rice and wheat cultivation significantly impacts the environment, with the agricultural sector employing 27% of the global workforce and contributing 4% to the world’s GDP, thereby affecting social and economic sustainability. Developing a sustainability index for the wheat and rice supply chain is a complex endeavor, as it depends on various factors such as the location of growers, farming methods, the target audience, and the stakeholders involved. This index must be derived from an optimal selection of indicators to avoid information overload while covering all essential sustainability aspects. There are different methods, such as life cycle assessment, energy analysis, ecological footprint, and carbon footprint, being used to assess sustainability, with indicator-based assessment emerging as a comprehensive approach. This study utilised the Triple Bottom Line (TBL) to identify optimal sustainability indicators in the wheat and rice supply chain. A systematic literature review was initially conducted, followed by an expert opinion survey to determine the required indicators. The literature review unveiled a wide array of indicators used across studies, often contingent on each study’s specific objectives. While some consistency existed in environmental indicators, discussions on social and economic dimensions within the wheat and rice supply chain were limited. Analysis of the expert opinion survey revealed a consensus on most selected indicators, albeit with variations based on experts’ geographical locations. The final set of optimal indicators identified can serve as a foundation for developing a sustainability index, implementing a sustainability information management system, and formulating policy initiatives in the rice and wheat supply chain. Full article
(This article belongs to the Topic Sustainable Food Production and High-Quality Food Supply)
Show Figures

Figure 1

16 pages, 3320 KB  
Article
Characterization of Whey Protein Isolate–Soymilk Complexes Modified by Transglutaminase and Their Application inYuba Film
by Junliang Chen, Yao Chen, Weiwei Cao, Tongxiang Yang, Linlin Li, Wenchao Liu, Xu Duan and Guangyue Ren
Foods 2025, 14(16), 2916; https://doi.org/10.3390/foods14162916 - 21 Aug 2025
Viewed by 474
Abstract
Transglutaminase (TGase) improves protein structure by facilitating cross-linking reactions. However, the effects of TGase on the physicochemical properties of whey protein isolate (WPI)–soymilk complexes and their applications in yuba remain unclear. Therefore, the impacts of TGase concentration on the free sulfhydryl content, free [...] Read more.
Transglutaminase (TGase) improves protein structure by facilitating cross-linking reactions. However, the effects of TGase on the physicochemical properties of whey protein isolate (WPI)–soymilk complexes and their applications in yuba remain unclear. Therefore, the impacts of TGase concentration on the free sulfhydryl content, free amino content, particle size, and structure of WPI–soymilk complexes and their film-forming properties were studied. The results showed that the physicochemical properties of the composite soymilk were changed by the TGase-induced cross-linking reaction of protein. Compared with the composite soymilk without TGase modification, the particle size of the WPI–soymilk complexes increased from 707.99 ± 9.47 nm to 914.41 ± 2.8 nm as the TGase concentration increased, and the complexes remained relatively stable at low TGase concentrations. TGase modification changed the tertiary structure of the WPI–soymilk complexes. The composite yuba with 0.01% and 0.03% levels of TGase had a higher β-sheet content than composite yuba without addition of TGase. The surface hydrophobicity of composite soymilk was decreased by all the addition levels of TGase. Meanwhile, the TGase-modified composite protein with 0.03% TGase had the lowest free sulfhydryl (35.92 μg/g) and amino groups (0.46). Additionally, the tensile strength of the composite yuba with 0.05% TGase addition reached a peak of 1.66 ± 0.02 MPa, which was 7.8% higher than that of the composite yuba without TGase addition. The SEM results revealed that the composite yuba with 0.01–0.03% TGase addition exhibited a dense and non-porous film structure. Moreover, all the composite yuba with TGase addition had a reduced rate of yuba cooking loss. This study contributes to enhancing the yield and mechanical properties of traditional yuba. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

23 pages, 8117 KB  
Article
Deep Learning Enabled Optimization and Mass Transfer Mechanism in Ultrasound-Assisted Enzymatic Extraction of Polyphenols from Tartary Buckwheat Hulls
by Yilin Shi, Yanrong Ma, Rong Li, Ruiyu Zhang, Zizhen Song, Yao Lu, Zhigang Chen, Yufu Wang and Yue Wu
Foods 2025, 14(16), 2915; https://doi.org/10.3390/foods14162915 - 21 Aug 2025
Viewed by 383
Abstract
Tartary buckwheat hulls, a phenolic-rich by-product of buckwheat processing, offer great potential for resource utilization. In this study, ultrasound-assisted enzymatic extraction with two temperatures (40 °C and 50 °C) was employed to obtain phenolics from Tartary buckwheat hulls. Compared with the traditional extraction [...] Read more.
Tartary buckwheat hulls, a phenolic-rich by-product of buckwheat processing, offer great potential for resource utilization. In this study, ultrasound-assisted enzymatic extraction with two temperatures (40 °C and 50 °C) was employed to obtain phenolics from Tartary buckwheat hulls. Compared with the traditional extraction method (207 mg/100 g), ultrasound-assisted enzymatic extraction increased the total phenolic yield by 91.3% at 50 °C. Numerical simulations based on Fick’s law indicated that enzyme pretreatment concentration positively correlated with the effective diffusion coefficient (De), which increased from 9.15 × 10−7 to 2.00 × 10−6 m2/s at 40 °C. Meanwhile, the neuro-fuzzy inference system (ANFIS) successfully predicted the extraction yield under various ultrasonic conditions (R2 > 0.98). Regarding quantitative analysis of phenolic compounds in extracts, the results revealed that catechins and epicatechins were the most abundant in Tartary buckwheat hull. Additionally, phenolic acids rapidly diffused at higher temperatures (50 °C), and flavonoids were highly sensitive to temperature and enzyme synergy. Phenolic extracts exhibit significant potential for value-added applications in food processing, particularly in improving antioxidative stability, prolonging shelf life. This study provides a theoretical basis for green, efficient phenolic extraction from plant residues. Full article
Show Figures

Figure 1

19 pages, 5746 KB  
Article
A Dual-Functional Intelligent Felt-like Label from Cationic Rice Straw Fibers Loaded with Alizarin Red S for Monitoring Al(III) and the Freshness of Fish
by Huiyan Feng, Yikun Li, Qian Cheng and Zhiming Liu
Foods 2025, 14(16), 2914; https://doi.org/10.3390/foods14162914 - 21 Aug 2025
Viewed by 386
Abstract
To achieve dual functionality that can monitor both Al3+ levels in food and the freshness of fish, rice straw fibers (RSFs) were treated in NaOH solutions and then cationized with 2,3-epoxypropyltrimethylammonium chloride, onto which alizarin red S molecules were immobilized through electrostatic [...] Read more.
To achieve dual functionality that can monitor both Al3+ levels in food and the freshness of fish, rice straw fibers (RSFs) were treated in NaOH solutions and then cationized with 2,3-epoxypropyltrimethylammonium chloride, onto which alizarin red S molecules were immobilized through electrostatic interaction to develop a smart felt-like label. An optimized treatment in 5 wt% NaOH solution effectively removed lignin and hemicellulose, facilitating quaternary ammonium group grafting and stable ARS anchoring. The ARS@BRSF-5NaOH exhibited high pH sensitivity, showing visually discernible color changes (ΔE > 5, perceptible to the naked eye) under acidic (pH ≤ 6) and strongly alkaline (pH > 12) conditions. During the storage of the fish, the label transformed from yellow to dark purple (ΔE increase) as TVB-N levels approached 20 mg/100 g, enabling real-time freshness monitoring for protein-rich products. Additionally, the label achieved a detection threshold of 1 × 10−5 mol·L−1 for Al3+ through a coordination-induced chromatic transition (purple to pale pink). This research highlights the feasibility of utilizing an agricultural waste-derived material to develop cost-effective, visually responsive, dual-functional intelligent labels for food safety, offering significant advancements in on-site quality assessment. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

19 pages, 2396 KB  
Article
Alleviation of Ovalbumin-Allergic Reactions in Mice by Eucommia ulmoides Polysaccharides via Modulation of Intestinal Microbiota
by Xuelei Zhang, Ketong Bi, Chuansheng Zhao, Yuxin Cao, Yuxuan Yang, Jingxuan Jia, Yong Zhang, Dandan Zhai, Yu Yang and Peng Li
Foods 2025, 14(16), 2913; https://doi.org/10.3390/foods14162913 - 21 Aug 2025
Viewed by 434
Abstract
Food allergy represents a prevalent immunological disorder, with current clinical management primarily emphasizing allergen avoidance and emergency pharmacological intervention. Eucommia ulmoides polysaccharides, the principal bioactive constituents of the traditional Chinese medicinal plant Eucommia ulmoides, have demonstrated anti-inflammatory and antioxidant properties; however, their [...] Read more.
Food allergy represents a prevalent immunological disorder, with current clinical management primarily emphasizing allergen avoidance and emergency pharmacological intervention. Eucommia ulmoides polysaccharides, the principal bioactive constituents of the traditional Chinese medicinal plant Eucommia ulmoides, have demonstrated anti-inflammatory and antioxidant properties; however, their specific effects on food allergies remain inadequately characterized. A total of thirty-six female BALB/c mice were randomly allocated into three groups (n = 12 per group): the control group (CON group, receiving saline treatment), the allergic model group (OVA group, subjected to ovalbumin sensitization), and the intervention group (OVA+PS group, undergoing OVA sensitization followed by Eucommia ulmoides polysaccharides administration via gavage). The anti-allergic efficacy of Eucommia ulmoides polysaccharides was comprehensively evaluated through clinical allergy symptom scoring, histological and pathological tissue analysis, real-time fluorescence quantitative PCR (qRT-PCR) for the assessment of key gene expression, and 16S rDNA sequencing. The findings indicated the following: (1) The allergy scores in the OVA+PS group were significantly lower than those in the OVA group (p < 0.01). Following OVA stimulation, the rectal temperature of mice in the OVA group decreased sharply, whereas the temperature decline in the OVA+PS group was more gradual compared to the model group. (2) The liver, kidney, spleen, and intestinal tissues of mice in the OVA+PS group exhibited normal morphology, consistent with the CON group, which suggests that Eucommia ulmoides polysaccharides effectively mitigates the local inflammatory response induced by food allergy. (3) The expression of NICD in the spleen of mice in the OVA+PS group was significantly higher than in the OVA group (p < 0.05), while the expression of the Hes1 gene was significantly elevated in the OVA group compared to both the CON and OVA+PS groups (p < 0.05). In the OVA group, the expression level of Gata-3 was significantly elevated compared to both the CON group and the OVA+PS group (p < 0.05). Similarly, the expression of STAT5 in the OVA group was markedly higher than in the other groups (p < 0.05). (4) Eucommia ulmoides polysaccharides were found to modulate the intestinal microbiota composition in allergic mice, notably increasing the expression abundance of Enterobacter, Oscillibacter, and Butyricicoccus, while decreasing the expression abundance of Clostridium sensu stricto 1 and Turicibacter. (5) There was a correlation between alterations in the intestinal microbiota of mice and the expression of key genes. Specifically, the relative abundance of Blautia was negatively correlated with the expression of NICD and Gata-3 genes (p < 0.05), and the relative abundance of the Lachnospiraceae_FCS020_group was negatively correlated with the expression of the Hes1 gene (p < 0.05). In conclusion, Eucommia ulmoides polysaccharides demonstrate potential in alleviating allergic symptoms, providing a scientific foundation for the development of novel natural anti-allergic functional foods. Full article
(This article belongs to the Special Issue Natural Polysaccharides: Structure and Health Functions)
Show Figures

Figure 1

16 pages, 2047 KB  
Article
Germination-Induced Biofortification: Improving Nutritional Efficacy, Physicochemical Properties, and In Vitro Digestibility of Black Rice Flour
by Lingfeng Zhu, Qiutao Xie, Dandan Qin, Yi He, Hongyan Yuan, Yingchao Mao, Zhaoping Pan, Gaoyang Li and Xinxin Xia
Foods 2025, 14(16), 2912; https://doi.org/10.3390/foods14162912 - 21 Aug 2025
Viewed by 415
Abstract
Germination is an effective strategy for enhancing functional and processing characteristics of whole grains. This research aimed to explore the changes of nutritional components, physicochemical properties, in vitro digestibility, and microstructural characteristics of black rice flour (BRF) during 0–48 h germination. The results [...] Read more.
Germination is an effective strategy for enhancing functional and processing characteristics of whole grains. This research aimed to explore the changes of nutritional components, physicochemical properties, in vitro digestibility, and microstructural characteristics of black rice flour (BRF) during 0–48 h germination. The results showed that germination significantly induced α-amylase activation of BRF, from 1.02 U/g to 4.46 U/g, leading to a 3.2-fold increase in reducing sugar content through starch hydrolysis. The content of apparent amylose was down-regulated during germination. The contents of free amino acids and minerals were markedly augmented in BRF. Specially, the GABA content was remarkedly enhanced, from 40.73 mg/kg to 258.35 mg/kg. Compared with BRF, the ratio of rapidly digestible starch (RDS) and resistant starch (RS) of germinated black rice flour (GBRF) increased by 12.04% and 0.43%, respectively, while the ratio of slowly digestible starch (SDS) decreased by 12.47% at 48 h. Scanning electron microscopy (SEM) analysis observed a more porous and loose surface structure in GBRF. X-ray diffraction (XRD) analysis illustrated that the relative crystallinity of GBRF was reduced with the prolonging of germination time. The dissociation of starch granules in GBRF ultimately led to a decrease in characteristic viscosity parameters, including peak, trough, final, and setback viscosity. In conclusion, germination improved the nutritional value and digestive characteristics of BRF, and altered its structure and physicochemical properties, which provides a reference for the development of whole grain-based products. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

29 pages, 3441 KB  
Article
The Use of Whey Powder to Improve Bread Quality: A Sustainable Solution for Utilizing Dairy By-Products
by Diana Fluerasu (Bălțatu), Christine Neagu, Sylvestre Dossa, Monica Negrea, Călin Jianu, Adina Berbecea, Daniela Stoin, Dacian Lalescu, Diana Brezovan, Liliana Cseh, Mariana Suba, Cătălin Ianasi and Ersilia Alexa
Foods 2025, 14(16), 2911; https://doi.org/10.3390/foods14162911 - 21 Aug 2025
Viewed by 544
Abstract
This paper aims to study the potential of whey, a by-product in the dairy industry, to be used as a sustainable and health-promoting ingredient in baking. In this regard, whey powder (WhF) was produced and incorporated into three composite flours consisting of wheat [...] Read more.
This paper aims to study the potential of whey, a by-product in the dairy industry, to be used as a sustainable and health-promoting ingredient in baking. In this regard, whey powder (WhF) was produced and incorporated into three composite flours consisting of wheat flour and whey powder in proportions of 5% (WhWF5), 10% (WhWF10), and 15% (WhWF15). These composite flours were then used to produce bread. The nutritional properties (proximate composition, macro and microelement content) and bioactive compounds (total polyphenols and antioxidant activity) were assessed for both the composite flours and the resulting breads. In addition, the rheological behavior of the dough was evaluated using the Mixolab system, while the microstructural characteristics and physical properties of the composite flours were analyzed using Small/Wide Angle X-ray Scattering (SAXS/WAXS) and Fourier Transform Infrared Spectroscopy (FTIR). Sensory evaluation of the breads was also performed. The results demonstrated a positive effect of the whey powder addition on the nutritional profile of both composite flours and bakery products, particularly through increased protein levels (25.24–37.77% in fortified flours vs. 11.26% in control; 16.64–18.89% in fortified breads vs. 14.12% in control) and enhanced mineral content (11.27–80.45% higher compared to white wheat bread), alongside a reduction in carbohydrate content. Bread fortified with 15% whey powder showed higher monolement with increases of 27.80% for K, 7.01% for Mg, and 28.67% for Ca compared to control bread without whey. The analysis of the Mixolab charts confirmed the progressive influence of whey powder on dough rheology. While water absorption remains high, other functional parameters, such as gluten quality, kneading capacity, and starch viscosity, were negatively affected. Nonetheless, the nutritional advantages and reduced retrogradation tendency may offset these drawbacks in the context of developing functional bakery products. Formulations containing 5–10% whey powder appear to offer an optimal balance between technological performance, nutritional quality, and sensory acceptance. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Figure 1

23 pages, 13081 KB  
Article
Structural Characterization of a Novel Pectin Polysaccharide from Mango (Mangifera indica L.) Peel and Its Regulatory Effects on the Gut Microbiota in High-Fat Diet-Induced Obese Mice
by Ruyan Fan, Wenting Zhang, Lang Wang, Tao Fei, Jianbo Xiao and Lu Wang
Foods 2025, 14(16), 2910; https://doi.org/10.3390/foods14162910 - 21 Aug 2025
Viewed by 538
Abstract
The gut microbiota plays a significant role in metabolic diseases such as obesity. We extracted and purified a new type of pectin polysaccharide (mango peel pectin, MPP) from mango (Mangifera indica L.) peel. The structural analysis results reveal that MPP has a [...] Read more.
The gut microbiota plays a significant role in metabolic diseases such as obesity. We extracted and purified a new type of pectin polysaccharide (mango peel pectin, MPP) from mango (Mangifera indica L.) peel. The structural analysis results reveal that MPP has a molecular weight (Mw) of 6.76 × 105 Da and the mass fractions of the main components were galacturonic acid (21.36%), glucose (8.85%), and arabinose (5.97%). The results of methylation and NMR analyses reveal that the backbone of MPP consisted of →6)-α-D-GalpAOMe-(1→ and →4)-β-D-Glcp-(1→ linkages. Based on the above structural analysis, we further explored the therapeutic effect of MPP on high-fat diet-induced obese mice. The results demonstrate that MPP significantly suppressed body weight and dyslipidemia, reduced liver damage and lipid accumulation, attenuated changes in adipocyte hypertrophy, and improved glucose homeostasis and insulin resistance, with fasting blood glucose (FBG) levels decreasing by more than 12.8%. Furthermore, the modulatory impact of MPP on gut microbiota composition was investigated. MPP treatment significantly enhanced the levels of short-chain fatty acids (SCFAs) by decreasing the amount of Bacillota and reducing the Bacillota/Bacteroidota ratio, especially with an increase in the total SCFA content of over 64%. Meanwhile, MPP treatment encouraged beneficial bacteria to grow (e.g., Bacteroidota, Akkermansia, and Nanasyncoccus), altered the gut microbiome profiles in mice, and decreased the abundance of harmful bacteria (e.g., Paralachnospira, Coproplasma, Pseudoflavonifractor, Parabacteroides, Acetatifactor, and Phocaeicola). Overall, the findings demonstrate for the first time that MPP treats obesity by alleviating dyslipidemia, improving insulin resistance, and regulating gut microbiota to improve the intestinal environment. Full article
Show Figures

Figure 1

12 pages, 899 KB  
Communication
Impact of the Physical Modification of Starch (Oxalis tuberosa) in a Low-Fat Snack by Hot Air Frying, a Sustainable Process
by Nayeli Anayansi Loyo-Trujillo, María Remedios Mendoza-López, Rosa Isela Guzmán-Gerónimo, Rosario Galvan-Martínez, Francisco Erik González-Jiménez, Josué Antonio del Ángel-Zumaya, Audry Peredo-Lovillo and Juan Vicente Méndez-Méndez
Foods 2025, 14(16), 2909; https://doi.org/10.3390/foods14162909 - 21 Aug 2025
Viewed by 609
Abstract
Currently, there is an increasing demand for plant-based and low-fat snacks. Non-conventional starch and grains are alternative ingredients. Environmentally friendly processing, such as liquid nitrogen and microwaves, can be used to obtain modified starch, as well as hot air frying to cook snacks. [...] Read more.
Currently, there is an increasing demand for plant-based and low-fat snacks. Non-conventional starch and grains are alternative ingredients. Environmentally friendly processing, such as liquid nitrogen and microwaves, can be used to obtain modified starch, as well as hot air frying to cook snacks. The aim of this work was to evaluate the impact of eco-friendly physical modification of starch from Oxalis tuberosa in a low-fat snack processed by hot air frying. First, native starch (NS) was treated with liquid nitrogen (LNS) and liquid nitrogen/microwaves (LNMS), and the amylose/amylopectin content and functional properties were determined. The snacks were formulated with NS or modified starches, amaranth flour, quinoa flour, corn, onion powder, salt, and water; the ingredients were mixed and placed in an electric pasta maker and cooked by hot air frying. The hardness, hedonic test, colorimetric parameters, acrylamide, proximal composition, and fatty acid profile were analyzed. All starches showed similar values of amylose and amylopectin content. LNMS starch had the lowest water solubility index as compared to NS and LNS. The snacks with the starch modified with liquid nitrogen showed the highest values of hardness as well as the highest score for the texture from a hedonic test. The snacks with modified starches showed a lower browning index than the snack formulated with NS. Acrylamide was not detected in any snacks. The lipid value of the snacks with modified starch was 1.9–2.70 g/100 g of sample, providing ω-9, ω-6, and ω-3 fatty acids. All snacks contained 7.7 g of protein/100 g of sample. These low-fat and plant-based snacks are a healthy option made by environmentally friendly technologies. Full article
Show Figures

Graphical abstract

19 pages, 2592 KB  
Article
Characterization of Rapeseed Oil Oleogels Produced by the Emulsion Template Method Using Hydroxypropyl Methylcellulose and the Drying Kinetics of the Emulsions
by Mario Lama, Amaya Franco-Uría and Ramón Moreira
Foods 2025, 14(16), 2908; https://doi.org/10.3390/foods14162908 - 21 Aug 2025
Viewed by 459
Abstract
Given health concerns, oleogels are promising substitutes for saturated fats in food products. An emulsion-templated method was used, employing rapeseed oil and hydroxypropyl methylcellulose (HPMC) as the structuring agent, to produce oleogels. Oil-in-water emulsions (50:50 w/w) were prepared with three [...] Read more.
Given health concerns, oleogels are promising substitutes for saturated fats in food products. An emulsion-templated method was used, employing rapeseed oil and hydroxypropyl methylcellulose (HPMC) as the structuring agent, to produce oleogels. Oil-in-water emulsions (50:50 w/w) were prepared with three HPMC concentrations (1.5, 2.0, and 2.5% w/w) and dried convectively at 60, 70, 80, and 90 °C to obtain oleogels. The emulsions exhibited viscoelastic behaviour with a predominant viscous character, G″ > G′. Drying kinetics showed a constant rate period followed by a falling rate period; the latter was satisfactorily modelled using a diffusion-based approach. All oleogels displayed predominantly elastic behaviour but the characteristics depended on the temperature employed during the drying operation and the HPMC content. The mechanical moduli (G″ and G′) of the oleogels increased significantly with a drying temperature below 80 °C. Higher HPMC content enhanced structural development and thermal stability. Most oleogels exhibited high oil binding capacity (>85%), which increased with the drying temperature and the HPMC content. A correlation was established between the elastic moduli, oil retention, and the hardness of the oleogels. No significant influences of the drying temperature and the polymer concentration on lipid oxidation and colour samples were determined. These results highlight the importance of selecting appropriate drying conditions based on the desired final product properties. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

17 pages, 26824 KB  
Article
Honey-Conjugated Honeybee Brood Biopeptides Improve Gastrointestinal Stability, Antioxidant Capacity, and Alleviate Diet-Induced Metabolic Syndrome in a Rat Model
by Sakaewan Ounjaijean, Supakit Chaipoot, Rewat Phongphisutthinant, Gochakorn Kanthakat, Sirinya Taya, Pattavara Pathomrungsiyounggul, Pairote Wiriyacharee and Kongsak Boonyapranai
Foods 2025, 14(16), 2907; https://doi.org/10.3390/foods14162907 - 21 Aug 2025
Viewed by 416
Abstract
Honeybee brood biopeptides (HBb-Bps) are a novel source of bioactive compounds with potential health benefits. In this study, HBb-Bps were conjugated with honey via a Maillard reaction and their physicochemical properties, digestive stability, antioxidant capacity, and anti-obesogenic effects were evaluated. Simulated gastrointestinal digestion [...] Read more.
Honeybee brood biopeptides (HBb-Bps) are a novel source of bioactive compounds with potential health benefits. In this study, HBb-Bps were conjugated with honey via a Maillard reaction and their physicochemical properties, digestive stability, antioxidant capacity, and anti-obesogenic effects were evaluated. Simulated gastrointestinal digestion revealed significantly enhanced resistance after conjugation, with the residual content increasing from 46.99% for native HBb-Bps to 86.12% for the honey-conjugated forms; furthermore, antioxidant activity was largely preserved according to the DPPH and ABTS assays. In the in vivo experiments, 30 male BrlHan: WIST@Jcl (GALAS) (Wistar) rats were fed a high-fat diet (HFD) to induce obesity and orally administered honey-conjugated HBb-Bps at doses of 200, 500, or 1000 mg/kg body weight for 16 weeks. The highest dose led to significant reductions in body weight gain, the Lee index, and body mass index. The serum lipid profiles markedly improved, with decreases in the total cholesterol, triglyceride, and LDL levels, as well as cardiovascular risk indices. Furthermore, fecal analysis showed increased levels of short-chain fatty acids, particularly butyrate. These changes suggest enhanced gut microbial activity; however, the prebiotic effects were inferred from the SCFA profiles, as the gut microbiota composition was not directly analyzed. In conclusion, honey-conjugated HBb-Bps improve gastrointestinal stability and exhibit antioxidant, hypolipidemic, and gut-modulating effects, supporting their potential use as functional ingredients for managing diet-induced metabolic disorders. Full article
Show Figures

Figure 1

17 pages, 2552 KB  
Article
Effect of Shear and pH on Heat-Induced Changes in Faba Bean Proteins
by Rui Yu, Thom Huppertz and Todor Vasiljevic
Foods 2025, 14(16), 2906; https://doi.org/10.3390/foods14162906 - 21 Aug 2025
Viewed by 420
Abstract
Commercially relevant processing conditions, including protein concentration, pH and shearing and their impact on the solubility, heat stability, and secondary structure of faba bean proteins (FBPIs), were studied. Most of the examined properties, including protein solubility and heat stability, were due to the [...] Read more.
Commercially relevant processing conditions, including protein concentration, pH and shearing and their impact on the solubility, heat stability, and secondary structure of faba bean proteins (FBPIs), were studied. Most of the examined properties, including protein solubility and heat stability, were due to the simultaneous effects of pH and concentration. The shearing rate played a crucial role in determining the heat stability of FBPI during thermal processing through protein molecular activities, such as inter- and/or intramolecular force interactions. Under the heat treatment conditions (temperature of 95 °C and time of 30 min), the shearing rate of 1000 s−1 enhanced the heat stability, compared to 100 s−1. Meanwhile, concentration and pH shift contributed to the conformation of various protein structures of faba bean protein isolates. This study revealed that these structural changes involve the unfolding of the protein’s native tertiary structure, which likely exposes hydrophobic and sulfhydryl (–SH) groups, ultimately leading to protein aggregation. It also provided a comprehensive understanding of faba bean protein functionality by studying various interactions of FBPI proteins under thermal processing systems. Full article
Show Figures

Graphical abstract

17 pages, 8767 KB  
Article
Investigation on Precursor Aromas and Volatile Compounds During the Fermentation of Blackened Pear Vinegar
by Shangjing Chen, Yuxiao Wang, Xin Sun, Zhizhen Han, Qiyong Jiang, Lin Gao and Rentang Zhang
Foods 2025, 14(16), 2905; https://doi.org/10.3390/foods14162905 - 21 Aug 2025
Viewed by 393
Abstract
The acetic acid fermentation stage is a key determinant of fruit vinegar’s aroma profile. Therefore, this study employed GC-MS, HPLC, E-nose and E-tongue techniques, in conjunction with multivariate statistical analysis, to investigate the dynamic changes of compounds during the acetic acid fermentation process [...] Read more.
The acetic acid fermentation stage is a key determinant of fruit vinegar’s aroma profile. Therefore, this study employed GC-MS, HPLC, E-nose and E-tongue techniques, in conjunction with multivariate statistical analysis, to investigate the dynamic changes of compounds during the acetic acid fermentation process of blackened pear vinegar (BPV), as well as the transformation of volatile and non-volatile aroma-active compounds. Results revealed accumulation of organic acids and esters alongside declines in alcohols, aldehydes, and ketones. Isoamyl acetate, benzaldehyde, and nonanal (OAV > 1) were identified as key aroma contributors (VIP > 1, p < 0.05). Total organic acids significantly increased from 4.82 ± 0.53 mg/mL to 10.29 ± 2.38 mg/mL. Correlation analysis revealed a negative relationship between amino acids and volatile compounds, and this negative correlation suggests a possible precursor–product relationship between them. These findings provide theoretical support for the enhancement of fruit vinegar flavor, as well as the application of blackened fruits. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

27 pages, 6633 KB  
Article
Effect of Lactic Acid Bacteria Fermentation Agent on the Structure, Physicochemical Properties, and Digestive Characteristics of Corn, Oat, Barley, and Buckwheat Starch
by Ziyi You, Jinpeng Wang, Wendi Teng, Ying Wang, Yuemei Zhang and Jinxuan Cao
Foods 2025, 14(16), 2904; https://doi.org/10.3390/foods14162904 - 21 Aug 2025
Viewed by 442
Abstract
This study modified corn, oat, barley, and buckwheat starches using a Henan-specific sourdough starter, revealing that the initial starch architecture governs differentiated functional transformations. Pore-dominant starches (corn/buckwheat) underwent “inside-out” enzymatic pathways—corn starch exhibited a 38.21% reduced particle size through pore expansion, with long [...] Read more.
This study modified corn, oat, barley, and buckwheat starches using a Henan-specific sourdough starter, revealing that the initial starch architecture governs differentiated functional transformations. Pore-dominant starches (corn/buckwheat) underwent “inside-out” enzymatic pathways—corn starch exhibited a 38.21% reduced particle size through pore expansion, with long amylopectin chain degradation forming thermally stable gels, establishing it as an ideal base for anti-staling sauces and frozen dough. Buckwheat starch demonstrated a 44% increased amylose content facilitated by porous structures, where post digestion double helix formation elevated the resistant starch (RS) content by 7%, achieving a significant 28.19% GI (Glycemic Index) reduction. Conversely, fissure-dominant starches (oat/barley) experienced “surface-inward” limited erosion—oat starch, constrained by surface cracks, showed amorphous region degradation and short-chain proliferation, accelerating glucose release and adapting it for rapid digestion products like energy bars. Barley starch primarily underwent amorphous zone modification, enhancing the pasting efficiency to provide raw materials for instant meal replacement powders. Full article
Show Figures

Figure 1

21 pages, 2383 KB  
Article
Purification, Composition, and Anti-Inflammatory Activity of Polyphenols from Sweet Potato Stems and Leaves
by Huanhuan Zhang, Ling Zhang, Feihu Gao, Shixiong Yang, Qian Deng, Kaixin Shi and Sheng Li
Foods 2025, 14(16), 2903; https://doi.org/10.3390/foods14162903 - 21 Aug 2025
Viewed by 454
Abstract
Sweet potato stems and leaves (SPSL) are rich in bioactive polyphenols, yet their utilization remains underexplored. This study established an efficient method for SPSL polyphenol enrichment using macroporous resins, with UHPLC-QE-MS/MS characterization of the purified polyphenols (PP) and subsequent evaluation of anti-inflammatory activity. [...] Read more.
Sweet potato stems and leaves (SPSL) are rich in bioactive polyphenols, yet their utilization remains underexplored. This study established an efficient method for SPSL polyphenol enrichment using macroporous resins, with UHPLC-QE-MS/MS characterization of the purified polyphenols (PP) and subsequent evaluation of anti-inflammatory activity. The results showed that NKA-II resin demonstrated the best purification effect on SPSL polyphenols among the six tested resins. The optimal enrichment procedure of NKA-II resin was as follows: loading sample pH 3.0, 4.48 mg CAE/mL concentration, and 80% ethanol (v/v) eluent. A total of 19 major compounds were characterized in PP, including 12 phenolic acids and seven flavonoids, with a polyphenol purity of 75.70%. PP pretreatment (100 and 500 μg/mL) significantly inhibited LPS-induced release of NO (by 40.62% and 68.61%), IL-1β (by 40.07% and 68.34%), IL-6 (by 40.63% and 52.41%), and TNF-α (by 52.29% and 73.76%) compared to the LPS group (p < 0.05), demonstrating potent anti-inflammatory effects. Western blot analysis revealed that PP exerted anti-inflammatory effects by inhibiting the NF-κB (via suppression of IκBα phosphorylation/degradation and blockade of p65 nuclear translocation) and MAPK (via inhibition of p38, ERK, and JNK phosphorylation) signaling pathways. These findings support the utilization of this agricultural by-product in functional food development, particularly as a source of natural anti-inflammatory compounds for dietary supplements or fortified beverages. Full article
(This article belongs to the Special Issue Health Benefits of Antioxidants in Natural Foods)
Show Figures

Figure 1

21 pages, 2394 KB  
Article
Physicochemical and Sensory Properties of Davidson Plum (Davidsonia jerseyana) Sorbet, a Potential for New Functional Food Product
by Brittany Harriden, Costas Stathopoulos, Suwimol Chockchaisawasdee, Andrew J. McKune and Nenad Naumovski
Foods 2025, 14(16), 2902; https://doi.org/10.3390/foods14162902 - 21 Aug 2025
Viewed by 481
Abstract
The Australian native foods, despite high phytochemical composition, are severely underutilized in research and on the commercial market. One of these plants is the Davidson plum (Davidsonia jerseyana), a nutrient-dense and sustainable food ingredient. The study aimed to develop functional fruit [...] Read more.
The Australian native foods, despite high phytochemical composition, are severely underutilized in research and on the commercial market. One of these plants is the Davidson plum (Davidsonia jerseyana), a nutrient-dense and sustainable food ingredient. The study aimed to develop functional fruit sorbets incorporating freeze-dried Davidson plum powder (0–20% w/w) and evaluate their physicochemical, antioxidant, and sensory properties. Sorbets were created using strawberry, raspberry, pomegranate, and Davidson plum bases and analyzed for nutritional content, color, melting rate, texture, and antioxidant capacity (Total Phenolic Content (TPC), Total Flavonoid Content (TFC), Ferric Reducing Antioxidant Power (FRAP), Cupric Reducing Antioxidant Capacity (CUPRAC), 2,2-Diphenyl-1-picrylhydrazyl (Radical Scavenging Assay (DPPH)), total proanthocyanin and anthocyanin content. Sensory evaluation was also conducted using a semi-trained panel. The results showed that increasing Davidson plum concentration led to higher antioxidant activity and slower melting rates. Sorbets containing 10% and 15% Davidson plum demonstrated the highest levels of phenolic and flavonoid compounds. However, sensory analysis indicated that sorbets with 5% and 10% Davidson plum, particularly those made with a strawberry base were the most acceptable in terms of flavour, texture, and overall appeal. These findings suggest that incorporating Davidson plum into frozen desserts, especially at lower concentrations, can enhance both the functional and sensory qualities of sorbets while offering potential health benefits. Full article
(This article belongs to the Special Issue Functional Food and Safety Evaluation: Second Edition)
Show Figures

Figure 1

15 pages, 983 KB  
Article
Longan Polysaccharide as Adjuvant for Cyclophosphamide-Induced Side Effects in Murine Model
by Yajuan Bai, Bei Fan, Fengzhong Wang and Mingwei Zhang
Foods 2025, 14(16), 2901; https://doi.org/10.3390/foods14162901 - 21 Aug 2025
Viewed by 308
Abstract
Identifying effective adjuvants to prevent and alleviate the adverse effects of chemotherapy remains a critical challenge in cancer therapy. This study investigated the protective effects of longan polysaccharide (LP) against cyclophosphamide-induced immunosuppression and oxidative stress in mice. Our findings revealed that LP administration [...] Read more.
Identifying effective adjuvants to prevent and alleviate the adverse effects of chemotherapy remains a critical challenge in cancer therapy. This study investigated the protective effects of longan polysaccharide (LP) against cyclophosphamide-induced immunosuppression and oxidative stress in mice. Our findings revealed that LP administration significantly improved systemic immune function, as evidenced by marked increases in serum immunoglobulin levels (IgG2a: 1.82-fold, IgG2b: 1.46-fold, IgM: 1.26-fold, and IgG1: 1.22-fold) and key cytokines (IL-10: 1.53-fold, IL-12: 1.22-fold, and IFN-γ: 1.20-fold), accompanied by substantial reductions in pro-inflammatory mediators (TGF-β1: 28.72% decrease and IL-21: 36.28% decrease). Concurrently, LP restored oxidative balance by increasing SOD, GSH, and NO levels in multiple organs (liver, kidneys, and small intestine) and serum. Mechanistic studies using an in vitro Caco-2/RAW264.7 coculture system revealed that four purified LP fractions (LPIa-LPIVa) effectively suppressed NF-κB pathway activation through downregulation of TLR4 expression, reduction of the p-IκB-α/IκB-α ratio, and inhibition of nuclear NF-κB translocation. These molecular effects correlated with decreased production of inflammatory mediators (TNF-α, IL-6, IL-8, iNOS, and NO). Collectively, these findings provide compelling evidence that LP possesses dual immunomodulatory and antioxidant capabilities, highlighting its potential as a natural adjuvant for alleviating chemotherapy-induced side effects. Full article
(This article belongs to the Special Issue Natural Polysaccharides: Structure and Health Functions)
Show Figures

Graphical abstract

27 pages, 872 KB  
Review
Nutritional Value of Brewer’s Spent Grain and Consumer Acceptance of Its Value-Added Food Products
by Victoria Eche, C. U. Emenike and H. P. Vasantha Rupasinghe
Foods 2025, 14(16), 2900; https://doi.org/10.3390/foods14162900 - 21 Aug 2025
Viewed by 697
Abstract
Brewer’s spent grain (BSG), a byproduct of the brewing process, offers a sustainable alternative applicable to human nutrition. The nutritional composition, health advantages, and value-added uses of BSG in diverse food items, including snacks, bread, cookies, and pasta, are examined in this review. [...] Read more.
Brewer’s spent grain (BSG), a byproduct of the brewing process, offers a sustainable alternative applicable to human nutrition. The nutritional composition, health advantages, and value-added uses of BSG in diverse food items, including snacks, bread, cookies, and pasta, are examined in this review. Furthermore, consumer acceptance and organoleptic attributes, including texture, taste and appearance, are discussed. BSG is composed of 60% carbohydrates (of which 50% dietary fiber), 10% lipids, and 30% proteins. BSG is also high in minerals such as calcium and phosphorous and bioactive polyphenols such as catechin, p-coumaric, and ferulic acid. BSG holds significant opportunities to be utilized in enhanced food production, biofuel generation, and other industrial applications. The reported therapeutic effects of BSG include anticarcinogenic, antiatherogenic and oxidative stress reduction. Based on sensory evaluations, the maximum amount of BSG that can be added to food products to maintain consumer acceptance is 15%. There is a need to convince manufacturers and consumers of the potential of incorporating BSG into food products, the health benefits of this, and the sustainability advantages of the use of BSG. The integration of BSG into food systems will contribute to food waste minimization and the promotion of the circular economy. Full article
Show Figures

Graphical abstract

16 pages, 1589 KB  
Article
Effects of Rhizopus oligosporus-Mediated Solid-State Fermentation on the Protein Profile and α-Glucosidase Inhibitory Activity of Selenium-Biofortified Soybean Tempeh
by Chengying Wang, Changli Hu, Xin Li, Ruizhe Shen, Liwei Yin, Qiguo Wu and Ting Hu
Foods 2025, 14(16), 2899; https://doi.org/10.3390/foods14162899 - 21 Aug 2025
Viewed by 574
Abstract
Solid-state fermentation (SSF) enhances the nutritional profile of legumes. This study evaluated Rhizopus oligosporus-mediated SSF for selenium (Se) biofortification in soybean tempeh (a traditional Southeast Asian food), assessing the effects of selenate and selenite (0–60 mg kg−1) on R. oligosporus [...] Read more.
Solid-state fermentation (SSF) enhances the nutritional profile of legumes. This study evaluated Rhizopus oligosporus-mediated SSF for selenium (Se) biofortification in soybean tempeh (a traditional Southeast Asian food), assessing the effects of selenate and selenite (0–60 mg kg−1) on R. oligosporus growth, substrate consumption, mycelium morphology, and Se speciation in tempeh. Selenium supplementation at 18–24 mg kg−1 reduced soybean protein content by 9.4~13.8% relative to the protein content of the Se-free fermented tempeh (control group, 19.85%) and significantly promoted proteolysis. Higher concentrations (48–60 mg kg−1) restored protein levels to control values (19%), indicating concentration-dependent regulation of protein stability. Selenate at 42 mg kg−1 significantly increased the levels of flavor amino acids (e.g., glutamate, aspartate), essential amino acids, and total amino acids in tempeh. In contrast, selenite showed no significant improvement in amino acid content and even reduced non-essential amino acids (e.g., alanine, glycine) at high concentrations (42 mg kg−1). Selenium biofortification converted selenate to selenomethionine (SeMet) and Se(VI), but transformed selenite into methylselenocysteine (MeSeCys), selenocystine (SeCys2), and SeMet. Fermented Se-tempeh demonstrated potent α-glucosidase inhibition (IC50 values ranging from 1.66 ± 0.05 to 2.89 ± 0.03 mg mL−1), suggesting Se-enriched soybean tempeh could be considered a promising blood-sugar-friendly food. Thus, developing soybean-based functional foods via co-inoculation of R. oligosporus with inorganic Se is a promising way to enhance tempeh bioactivity. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

12 pages, 1680 KB  
Article
Comparison of Rapid Descriptive Sensory Methods Applied to Consumers in the Evaluation of Muffins
by Reynaldo J. Silva-Paz, Humberto A. Avilés Pérez, Thalia A. Rivera-Ashqui and Carmen R. Apaza-Humerez
Foods 2025, 14(16), 2898; https://doi.org/10.3390/foods14162898 - 21 Aug 2025
Viewed by 402
Abstract
Sensory evaluation is essential to understand consumer perception. This study compared three descriptive methods (Check-All-That-Apply (CATA), Flash Profile, and Pivot Profile) to characterize muffins formulated with alternative flours (purple corn and amaranth) in comparison to a wheat-based control. Six formulations (T0–T5) were evaluated: [...] Read more.
Sensory evaluation is essential to understand consumer perception. This study compared three descriptive methods (Check-All-That-Apply (CATA), Flash Profile, and Pivot Profile) to characterize muffins formulated with alternative flours (purple corn and amaranth) in comparison to a wheat-based control. Six formulations (T0–T5) were evaluated: CATA and Pivot Profile were applied with 100 consumers, while Flash Profile was conducted with 15 panelists. Multivariate statistical analyses were used: correspondence analysis for CATA and Pivot, and Generalized Procrustes Analysis for Flash Profile. All three methods showed high discriminative power: CATA explained 94.36% of the variance, identifying three main groups; Flash Profile explained 63.88%, highlighting differences in texture and aroma; and Pivot Profile explained 81.10%, revealing complex interactions among sensory attributes. Sample T1 (100% purple corn) showed a distinctive sensory profile (bitter and dry), while samples T2 to T5 presented intermediate characteristics. The RV coefficient confirmed significant congruence between the methods. CATA effectively identified relevant sensory differences, Pivot Profile generated descriptors in relation to a control sample, and Flash Profile enabled exploratory analysis. The choice of method depends on the study objective, with each approach offering complementary sensory information. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

28 pages, 2691 KB  
Review
Wild Edible Fungi in the Catalan Linguistic Area: A Scoping Review Linking Nutritional Value to Ethnomycology
by Canòlich Álvarez-Puig, Joan Casamartina, Teresa Garnatje, Manel Niell, Airy Gras and Joan Vallès
Foods 2025, 14(16), 2897; https://doi.org/10.3390/foods14162897 - 20 Aug 2025
Viewed by 621
Abstract
The Catalan Linguistic Area (CLA) is a mycophile region where interest in the nutritional properties of traditional edible fungi is steadily growing, driven by their gastronomic appeal. The present study undertakes a scoping review with two main objectives. First, to compile a list [...] Read more.
The Catalan Linguistic Area (CLA) is a mycophile region where interest in the nutritional properties of traditional edible fungi is steadily growing, driven by their gastronomic appeal. The present study undertakes a scoping review with two main objectives. First, to compile a list of edible fungi taxa identified in the CLA, and second, to determine whether their nutritional values have already been published. Data were collected through books from different library catalogues and archives, expert consultations, a specialized database, and a search in three academic databases: PubMed, Scopus and Web of Science. As a result, we obtained a list of 643 culinary fungi taxa, of which 35.46% have reported nutritional values. Moreover, among the most cited CLA culinary fungi, Hygrophorus latitabundus Britzelm. and Hypomyces lateritius (Fr.) Tul. & C. Tul. have no nutritional values reported in the literature. Additionally, an ethnomycoticity index (EMI) and ethnomyconymic diversity index are proposed as adaptations to ethnomycology of two commonly used ethnobotanical indices. To conclude, wild edible fungi (WEF) are widely used in the CLA, but nutritional values for the majority of macromycetes are still lacking. Further studies need to be carried out regarding ethnomycology, enhancing their nutritional values, since data recorded are disperse and difficult to standardise. Full article
(This article belongs to the Special Issue The Ethnobiology of Wild Foods: 2nd Edition)
Show Figures

Figure 1

29 pages, 2598 KB  
Review
Exploring the Integration of Anthocyanins with Functional Materials in Smart Food Packaging: From Stabilization to Application
by Xiaowei Huang, Ke Zhang, Zhihua Li, Junjun Zhang, Xiaodong Zhai, Ning Zhang, Liuzi Du and Zhou Qin
Foods 2025, 14(16), 2896; https://doi.org/10.3390/foods14162896 - 20 Aug 2025
Viewed by 611
Abstract
Anthocyanins, the most ubiquitous water-soluble phytopigments in terrestrial flora, have garnered substantial attention in sustainable food packaging research owing to their exceptional chromatic properties, pH-responsive characteristics, and putative health-promoting effects. Nevertheless, their inherent chemical lability manifests as rapid chromatic fading, structural degradation, and [...] Read more.
Anthocyanins, the most ubiquitous water-soluble phytopigments in terrestrial flora, have garnered substantial attention in sustainable food packaging research owing to their exceptional chromatic properties, pH-responsive characteristics, and putative health-promoting effects. Nevertheless, their inherent chemical lability manifests as rapid chromatic fading, structural degradation, and compromised bioactivity/bioavailability, ultimately restricting industrial implementation and incurring significant economic penalties. Recent advances in stabilization technologies through molecular encapsulation within polymeric matrices or nanoscale encapsulation systems have demonstrated remarkable potential for preserving anthocyanin integrity while augmenting multifunctionality. The integration of anthocyanins into advanced functional materials has emerged as a promising strategy for enhancing food safety and extending shelf life through smart packaging solutions. Despite their exceptional chromatic and bioactive properties, anthocyanins face challenges such as chemical instability under environmental stressors, limiting their industrial application. Recent advancements in stabilization technologies, including molecular encapsulation within polymeric matrices and nanoscale systems, have demonstrated significant potential in preserving anthocyanin integrity while enhancing multifunctionality. This review systematically explores the integration of anthocyanins with natural polymers, nanomaterials, and hybrid architectures, focusing on their roles as smart optical sensors, bioactive regulators, and functional components in active and smart packaging systems. Furthermore, the molecular interactions and interfacial phenomena governing anthocyanin stabilization are elucidated. The review also addresses current technological constraints and proposes future directions for scalable, sustainable, and optimized implementations in food preservation. Full article
Show Figures

Graphical abstract

17 pages, 5914 KB  
Article
Comprehensive Evaluation of Nutritional Quality Diversity in Cottonseeds from 259 Upland Cotton Germplasms
by Yiwen Huang, Chengyu Li, Shouyang Fu, Yuzhen Wu, Dayun Zhou, Longyu Huang, Jun Peng and Meng Kuang
Foods 2025, 14(16), 2895; https://doi.org/10.3390/foods14162895 - 20 Aug 2025
Viewed by 460
Abstract
Cottonseeds, rich in high-quality protein and fatty acids, represent a vital plant-derived feedstuff and edible oil resource. To systematically investigate genetic variation patterns in nutritional quality and screen superior germplasm, this study analyzed 26 nutritional quality traits and 8 fiber traits across 259 [...] Read more.
Cottonseeds, rich in high-quality protein and fatty acids, represent a vital plant-derived feedstuff and edible oil resource. To systematically investigate genetic variation patterns in nutritional quality and screen superior germplasm, this study analyzed 26 nutritional quality traits and 8 fiber traits across 259 upland cotton (Gossypium hirsutum L.) accessions using multivariate statistical approaches. Results revealed significant genetic diversity in cottonseed nutritional profiles, with coefficients of variation ranging from 3.42% to 26.37%. Moreover, with advancements in breeding periods, the contents of protein, amino acids, and the proportion of unsaturated fatty acids (UFAs) increased, while oil content and C16:0 levels decreased. Correlation analyses identified significant positive associations (p < 0.05) between proteins, amino acids, UFAs, and most fiber traits, except for seed index (SI), fiber micronaire (FM), and fiber elongation (FE). Through a principal component analysis–fuzzy membership function (PCA-FMF) model, 13 elite accessions (F > 0.75) with high protein content, high UFA proportion, and excellent fiber quality were identified. These findings provide both data-driven foundations and practical germplasm resources for value-added utilization of cottonseed and coordinated breeding for dual-quality traits of nutrition and fiber. Full article
Show Figures

Figure 1

22 pages, 2313 KB  
Article
Development of Technology of Restructured Meat Products Using Biotechnological Methods of Transformation of Functional and Technological Properties of Raw Materials
by Alem Beisembayeva, Aigul Tayeva, Irina Chernukha, Berdikul Rskeldiyev, Mamura Absalimova and Zhadyra Imangaliyeva
Foods 2025, 14(16), 2894; https://doi.org/10.3390/foods14162894 - 20 Aug 2025
Viewed by 334
Abstract
This study developed a technology for restructured meat products (RMPs) from culled cow meat using the bioprotective culture Lactobacillus sakei (SafePro B-2, 1011 CFU/g) and fortification with L-selenomethionine or zinc citrate. Four variants (Control, SafePro B-2, SafePro B-2 + Se, and SafePro [...] Read more.
This study developed a technology for restructured meat products (RMPs) from culled cow meat using the bioprotective culture Lactobacillus sakei (SafePro B-2, 1011 CFU/g) and fortification with L-selenomethionine or zinc citrate. Four variants (Control, SafePro B-2, SafePro B-2 + Se, and SafePro B-2 + Zn) were produced under identical processing conditions and assessed for microbiological, physicochemical, textural, colorimetric, antioxidant, histological, mineral, and amino acid properties. Protein content remained high across all samples (up to 18.7%), while moisture increased by up to 1.4% compared to the control. The Zn-enriched sample showed the greatest cohesiveness and resistance to deformation (p < 0.05), with color stability under light exposure improving by up to 12.5%. Despite a reduction in FRAP antioxidant activity (up to 30.8% in buffer extract), the Zn-fortified product exhibited the highest levels of key essential amino acids, including leucine (12.9 mg/g) and lysine (12.6 mg/g). Microbiological analysis confirmed low total aerobic mesophilic counts (≤3.1 log CFU/g), with no detection of Salmonella spp. or Listeria monocytogenes. Histological evaluation revealed denser and more homogeneous protein matrices in fortified variants. Overall, L. sakei-driven bioprotection combined with Se/Zn fortification improved the safety and functional and nutritional characteristics of RMP from low-value beef, supporting sustainable and circular meat production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

27 pages, 1408 KB  
Article
Physico-Chemical and Sensory Characteristics of Extruded Cereal Composite Flour Porridge Enriched with House Crickets (Acheta domesticus)
by Tom Bbosa, Dorothy Nakimbugwe, Christophe Matthys, Jolien Devaere, Ann De Winne, Deniz Zeynel Gunes and Mik Van Der Borght
Foods 2025, 14(16), 2893; https://doi.org/10.3390/foods14162893 - 20 Aug 2025
Viewed by 573
Abstract
This study assessed the physico-chemical and sensory effects of enriching composite cereal porridges, typically consumed in Uganda, with undried house crickets (Acheta domesticus), a rich source of protein and vitamin B12. Composite flours containing 8.3% undried crickets, 66.7% maize, [...] Read more.
This study assessed the physico-chemical and sensory effects of enriching composite cereal porridges, typically consumed in Uganda, with undried house crickets (Acheta domesticus), a rich source of protein and vitamin B12. Composite flours containing 8.3% undried crickets, 66.7% maize, and 25.0% millet were compared to a control formulation with 73.0% maize and 27.0% millet, both extruded at 140 °C. Cricket enrichment slightly reduced lightness L* (59.99 vs. 61.28) and significantly increased aroma intensity (23,450 × 104 AU vs. 18,210 × 104 AU; p < 0.05), attributable to higher extrusion-induced Strecker degradation, Maillard reaction, and lipid oxidation. Rheological analysis revealed that paste made from cricket-enriched flour had lower critical strain (≈0.01%) and softened sooner than the control paste (≈0.03%) without becoming fragile. Both flours displayed stable paste-like behavior at stresses >10 Pa, with elastic moduli under 104 Pa, which is typical for soft pastes. Reduced pasting values relative to native flours are attributable to starch pre-gelatinization during extrusion. Sensory evaluation showed positive hedonic ratings for both porridges, and a choice test indicated no significant consumer preference. Generally, physico-chemical and sensory changes were minimal, supporting the use of house crickets for nutrient enrichment of composite cereal porridges. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

20 pages, 3014 KB  
Article
Investigation of the Effect of NaCl Concentrations on the Formation of Amyloid Fibrils During the Cooking of Wheat Noodles
by Ying Liang, Chunlei Zheng, Liu Yang, Minqian Huang, Jiajia Liu, Hao Liu, Baoshan He and Jinshui Wang
Foods 2025, 14(16), 2892; https://doi.org/10.3390/foods14162892 - 20 Aug 2025
Viewed by 427
Abstract
In our previous study, we observed that sodium chloride (NaCl) influences the formation of amyloid fibrils (AFs) by gluten in cooked wheat noodles. However, the underlying mechanisms of NaCl’s effect on AF formation during the cooking process remain unclear. This study systematically investigates [...] Read more.
In our previous study, we observed that sodium chloride (NaCl) influences the formation of amyloid fibrils (AFs) by gluten in cooked wheat noodles. However, the underlying mechanisms of NaCl’s effect on AF formation during the cooking process remain unclear. This study systematically investigates the impact of NaCl concentration (0–2.0%, w/w) and cooking time (0–7 min) on AF formation. ThT fluorescence and Congo red confirmed AF formation across all NaCl concentration levels. At low NaCl concentrations, Na+/Cl shielding reduced electrostatic repulsion, enabling ordered β-sheet stacking, yielding long fibrils (1193 nm) with high β-sheet content (41.5%), dense cross-β structures, and elevated hydrophobicity (H0 = 9980). Stable zeta potential and gradual particle growth (376 to 1193 nm) supported controlled elongation. Conversely, high NaCl concentrations disrupted hydrogen bonding, forming shorter fibrils (820 nm) with reduced β-sheets (28.9%) and lower hydrophobicity (H0 = 5923). Rapid ThT kinetics (df/dt = 77,535 FU/min) and SE-HPLC profiles suggest that elevated concentrations of NaCl inhibit AF formation while inducing the generation of amorphous aggregates. These findings clarify the balance between ionic shielding and hydrophobic interactions in AF assembly, offering strategies to optimize noodle texture. Future studies should address the digestibility and health implications of salt-modulated AFs for functional food applications. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop