Nutritional and Antioxidant Valorization of Grape Pomace from Argentinian Vino De La Costa and Italian Cabernet Wines
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Color Determination
2.2.2. Chemical Composition
2.2.3. Mineral Composition
2.2.4. Fatty Acid Profile
2.2.5. Phenolic Composition
2.2.6. Total Polyphenols Content and Antioxidant Activity
3. Results and Discussions
3.1. Grape Pomace Flours Color
3.2. Chemical Composition of Grape Pomace Flours
3.3. Mineral Content and Fatty Acid Profile of Grape Pomace Flours
3.4. Phenolic Compounds and Antioxidant Activity of Grape Pomace Flours
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TDF | Total dietary fiber |
FRAP | Ferric ion-reducing antioxidant power assay |
DPPH | Free radical scavenger activity on 2,2-Diphenyl-1-Picrylhydrazyl |
References
- Ferrer-Gallego, R.; Silva, P. The Wine Industry By-Products: Applications for Food Industry and Health Benefits. Antioxidants 2022, 11, 2025. [Google Scholar] [CrossRef] [PubMed]
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.L.; Barral, M.T.; Cruz, J.M.; Moldes, A.B. Valorization of winery waste vs. the costs of not recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Panaite, S.A.; Tomé-Carneiro, J. Wine’s phenolic compounds and health: A pythagorean view. Molecules 2020, 25, 4105. [Google Scholar] [CrossRef]
- Carpentieri, S.; Larrea-Wachtendorff, D.; Donsi, F.; Ferrari, G. Functionalization of pasta through the incorporation of bioactive compounds from agri-food by-products: Fundamentals, opportunities, and drawbacks. Trends Food Sci. Technol. 2022, 122, 49–65. [Google Scholar] [CrossRef]
- Tolve, R.; Simonato, B.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat bread fortification by grape pomace powder: Nutritional, technological, antioxidant, and sensory properties. Foods 2021, 10, 75. [Google Scholar] [CrossRef]
- Nakov, G.; Brandolini, A.; Hidalgo, A.; Ivanova, N.; Stamatovska, V.; Dimov, I. Effect of grape pomace powder addition on chemical, nutritional and technological properties of cakes. LWT 2020, 134, 109950. [Google Scholar] [CrossRef]
- Nakov, G.; Brandolini, A.; Estivi, L.; Bertuglia, K.; Ivanova, N.; Jukić, M.; Hidalgo, A. Effect of tomato pomace addition on chemical, technological, nutritional, and sensorial properties of cream crackers. Antioxidants 2022, 11, 2087. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of wine pomace in the food industry: Approaches and functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef]
- Dwyer, K.; Hosseinian, F.; Rod, M. The market potential of grape waste alternatives. J. Food Res. 2014, 3, 91–106. [Google Scholar] [CrossRef]
- Brea, A. Historia y caracterización fisicoquímica de la uva Isabella (Vitis labrusca × Vitis vinifera) y el vino de la costa de Berisso. Ph.D. Dissertation, Universidad Nacional de La Plata, La Plata, Argentina, 2023. [Google Scholar]
- Production Secretary of Berisso. “El vino de la Costa” Report. Available online: http://berisso.gob.ar/fiestadelvino/el-vino-de-la-costa.html (accessed on 28 May 2025).
- Instituto Nacional de Vitivinicultura (INV). Vino Regional. Ministerio de Agricultura, Ganadería y Pesca. Resolución Nº C.23/201. Available online: https://www.argentina.gob.ar/normativa/nacional/resolución-23-2013-216478/texto (accessed on 28 May 2025).
- Baldan, Y.; Riveros, M.; Fabani, M.P.; Rodriguez, R. Grape pomace powder valorization: A novel ingredient to improve the nutritional quality of gluten-free muffins. Biomass Convers. Biorefin. 2023, 13, 9997–10009. [Google Scholar] [CrossRef]
- Monteiro, G.C.; Minatel, I.O.; Junior, A.P.; Gomez-Gomez, H.A.; de Camargo, J.P.C.; Diamante, M.S.; Lima, G.P.P. Bioactive compounds and antioxidant capacity of grape pomace flours. LWT 2021, 135, 110053. [Google Scholar] [CrossRef]
- Pereira, P.; Palma, C.; Ferreira-Pêgo, C.; Amaral, O.; Amaral, A.; Rijo, P.; Nicolai, M. Grape pomace: A potential ingredient for the human diet. Foods 2020, 9, 1772. [Google Scholar] [CrossRef] [PubMed]
- Rockenbach, I.I.; Gonzaga, L.V.; Rizelio, V.M.; Gonçalves, A.E.D.S.S.; Genovese, M.I.; Fett, R. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res. Int. 2011, 44, 897–901. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 20th ed.; AOAC International: Washington, DC, USA, 2016. [Google Scholar]
- Park, P.W.; Goins, R.E. In situ preparation of fatty acid methyl esters for analysis of fatty acid composition in foods. J. Food Sci. 1994, 59, 1262–1266. [Google Scholar] [CrossRef]
- Machado, A.R.; Voss, G.B.; Machado, M.; Paiva, J.A.; Nunes, J.; Pintado, M. Chemical characterization of the cultivar ‘Vinhão’ (Vitis vinifera L.) grape pomace towards its circular valorisation and its health benefits. Meas. Food 2024, 15, 100175. [Google Scholar] [CrossRef]
- Gerardi, C.; Durante, M.; Tufariello, M.; Grieco, F.; Giovinazzo, G. Effects of time and temperature on stability of bioactive molecules, color and volatile compounds during storage of grape pomace flour. Appl. Sci. 2022, 12, 3956. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.; Cruz, A.P.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape pomace valorization: A systematic review and meta-analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef]
- Lachman, J.; Hejtmánková, A.; Hejtmánková, K.; Horníčková, Š.; Pivec, V.; Skala, O.; Přibyl, J. Towards complex utilisation of winemaking residues: Characterisation of grape seeds by total phenols, tocols and essential elements content as a by-product of winemaking. Ind. Crops Prod. 2013, 49, 445–453. [Google Scholar] [CrossRef]
- Ferreira, L.F.D. Obtenção e caracterização de farinha de bagaço de uva e sua utilização em cereais matinais expandidos. Master’s Thesis, Universidade Federal de Lavras, Lavras, Brazil, 2010. [Google Scholar]
- Cilli, L.P.; Contini, L.R.F.; Sinnecker, P.; Lopes, P.S.; Andreo, M.A.; Neiva, C.R.P.; Venturini, A.C. Effects of grape pomace flour on quality parameters of salmon burger. J. Food Process. Preserv. 2020, 44, e14329. [Google Scholar] [CrossRef]
- Deng, Q.; Penner, M.H.; Zhao, Y. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G.; Simonato, B. Breadstick fortification with red grape pomace: Effect on nutritional, technological and sensory properties. J. Sci. Food Agric. 2022, 102, 2545–2552. [Google Scholar] [CrossRef]
- Zhao, B.; Gong, H.; Li, H.; Zhang, Y.; Lan, T.; Chen, Z. Characterization of Chinese grape seed oil by physicochemical properties, fatty acid composition, triacylglycerol profiles, and sterols and squalene composition. Int. J. Food Eng. 2019, 15, 20190031. [Google Scholar] [CrossRef]
- Machado, T.D.O.X.; Guedes, T.J.F.L.; de Oliveira Ferreira, T.; de Melo, B.C.A. Caracterização de farinha de resíduo de uvas Isabel precoce e “BRS Violeta” oriundo da produção de suco. Braz. J. Dev. 2020, 6, 19260–19268. [Google Scholar] [CrossRef]
- Chakka, A.K.; Babu, A.S. Bioactive compounds of winery by-products: Extraction techniques and their potential health benefits. Appl. Food Res. 2022, 2, 100058. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. The potential of grape pomace varieties as a dietary source of pectic substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef]
- Gül, H.; Acun, S.; Șen, H.; Nayır, N.; Türk, S. Antioxidant activity, total phenolics and some chemical properties of öküzgözü and Narince grape pomace and grape seed flours. J. Food Agric. Environ. 2013, 11, 28–34. [Google Scholar]
- Mildner-Szkudlarz, S.; Zawirska-Wojtasiak, R.; Szwengiel, A.; Pacyński, M. Use of grape by-product as a source of dietary fibre and phenolic compounds in sourdough mixed rye bread. Int. J. Food Sci. Technol. 2011, 46, 1485–1493. [Google Scholar] [CrossRef]
- Ortega-Heras, M.; Gómez, I.; de Pablos-Alcalde, S.; González-Sanjosé, M.L. Application of the just-about-right scales in the development of new healthy whole-wheat muffins by the addition of a product obtained from white and red grape pomace. Foods 2019, 8, 419. [Google Scholar] [CrossRef]
- Soliman, G.A. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients 2019, 11, 1155. [Google Scholar] [CrossRef]
- Jin, Q.; O’Hair, J.; Stewart, A.C.; O’Keefe, S.F.; Neilson, A.P.; Kim, Y.T.; Huang, H. Compositional characterization of different industrial white and red grape pomaces in Virginia and the potential valorization of the major components. Foods 2019, 8, 667. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Safety of aluminium from dietary intake-scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials (AFC). EFSA J. 2008, 6, 754. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for chromium. EFSA J. 2014, 12, 3845. [Google Scholar]
- Rodríguez-Ramos, F.; Cañas-Sarazúa, R.; Briones-Labarca, V. Pisco grape pomace: Iron/copper speciation and antioxidant properties, towards their comprehensive utilization. Food Biosci. 2022, 47, 101781. [Google Scholar] [CrossRef]
- Moreira, G.C.R.C.; de Assis, C.F.; Botelho, R.V.; Vaz, D.S.S.; Freire, P.L.I.; Bennemann, G.D. Conteúdo de minerais, compostos fenólicos e antocianinas em farinhas de bagaço de uva das variedades Seibel e Bordô provenientes de uma vinícola sul-paranaense. Nutr. Brasil 2017, 16, 391–397. [Google Scholar] [CrossRef]
- Vargas-Meza, J.; Cervantes-Armenta, M.A.; Campos-Nonato, I.; Nieto, C.; Marrón-Ponce, J.A.; Barquera, S.; Rodríguez-Ramírez, S. Dietary sodium and potassium intake: Data from the Mexican national health and nutrition survey 2016. Nutrients 2022, 14, 281. [Google Scholar] [CrossRef]
- Sousa, E.C.; Uchôa-Thomaz, A.M.A.; Carioca, J.O.B.; Morais, S.M.D.; Lima, A.D.; Martins, C.G.; Rodrigues, L.L. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. 2014, 34, 135–142. [Google Scholar] [CrossRef]
- Nurgel, C.; Canbas, A. Production of tartaric acid from pomace of some Anatolian grape cultivars. Am. J. Enol. Vitic. 1998, 49, 95–99. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Moro, K.I.B.; Bender, A.B.B.; da Silva, L.P.; Penna, N.G. Green extraction methods and microencapsulation technologies of phenolic compounds from grape pomace: A review. Food Bioprocess Technol. 2021, 14, 1407–1431. [Google Scholar] [CrossRef]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Iora, S.R.; Maciel, G.M.; Zielinski, A.A.; da Silva, M.V.; Pontes, P.V.D.A.; Haminiuk, C.W.; Granato, D. Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. Int. J. Food Sci. Technol. 2015, 50, 62–69. [Google Scholar] [CrossRef]
- Averilla, J.N.; Oh, J.; Kim, H.J.; Kim, J.S.; Kim, J.S. Potential health benefits of phenolic compounds in grape processing by-products. Food Sci. Biotechnol. 2019, 28, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Bender, A.B.B.; Speroni, C.S.; Moro, K.I.B.; Morisso, F.D.P.; dos Santos, D.R.; da Silva, L.P.; Penna, N.G. Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT 2020, 117, 108652. [Google Scholar] [CrossRef]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef]
- Abdelhakam, O.S.; Elsebaie, E.M.; Ghazi, A.K.; Gouda, M.S. Quality characteristics of beef hamburger enriched with red grape pomace powder during freezing storage. Slov. Vet. Res. 2019, 56, 333–373. [Google Scholar] [CrossRef]
- Vélez, M.D.; Llano-Ramirez, M.A.; Ramón, C.; Rojas, J.; Bedoya, C.; Arango-Varela, S.; Gil, M. Antioxidant capacity and cytotoxic effect of an optimized extract of Isabella grape (Vitis labrusca) on breast cancer cells. Heliyon 2023, 9, e16540. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B.; Rosales, A.; Turienzo, L.R.; Cortina, J.L. Valorisation potential of Cabernet grape pomace for the recovery of polyphenols: Process intensification, optimisation and study of kinetics. Food Bioprod. Process. 2018, 109, 74–85. [Google Scholar] [CrossRef]
Compounds | Grape Varieties | |
---|---|---|
Isabella | Cabernet | |
Minerals | ||
Molybdenum (Mo) | 0.27 ± 0.00 a | 0.21 ± 0.03 a |
Nickel (Ni) | 0.43 ± 0.1 a | 0.39 ± 0.00 a |
Chrome (Cr) | 0.36 ± 0.006 a | 0.55 ± 0.02 b |
Titanium (Ti) | 1.91 ± 0.2 b | 1.71 ± 0.03 a |
Barium (Ba) | 4.94 ± 0.27 b | 1.84 ± 0.21 a |
Aluminum (Al) | 33.88 ± 1.75 a | 32.40 ± 0.79 a |
Manganese (Mn) | 10.7 ± 0.2 a | 13.59 ± 0.53 b |
Zinc (Zn) | 12.82 ± 0.03 a | 45.71 ± 8.60 b |
Boron (B) | 24.85 ± 0.35 a | 33.70 ± 1.54 b |
Strontium (Sr) | 21.3 ± 0.5 b | 7.50 ± 0.31 a |
Sodium (Na) | 93.0 ± 0.5 b | 34.47 ± 2.16 a |
Iron (Fe) | 77.66 ± 3.96 a | 109.02 ± 20.04 a |
Copper (Cu) | 121.43 ± 2.7 b | 86.95 ± 5.84 a |
Sulfur (S) | 1602 ± 23 a | 1963 ± 94 b |
Magnesium (Mg) | 923 ± 15 b | 841 ± 26 a |
Phosphorus (P) | 2886 ± 61 b | 2448 ± 96 a |
Calcium (Ca) | 4197 ± 84 a | 6017 ± 114 b |
Potassium (K) | 20,482 ± 466 a | 25,510 ± 1585 b |
Fatty acids | ||
Caprylic acid (C8:0) | 0.05 ± 0.00 a | 0.14 ± 0.01 b |
Capric acid (C10:0) | 0.16 ± 0.00 b | 0.11 ± 0.00 a |
Lauric acid (C12:0) | 0.26 ± 0.01 a | 0.28 ± 0.00 b |
Myristic acid (C14:0) | 0.33 ± 0.00 a | 0.66 ± 0.01 b |
Palmitic acid (C16:0) | 12.54 ± 0.14 a | 21.35 ± 0.42 b |
Palmitoleic acid (C16:1) | 0.16 ± 0.00 a | 1.87 ± 0.01 b |
Stearic acid (C18:0) | 3.33 ± 0.04 a | 5.38 ± 0.04 b |
Oleic acid (C18:1 n9) | 18.17 ± 0.01 a | 19.73 ± 0.07 b |
Linoleic acid (C18:2 n6) | 61.13 ± 0.01 b | 46.47 ± 0.30 a |
α-linolenic acid (C18:3 n3) | 3.15 ± 0.03 b | 2.60 ± 0.08 a |
Eicosanoic acid (C20:0) | 0.52 ± 0.04 a | 1.22 ± 0.08 b |
Eicosenoic acid (C20:1 n9) | 0.09 ± 0.01 a | 0.09 ± 0.01 a |
SFA | 17.18 ± 0.15 a | 29.13 ± 0.46 b |
MUFA | 18.42 ± 0.01 a | 21.69 ± 0.06 b |
n3-PUFA | 3.15 ± 0.03 b | 2.60 ± 0.08 a |
n6-PUFA | 61.13 ± 0.01 b | 46.47 ± 0.30 a |
PUFA/SFA | 3.74 ± 0.1 b | 1.68 ± 0.4 a |
AI | 0.17 | 0.34 |
TI | 0.33 | 0.64 |
Compounds | Grape Varieties | |
---|---|---|
Isabella | Cabernet | |
Phenolic acids | ||
Gallic acid | 75.6 ± 0.8 a | 130.7 ± 1.4 b |
Caffeic acid derivatives | 506.4 ± 2.8 b | 38.2 ± 1.4 a |
p-coumaric acid derivatives | 11.9 ± 0.6 | - |
Total | 594 ± 2.5 b | 168.9 ± 1.4 a |
Flavonoids | ||
Catechin | 1613.2 ± 4.2 b | 294.8 ± 1.4 a |
Catechin derivatives | 295.2 ± 4.2 a | 786.0 ± 2.1 b |
Epicatechin | 1229.2 ± 2.8 b | 230.3 ± 2.8 a |
Myricetin | 35.9 ± 1.4 B | - |
Quercetin | 171.6 ± 2.8 b | 93.1 ± 1.4 a |
Kaempferol | 21.2 ± 0.7 b | 2.2 ± 0.0 a |
Kaempferol derivatives | 21.9 ± 0.6 a | 56.0 ± 1.4 b |
Total | 3388.3 ± 7.3 b | 1462.3 ± 4.3 a |
Stilbenoids | ||
Resveratrol | 37.8 ± 0.6 a | 102.1 ± 2.6 b |
Total anthocyanins | 2649 ± 114.8 b | 607.5 ± 16.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guardianelli, L.M.; Salinas, M.V.; Puppo, M.C.; Hidalgo, A.; Pasini, G. Nutritional and Antioxidant Valorization of Grape Pomace from Argentinian Vino De La Costa and Italian Cabernet Wines. Foods 2025, 14, 2386. https://doi.org/10.3390/foods14132386
Guardianelli LM, Salinas MV, Puppo MC, Hidalgo A, Pasini G. Nutritional and Antioxidant Valorization of Grape Pomace from Argentinian Vino De La Costa and Italian Cabernet Wines. Foods. 2025; 14(13):2386. https://doi.org/10.3390/foods14132386
Chicago/Turabian StyleGuardianelli, Luciano M., María V. Salinas, María C. Puppo, Alyssa Hidalgo, and Gabriella Pasini. 2025. "Nutritional and Antioxidant Valorization of Grape Pomace from Argentinian Vino De La Costa and Italian Cabernet Wines" Foods 14, no. 13: 2386. https://doi.org/10.3390/foods14132386
APA StyleGuardianelli, L. M., Salinas, M. V., Puppo, M. C., Hidalgo, A., & Pasini, G. (2025). Nutritional and Antioxidant Valorization of Grape Pomace from Argentinian Vino De La Costa and Italian Cabernet Wines. Foods, 14(13), 2386. https://doi.org/10.3390/foods14132386