Development of Pesto Sauce with Moringa Leaves and Baru Almonds: A Strategy to Incorporate Underutilized Ingredients with Nutritional and Sensory Viability
Abstract
1. Introduction
2. Materials and Methods
2.1. Obtaining Ingredients
2.2. Pesto Sauce Formulations
2.3. Determination of the Centesimal Composition of the Ingredients and the Pesto Sauces
2.4. Color Mensurement Procedures
2.5. Phytochemical Compounds
2.5.1. Total Phenolic Compounds
2.5.2. Condensed Tannins
2.6. Antioxidant Capacity
2.6.1. Free Radical ABTS Capture
2.6.2. Ferric-Reducing Antioxidant Power (FRAP)
2.7. Determination of Volatile Compounds
2.8. Microbiological Analyzes
2.9. Sensory Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Centesimal Composition
3.2. Color Analysis
3.3. Bioactive Compounds and Antioxidant Capacity
3.4. Analysis of Volatile Compounds
3.5. Microbiological Analysis
3.6. Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Declaration of Generative AI and AI-Assisted Technologies in the Writing Process
References
- Caggiano, G.; Diella, G.; Trerotoli, P.; Lopuzzo, M.; Triggiano, F.; Ricci, M.; Marcotrigiano, V.; Montagna, M.T.; De Giglio, O. A Pilot Survey on Hygienic–Sanitary Characteristics of Ready-to-Eat Sauces and Pesto. Int. J. Environ. Res. Public Health 2020, 17, 5005. [Google Scholar] [CrossRef]
- Milião, G.L.; de Oliveira, A.P.H.; Soares, L.d.S.; Arruda, T.R.; Vieira, É.N.R.; Leite Junior, B.R.d.C. Unconventional Food Plants: Nutritional Aspects and Perspectives for Industrial Applications. Future Foods 2022, 5, 100124. [Google Scholar] [CrossRef]
- Moura, I.O.; Santana, C.C.; Lourenço, Y.R.F.; Souza, M.F.; Silva, A.R.S.T.; Dolabella, S.S.; de Oliveira e Silva, A.M.; Oliveira, T.B.; Duarte, M.C.; Faraoni, A.S. Chemical Characterization, Antioxidant Activity and Cytotoxicity of the Unconventional Food Plants: Sweet Potato (Ipomoea batatas (L.) Lam.) Leaf, Major Gomes (Talinum paniculatum (Jacq.) Gaertn.) and Caruru (Amaranthus deflexus L.). Waste Biomass Valorization 2021, 12, 2407–2431. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022; United Nations: New York, NY, USA, 2022; Available online: https://population.un.org/wpp/downloads?folder=Probabilistic%20Projections&group=Population (accessed on 1 March 2025).
- Peisino, M.C.O.; Zouain, M.S.; de Christo Scherer, M.M.; Schmitt, E.F.P.; Toledo e Silva, M.V.; Barth, T.; Endringer, D.C.; Scherer, R.; Fronza, M. Health-Promoting Properties of Brazilian Unconventional Food Plants. Waste Biomass Valoriz. 2020, 11, 4691–4700. [Google Scholar] [CrossRef]
- Marin, A.M.F.; Siqueira, E.M.A.; Arruda, S.F. Minerals, Phytic Acid and Tannin Contents of 18 Fruits from the Brazilian Savanna. Int. J. Food Sci. Nutr. 2009, 60, 180–190. [Google Scholar] [CrossRef]
- Devisetti, R.; Sreerama, Y.N.; Bhattacharya, S. Processing Effects on Bioactive Components and Functional Properties of Moringa Leaves: Development of a Snack and Quality Evaluation. J. Food Sci. Technol. 2016, 53, 649–657. [Google Scholar] [CrossRef]
- Bancessi, A.; Bancessi, Q.; Baldé, A.; Catarino, L. Present and Potential Uses of Moringa Oleifera as a Multipurpose Plant in Guinea-Bissau. S. Afr. J. Bot. 2020, 129, 206–208. [Google Scholar] [CrossRef]
- Moyo, B.; Masika, P.J.; Hugo, A.; Muchenje, V. Nutritional Characterization of Moringa (Moringa oleifera Lam.) Leaves. Afr. J. Biotechnol. 2011, 10, 12925–12933. [Google Scholar] [CrossRef]
- Nouman, W.; Anwar, F.; Gull, T.; Newton, A.; Rosa, E.; Domínguez-Perles, R. Profiling of Polyphenolics, Nutrients and Antioxidant Potential of Germplasm’s Leaves from Seven Cultivars of Moringa oleifera Lam. Ind. Crops Prod. 2016, 83, 166–176. [Google Scholar] [CrossRef]
- Trigo, C.; Castelló, M.L.; Ortolá, M.D.; García-Mares, F.J.; Soriano, M.D. Moringa oleifera: An Unknown Crop in Developed Countries with Great Potential for Industry and Adapted to Climate Change. Foods 2021, 10, 31. [Google Scholar] [CrossRef]
- Ibrahim, M.E.E.-D.; Alqurashi, R.M.; Alfaraj, F.Y. Antioxidant Activity of Moringa oleifera and Olive Olea europaea L. Leaf Powders and Extracts on Quality and Oxidation Stability of Chicken Burgers. Antioxidants 2022, 11, 496. [Google Scholar] [CrossRef]
- Mashau, M.E.; Munandi, M.; Ramashia, S.E. Exploring the Influence of Moringa oleifera Leaves Extract on the Nutritional Properties and Shelf Life of Mutton Patties During Refrigerated Storage. CyTA-J. Food 2021, 19, 389–398. [Google Scholar] [CrossRef]
- Mohamed, F.A.E.-F.; Salama, H.H.; El-Sayed, S.M.; El-Sayed, H.S.; Zahran, H.A.-H. Utilization of Natural Antimicrobial and Antioxidant of Moringa oleifera Leaves Extract in Manufacture of Cream Cheese. J. Biol. Sci. 2018, 18, 92–106. [Google Scholar]
- Nudel, A.; Cohen, R.; Abbo, S.; Kerem, Z. Developing a Nutrient-Rich and Functional Wheat Bread by Incorporating Moringa Oleifera Leaf Powder and Gluten. LWT 2023, 187, 115343. [Google Scholar] [CrossRef]
- Bermudez-Beltrán, K.A.; Marzal-Bolaño, J.K.; Olivera-Martínez, A.B.; Espitia, P.J.P. Cape Gooseberry Petit Suisse Cheese Incorporated with Moringa Leaf Powder and Gelatin. LWT 2020, 123, 109101. [Google Scholar] [CrossRef]
- Fernandes, D.C.; Freitas, J.B.; Czeder, L.P.; Naves, M.M.V. Nutritional Composition and Protein Value of the Baru (Dipteryx alata Vog.) Almond from the Brazilian Savanna. J. Sci. Food Agric. 2010, 90, 1650–1655. [Google Scholar] [CrossRef]
- de Souza, R.G.M.; Gomes, A.C.; de Castro, I.A.; Mota, J.F. A Baru Almond–Enriched Diet Reduces Abdominal Adiposity and Improves High-Density Lipoprotein Concentrations: A Randomized, Placebo-Controlled Trial. Nutrition 2018, 55–56, 154–160. [Google Scholar] [CrossRef]
- de Souza, R.G.M.; Gomes, A.C.; Navarro, A.M.; da Cunha, L.C.; Silva, M.A.C.; Barbosa Junior, F.; Mota, J.F. Baru Almonds Increase the Activity of Glutathione Peroxidase in Overweight and Obese Women: A Randomized, Placebo-Controlled Trial. Nutrients 2019, 11, 1750. [Google Scholar] [CrossRef]
- Oliveira-Alves, S.C.; Pereira, R.S.; Pereira, A.B.; Ferreira, A.; Mecha, E.; Silva, A.B.; Serra, A.T.; Bronze, M.R. Identification of Functional Compounds in Baru (Dipteryx alata Vog.) Nuts: Nutritional Value, Volatile and Phenolic Composition, Antioxidant Activity and Antiproliferative Effect. Food Res. Int. 2020, 131, 109026. [Google Scholar] [CrossRef]
- Schincaglia, R.M.; Pimentel, G.D.; Peixoto, M.D.R.G.; Cuppari, L.; Mota, J.F. The Effect of Baru (Dypterix alata Vog.) Almond Oil on Markers of Bowel Habits in Hemodialysis Patients. Evid.-Based Complement. Altern. Med. 2021, 2021, 3187305. [Google Scholar] [CrossRef]
- Ramos, A.F.; Mendes, G.d.R.L.; Cruz, R.S.; Silva, F.N.; Camilloto, G.P.; de Souza, H.F.; Lima, J.P.d.; Paiva, C.L.; Brandi, I.V. Development of Cakes with Almond Baru Flour: Chemical Composition and Its Correlations with Texture Profile Analysis. Br. Food J. 2023, 125, 1206–1216. [Google Scholar] [CrossRef]
- Lima, D.S.; Egea, M.B.; Cabassa, I.d.C.C.; Almeida, A.B.d.; Sousa, T.L.d.; Lima, T.M.d.; Loss, R.A.; Volp, A.C.P.; Vasconcelos, L.G.d.; Dall’Oglio, E.L.; et al. Technological Quality and Sensory Acceptability of Nutritive Bars Produced with Brazil Nut and Baru Almond Coproducts. LWT 2021, 137, 110467. [Google Scholar] [CrossRef]
- Sowmya, R.S.; Warke, V.G.; Mahajan, G.B.; Annapure, U.S. Quality and Shelf-Life Assessment of Pesto Prepared Using Herbs Cultivated by Hydroponics. Int. J. Gastron. Food Sci. 2022, 30, 100608. [Google Scholar] [CrossRef]
- Zardetto, S.; Barbanti, D. Shelf Life Assessment of Fresh Green Pesto Using an Accelerated Test Approach. Food Packag. Shelf Life 2020, 25, 100524. [Google Scholar] [CrossRef]
- Klug, T.V.; Collado, E.; Martínez-Sánchez, A.; Gómez, P.A.; Aguayo, E.; Otón, M.; Artés, F.; Artés-Hernandez, F. Innovative Quality Improvement by Continuous Microwave Processing of a Faba Beans Pesto Sauce. Food Bioprocess Technol. 2018, 11, 561–571. [Google Scholar] [CrossRef]
- Castillejo, N.; Martínez-Hernández, G.B.; Artés-Hernández, F. Revalorized Broccoli By-Products and Mustard Improved Quality During Shelf Life of a Kale Pesto Sauce. Food Sci. Technol. Int. 2021, 27, 734–745. [Google Scholar] [CrossRef]
- Salvadeo, P.; Boggia, R.; Evangelisti, F.; Zunin, P. Analysis of the Volatile Fraction of “Pesto Genovese” by Headspace Sorptive Extraction (HSSE). Food Chem. 2007, 105, 1228–1235. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of AnalySis of AOAC International, 19th ed.; AOAC: Rockville, MD, USA, 2012. [Google Scholar]
- Obón, J.M.; Castellar, M.R.; Alacid, M.; Fernández-López, J.A. Production of a Red-Purple Food Colorant from Opuntia Stricta Fruits by Spray Drying and Its Application in Food Model Systems. J. Food Eng. 2009, 90, 471–479. [Google Scholar] [CrossRef]
- Singleton, V.; Orthofer, R.; Lamuela-Raventos, R. Analysis of Total Phenols and Others Oxidantion Substrates and Oxidants by Means of Folin-Ciocaulteau Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Price, M.L.; Scoyoc, S.V.; Butler, L.G. A Critical Evaluation of the Vanillin Reaction as an Assay for Tannin in Sorghum Grain. J. Agric. Food Chem. 1978, 26, 1214–1218. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- American Public Health Association. Compendium of Methods for the Microbiological Examination of Foods, 5th ed.; Salfinger, Y.T.M.L., Ed.; APHA: Washington, DC, USA, 2015; ISBN 978-0-87553-022-2. [Google Scholar]
- Ares, G.; Bruzzone, F.; Vidal, L.; Cadena, R.S.; Giménez, A.; Pineau, B.; Hunter, D.C.; Paisley, A.G.; Jaeger, S.R. Evaluation of a Rating-Based Variant of Check-All-That-Apply Questions: Rate-All-That-Apply (RATA). Food Qual. Prefer. 2014, 36, 87–95. [Google Scholar] [CrossRef]
- Seeburger, P.; Herdenstam, A.; Kurtser, P.; Arunachalam, A.; Castro-Alves, V.C.; Hyötyläinen, T.; Andreasson, H. Controlled Mechanical Stimuli Reveal Novel Associations Between Basil Metabolism and Sensory Quality. Food Chem. 2023, 404, 134545. [Google Scholar] [CrossRef]
- Cohen, K.D.O.; Jackix, M.D.N.H. Estudo Do Liquor de Cupuaçu [Study of cupuassu liquor]. Food Sci. Technol. 2005, 25, 182–190. [Google Scholar] [CrossRef]
- Bourekoua, H.; Różyło, R.; Gawlik-Dziki, U.; Benatallah, L.; Zidoune, M.N.; Dziki, D. Evaluation of Physical, Sensorial, and Antioxidant Properties of Gluten-Free Bread Enriched with Moringa oleifera Leaf Powder. Eur. Food Res. Technol. 2018, 244, 189–195. [Google Scholar] [CrossRef]
- Kaewsuksaeng, S.; Urano, Y.; Aiamla-or, S.; Shigyo, M.; Yamauchi, N. Effect of UV-B Irradiation on Chlorophyll-Degrading Enzyme Activities and Postharvest Quality in Stored Lime (Citrus latifolia Tan.) Fruit. Postharvest Biol. Technol. 2011, 61, 124–130. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Zaidi, S.; Chaher-Bazizi, N.; Kaddour, T.; Medjahed, Z.; Benaida-Debbache, N. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Pistacia lentiscus with the Study of Their Antioxidant and Anti-Inflammatory Potential. Sustain. Chem. Pharm. 2024, 41, 101678. [Google Scholar] [CrossRef]
- Dacoreggio, M.V.; Santetti, G.S.; Inácio, H.P.; da Silva Haas, I.C.; Wanderley, B.R.d.S.M.; Hoff, R.B.; Freire, C.B.F.; Kempka, A.P.; Amboni, R.D.d.M.C. Exploring the Effects of Gastrointestinal Digestion on Phenolic Profile and Antioxidant Activity: A New Perspective on the Biological Potential of Infusion of Eugenia pyriformis Cambess Leaves. Meas. Food 2024, 14, 100167. [Google Scholar] [CrossRef]
- Fernandes, D.C.; dos Santos, G.F.; Borges, M.O.; Dias, T.; Naves, M.M.V. Blend of Baru (Dipteryx alata Vog.) By-Products as Nutritive and Healthy Food Ingredients: Chemical Composition, Functional Properties and Application in Plant-Based Burger. Plant Foods Hum. Nutr. 2024, 79, 578–585. [Google Scholar] [CrossRef]
- Dhibi, M.; Amri, Z.; Bhouri, A.M.; Hammami, S.; Hammami, M. Comparative Study of the Phenolic Profile and Antioxidant Activities of Moringa (Moringa oleifera Lam.) and Jujube (Ziziphus lotus Linn.) Leaf Extracts and Their Protective Effects in Frying Stability of Corn Oil. Meas. Food 2022, 7, 100045. [Google Scholar] [CrossRef]
- Kwee, E.M.; Niemeyer, E.D. Variations in Phenolic Composition and Antioxidant Properties among 15 Basil (Ocimum basilicum L.) Cultivars. Food Chem. 2011, 128, 1044–1050. [Google Scholar] [CrossRef]
- Uslu, N.; Özcan, M.M. Effect of Microwave Heating on Phenolic Compounds and Fatty Acid Composition of Cashew (Anacardium occidentale) Nut and Oil. J. Saudi Soc. Agric. Sci. 2019, 18, 344–347. [Google Scholar] [CrossRef]
- De Camargo, A.C.; Regitano-D’Arce, M.A.B.; Biasoto, A.C.T.; Shahidi, F. Low Molecular Weight Phenolics of Grape Juice and Winemaking Byproducts: Antioxidant Activities and Inhibition of Oxidation of Human Low-Density Lipoprotein Cholesterol and DNA Strand Breakage. J. Agric. Food Chem. 2014, 62, 12159–12171. [Google Scholar] [CrossRef]
- Martins, R.O.; Gomes, I.C.; Mendonça Telles, A.D.; Kato, L.; Souza, P.S.; Chaves, A.R. Molecularly Imprinted Polymer as Solid Phase Extraction Phase for Condensed Tannin Determination from Brazilian Natural Sources. J. Chromatogr. A 2020, 1620, 460977. [Google Scholar] [CrossRef]
- Rangani, S.C.; Marapana, R.A.U.J.; Senanayake, G.S.A.; Perera, P.R.D.; Pathmalal, M.M.; Amarasinghe, H.K. Correlation Analysis of Phenolic Compounds, Antioxidant Potential, Oxygen Radical Scavenging Capacity, and Alkaloid Content in Ripe and Unripe Areca Catechu from Major Cultivation Areas in Sri Lanka. Appl. Food Res. 2023, 3, 100361. [Google Scholar] [CrossRef]
- Huang, D.; Boxin, O.U.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant Mechanism of Tea Polyphenols and Its Impact on Health Benefits. Anim. Nutr. 2020, 6, 115–123. [Google Scholar] [CrossRef]
- Bajomo, E.M.; Aing, M.S.; Ford, L.S.; Niemeyer, E.D. Chemotyping of Commercially Available Basil (Ocimum basilicum L.) Varieties: Cultivar and Morphotype Influence Phenolic Acid Composition and Antioxidant Properties. NFS J. 2022, 26, 1–9. [Google Scholar] [CrossRef]
- McCance, K.R.; Flanigan, P.M.; Quick, M.M.; Niemeyer, E.D. Influence of Plant Maturity on Anthocyanin Concentrations, Phenolic Composition, and Antioxidant Properties of 3 Purple Basil (Ocimum basilicum L.) Cultivars. J. Food Compos. Anal. 2016, 53, 30–39. [Google Scholar] [CrossRef]
- Mukunzi, D.; Nsor-Atindana, J.; Xiaoming, Z.; Gahungu, A.; Karangwa, E.; Mukamurezi, G. Comparison of Volatile Profile of Moringa Oleifera Leaves from Rwanda and China Using HS-SPME. Pak. J. Nutr. 2011, 10, 602–608. [Google Scholar] [CrossRef]
- Monteiro, J.; Scotti-Campos, P.; Pais, I.; Figueiredo, A.C.; Viegas, D.; Reboredo, F. Elemental Composition, Total Fatty Acids, Soluble Sugar Content and Essential Oils of Flowers and Leaves of Moringa oleifera Cultivated in Southern Portugal. Heliyon 2022, 8, e12647. [Google Scholar] [CrossRef]
- D’alessandro, A.; Ballestrieri, D.; Strani, L.; Cocchi, M.; Durante, C. Characterization of Basil Volatile Fraction and Study of Its Agronomic Variation by Asca. Molecules 2021, 26, 3842. [Google Scholar] [CrossRef]
- Mu, H.; Gao, H.; Chen, H.; Fang, X.; Zhou, Y.; Wu, W.; Han, Q. Study on the Volatile Oxidation Compounds and Quantitative Prediction of Oxidation Parameters in Walnut (Carya cathayensis Sarg.) Oil. Eur. J. Lipid Sci. Technol. 2019, 121, 1800521. [Google Scholar] [CrossRef]
- Coughlan, R.; Kilcawley, K.; Skibinska, I.; Moane, S.; Larkin, T. Analysis of Volatile Organic Compounds in Irish Rapeseed Oils. Curr. Res. Food Sci. 2023, 6, 100417. [Google Scholar] [CrossRef]
- Ivanova-Petropulos, V.; Mitrev, S.; Stafilov, T.; Markova, N.; Leitner, E.; Lankmayr, E.; Siegmund, B. Characterisation of Traditional Macedonian Edible Oils by Their Fatty Acid Composition and Their Volatile Compounds. Food Res. Int. 2015, 77, 506–514. [Google Scholar] [CrossRef]
- BRASIL, Ministério da Saúde—Agência Nacional de Vigilância Sanitária (ANVISA). Instrução Normativa No 161, de 1o de julho de 2022. Estabelece as Listas de Padrões Microbiológicos Para Alimentos; Diário Oficial da União: Brasília, Brasil, 2022. Available online: https://www.in.gov.br/en/web/dou/-/instrucao-normativa-in-n-161-de-1-de-julho-de-2022-413366880 (accessed on 1 March 2024).
- De Kock, H.L.; Magano, N.N. Sensory Tools for the Development of Gluten-Free Bakery Foods. J. Cereal Sci. 2020, 94, 102990. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Kilmister, R.L.; Kelm, M.A.; Downey, M.O. Impact of Condensed Tannin Size as Individual and Mixed Polymers on Bovine Serum Albumin Precipitation. Food Chem. 2014, 160, 16–21. [Google Scholar] [CrossRef]
- Oyeyinka, A.T.; Oyeyinka, S.A. Moringa Oleifera as a Food Fortificant: Recent Trends and Prospects. J. Saudi Soc. Agric. Sci. 2018, 17, 127–136. [Google Scholar] [CrossRef]
- Alves-Santos, A.M.; Fernandes, D.C.; Naves, M.M.V. Baru (Dipteryx alata Vog.) Fruit as an Option of Nut and Pulp with Advantageous Nutritional and Functional Properties: A Comprehensive Review. NFS J. 2021, 24, 26–36. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Wei, X.; Wang, Z.; Wang, C.; Du, X.; Lin, Y.; Zhang, Y.; He, W.; Wang, X. Effects of Pretreatment and Freezing Storage on the Bioactive Components and Antioxidant Activity of Two Kinds of Celery After Postharvest. Food Chem. X 2023, 18, 100655. [Google Scholar] [CrossRef]
- Lima, D.C.; Alves, M.d.R.; Noguera, N.H.; Nascimento, R.d.P.d. A Review on Brazilian Baru Plant (Dipteryx alata Vogel): Morphology, Chemical Composition, Health Effects, and Technological Potential. Future Foods 2022, 5, 100146. [Google Scholar] [CrossRef]
Pesto Ingredients (g/100 g) | B/CN | B/BA | BM/CN | BM/BA |
---|---|---|---|---|
Basil leaves | 22.0 | 22.0 | 11.0 | 11.0 |
Moringa leaves | - | - | 11.0 | 11.0 |
Cashew nuts | 11.0 | - | 11.0 | - |
Baru almonds | - | 11.0 | - | 11 |
Extra virgin olive oil | 54.0 | 54.0 | 54.0 | 54.0 |
Parmesan cheese | 10.0 | 10.0 | 10.0 | 10.0 |
Galic | 2.0 | 2.0 | 2.0 | 2.0 |
Salt | 1.0 | 1.0 | 1.0 | 1.0 |
Component (% w/w) | |||||
---|---|---|---|---|---|
Pesto Ingredients | Moisture | Carbohydrate | Protein | Lipid | Ash |
Basil leaves | 88.4 ± 0.4 a | 6.3 ± 0.1 b | 3.4 ± 0.4 b | 0.5 ± 0.1 b | 1.4 ± 0.1 b |
Moringa leaves | 70.0 ± 0.2 b | 12.9 ± 0.3 a | 10.3 ± 0.7 a | 3.2 ± 0.1 a | 2.6 ± 0.1 a |
Cashew nuts | 3.1 ± 0.0 B | 25.3 ± 0.1 B | 20.3 ± 0.7 B | 49.1 ± 0.7 A | 2.2 ± 0.0 B |
Baru almonds | 6.4 ± 0.3 A | 26.1 ± 0.3 A | 26.5 ± 2.3 A | 38.3 ± 0.0 B | 2.7± 0.0 A |
Component (% w/w) | |||||
---|---|---|---|---|---|
Pesto Sauces | Moisture | Carbohydrate | Protein | Lipid | Ash |
B/CN | 22.7 ± 0.0 b | 6.9± 0.3 b | 7.9 ± 0.4 b | 60.1± 0.3 a | 2.4 ± 0.0 b |
B/BA | 25.0 ± 0.5 a | 7.7 ± 0.6 ab | 8.7 ± 0.3 ab | 55.9 ± 0.6 b | 2.7 ± 0.1 a |
BM/CN | 21.9 ± 0.6 b | 7.4 ± 0.3 ab | 8.0 ± 0.3 b | 60.2 ± 0.3 a | 2.5 ± 0.1 b |
BM/BA | 22.6 ± 0.2 b | 8.7 ± 0.3 a | 9.0 ± 0.2 a | 56.9 ± 0.3 b | 2.8 ± 0.0 a |
Pesto Sauces | L* | a* | b* | h° | C* | ΔE |
---|---|---|---|---|---|---|
B/CN | 30.2 ± 0.7 a | 0.1 ± 0.1 a | 22.5 ± 0.5 a | 89.5 ± 0,2 d | 22.5 ± 0.5 a | - |
B/BA | 28.7 ± 0.4 ab | −1.4 ± 0.1 b | 22.8 ± 0.7 a | 93.5 ± 0.2 c | 22.9 ± 0.7 a | 2.4 ± 0.1 b |
BM/CN | 27.2 ± 1.2 ab | −3.0 ± 0.6 c | 22.3 ± 3.1 a | 97.7 ± 0.7 b | 22.5 ± 3.1 a | 5.4 ± 0.1 a |
BM/BA | 26.3 ± 1.3 b | −4.1 ± 0.5 c | 19.8 ± 0.5 a | 101.6 ± 1.6 a | 20.2 ± 0.4 a | 6.4 ± 0.5 a |
Pesto Sauces | TPCs (mg GAE/100 g) | Condensed Tannins (mg CE/100 g) | ABTS (mg Trolox Equivalent/100 g) | FRAP (mg Trolox Equivalent/100 g) |
---|---|---|---|---|
B/CN | 151.8 ± 4.5 a | 50.7 ± 2.8 c | 304.9 ± 14.1 a | 128.6 ± 9.4 a |
B/BA | 93.1 ± 2.8 b | 43.8 ± 0.8 c | 167.7 ± 13.9 b | 75.6 ± 8.4 b |
BM/CN | 150.8 ± 11.6 a | 86.1 ± 6.0 b | 289.4 ± 13.2 a | 112.7 ± 3.9 a |
BM/BA | 162.7 ± 7.4 a | 113.3 ± 1.4 a | 287.4 ± 5.2 a | 133.3 ± 8.4 a |
Component | Retention Index | Relative Peak Area (%) | ||||||
---|---|---|---|---|---|---|---|---|
B/CN | B/BA | BM/CN | BM/BA | B/CN | B/BA | BM/CN | BM/BA | |
Hex-(2E)-enal | 854.0 | 854.0 | 854.0 | 855.0 | 4.4 | 3.6 | 8.8 | 8.6 |
1,8-cineole | 1037.0 | 1036.0 | 1035.0 | 1036.0 | 21.1 | 23.7 | 22.8 | 22.8 |
Linalool | 1104.0 | 1101.0 | 1101.0 | 1102.0 | 16.4 | 6.2 | 10.0 | 11.6 |
Camphor | 115.7 | 1151.0 | 1151.0 | 1151.0 | 11.5 | 14.1 | 8.8 | 9.4 |
Pesto Sauces | Appearance | Aroma | Texture | Flavor | Global Impression | Purchase Intent |
---|---|---|---|---|---|---|
B/CN | 6.5 ± 2 b | 6.9 ± 1.5 a | 7.1 ± 1.6 a | 7.1 ± 1.7 a | 6.9 ± 1.4 a | 3.3 ± 1.1 a |
B/BA | 7.0 ± 1.8 a | 7.1 ± 1.6 a | 7.2 ± 1.6 a | 7.2 ± 1.6 a | 7.2 ± 1.3 a | 3.5 ± 1.1 a |
BM/CN | 6.9 ± 1.8 ab | 7.1 ± 1.6 a | 7.0 ± 1.5 a | 7.2 ± 1.6 a | 7.1 ± 1.5 a | 3.5 ± 1.1 a |
BM/BA | 7.1 ± 1.7 a | 7.0 ± 1.7 a | 6.9 ± 1.7 a | 7.1 ± 1.6 a | 7.1 ± 1.4 a | 3.5 ± 1.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito, R.M.; Hudson, E.A.; Rezende, J.d.P.; Simiqueli, A.A.; Peluzio, M.d.C.G.; Vidigal, M.C.T.R.; Pires, A.C.d.S. Development of Pesto Sauce with Moringa Leaves and Baru Almonds: A Strategy to Incorporate Underutilized Ingredients with Nutritional and Sensory Viability. Foods 2025, 14, 2377. https://doi.org/10.3390/foods14132377
Brito RM, Hudson EA, Rezende JdP, Simiqueli AA, Peluzio MdCG, Vidigal MCTR, Pires ACdS. Development of Pesto Sauce with Moringa Leaves and Baru Almonds: A Strategy to Incorporate Underutilized Ingredients with Nutritional and Sensory Viability. Foods. 2025; 14(13):2377. https://doi.org/10.3390/foods14132377
Chicago/Turabian StyleBrito, Renata Moraes, Eliara Acipreste Hudson, Jaqueline de Paula Rezende, Andréa Alves Simiqueli, Maria do Carmo Gouveia Peluzio, Márcia Cristina Teixeira Ribeiro Vidigal, and Ana Clarissa dos Santos Pires. 2025. "Development of Pesto Sauce with Moringa Leaves and Baru Almonds: A Strategy to Incorporate Underutilized Ingredients with Nutritional and Sensory Viability" Foods 14, no. 13: 2377. https://doi.org/10.3390/foods14132377
APA StyleBrito, R. M., Hudson, E. A., Rezende, J. d. P., Simiqueli, A. A., Peluzio, M. d. C. G., Vidigal, M. C. T. R., & Pires, A. C. d. S. (2025). Development of Pesto Sauce with Moringa Leaves and Baru Almonds: A Strategy to Incorporate Underutilized Ingredients with Nutritional and Sensory Viability. Foods, 14(13), 2377. https://doi.org/10.3390/foods14132377