Effects of Different Trehalose and Sorbitol Impregnation Methods on Freeze–Thaw Damage to Potato Slices
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Regents
2.2. Instruments and Equipment
2.3. Experimental Methods
2.3.1. Preparation of Potato Slice Samples Impregnated with Trehalose or Sorbitol Solution
2.3.2. Total Sugar Content Determination
2.3.3. Juice Loss Rate
2.3.4. Relative Electrical Conductivity Measurement
2.3.5. Puncture Measurement
2.3.6. TPA Measurement
2.3.7. Observation of Cell Activity
2.3.8. Structural Analysis Using Light Microscopy (LM)
2.3.9. Structural Analysis Using Transmission Electron Microscopy (TEM)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Total Sugar Content of Potato Slices After Impregnation
3.2. Juice Loss Rate of Frozen–Thawed Potato Slices
3.3. Relative Electrical Conductivity of Frozen–Thawed Potato Slices
3.4. Puncture Hardness of Frozen–Thawed Potato Slices
3.5. TPA Texture Characteristic Parameters of Frozen–Thawed Potato Slices
3.6. Trypan Blue Staining of Cells in Frozen–Thawed Potato Slices
3.7. Optical Microscope Observation of PAS Staining of Frozen–Thawed Potato Slices
3.8. Transmission Electron Microscopy of the Microstructure of Frozen–Thawed Potato Slices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Furrer, A.; Cladis, D.P.; Kurilich, A.; Manoharan, R.; Ferruzzi, M.G. Changes in phenolic content of commercial potato varieties through industrial processing and fresh preparation. Food Chem. 2017, 218, 47–55. [Google Scholar] [CrossRef]
- Sacchetti, G.; Chiodo, E.; Neri, L.; Dimitri, G.; Fantini, A. Consumers’ liking toward roasted chestnuts from fresh and frozen nuts: Influence of psycho-social factors and familiarity with product. Acta Hortic. 2009, 844, 53–60. [Google Scholar] [CrossRef]
- Chassagne-Berces, S.; Poirier, C.; Devaux, M.F.; Fonseca, F.; Lahaye, M.; Pigorini, G.; Girault, C.; Marin, M.; Guillon, F. Changes in texture, cellular structure, and cell wall composition in apple tissue as a result of freezing. Food Res. Int. 2009, 42, 788–797. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, J.; Chen, S.; Zhang, X.; Wei, W. Influence of trehalose and alginate oligosaccharides on ice crystal growth and recrystallization in whiteleg shrimp (Litopenaeus vannamei) during frozen storage with temperature fluctuations. Int. J. Refrig. 2019, 99, 176–185. [Google Scholar] [CrossRef]
- Velickova, E.; Tylewicz, U.; Dalla Rosa, M.; Winkelhausen, E.; Kuzmanova, S.; Galindo, F.G. Effect of vacuum infused cryoprotectants on the freezing tolerance of strawberry tissues. LWT-Food Sci. Technol. 2013, 52, 146–150. [Google Scholar] [CrossRef]
- Phoon, P.Y.; Galindo, F.G.; Vicente, A.; Dejmek, P. Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves. J. Food Eng. 2008, 88, 144–148. [Google Scholar] [CrossRef]
- Chen, L.; Fan, K. Pulsed vacuum impregnated trehalose to improve the physicochemical quality of frozen-thawed kiwifruit. Int. J. Food Sci. Technol. 2022, 57, 268–275. [Google Scholar] [CrossRef]
- Dermesonlouoglou, E.K.; Giannakourou, M.; Taoukis, P.S. Kinetic study of the effect of the osmotic dehydration pre-treatment with alternative osmotic solutes to the shelf life of frozen strawberry. Food Bioprod. Process. 2016, 99, 212–221. [Google Scholar] [CrossRef]
- Uddin, M.; Mashahid, N.; Anta, J.A.; Acharjee, M.R. Development and evaluation of functional biscuits infused with functional spices and white pea flour: A comprehensive study on optimizing glycemic control and incorporating anti-diabetic additives. Appl. Food Res. 2025, 5, 100710. [Google Scholar] [CrossRef]
- Sun, X.; Liu, W.; Xiao, H.; Liu, C.; Yang, F.; Hu, J.; Wang, Y.; Zhao, R.; Wang, H. Effects of different freezing methods on the damage in potato tissues impregnated with trehalose. LWT 2024, 213, 117096. [Google Scholar] [CrossRef]
- Han, C.; Zhao, Y.; Leonard, S.W.; Khadem, N.A.; Bakhsh, M.I. Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria × ananassa) and raspberries (Rubus ideaus). Postharvest Biol. Tec. 2004, 33, 67–78. [Google Scholar] [CrossRef]
- Wang, B.; Li, F.; Pan, N.; Kong, B.; Xia, X. Effect of ice structuring protein on the quality of quick-frozen patties subjected to multiple freeze-thaw cycles. Meat Sci. 2020, 172, 108335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Y.; Lu, W.; Meng, F.; Wu, C.; Gou, X. Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. J. Exp. Bot. 2012, 63, 3935–3951. [Google Scholar] [CrossRef]
- Wang, H.; Fu, Q.; Chen, S.; Hu, Z.; Xie, H. Effect of hot-water blanching pretreatment on drying characteristics and product qualities for the novel integrated freeze-drying of apple slices. J. Food Qual. 2018, 2018, 1347513. [Google Scholar] [CrossRef]
- Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Kidoń, M. Applicability of vacuum impregnation to modify physico-chemical, sensory and nutritive characteristics of plant origin products—A review. Int. J. Mol. Sci. 2014, 15, 16577–16610. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.Q.; Huang, R.M.; Wen, P.; Song, Y.; He, B.L.; Tan, J.L.; Hao, H.L.; Wang, H. Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels. Carbohydr. Polym. 2021, 254, 117371. [Google Scholar] [CrossRef]
- Taiwo, K.A.; Eshtiaghi, M.N.; Ade-Omowaye, B.I.; Knorr, D. Osmotic dehydration of strawberry halves: Influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. Int. J. Food Sci. Technol. 2023, 38, 693–707. [Google Scholar] [CrossRef]
- Neri, L.; Di Biase, L.; Sacchetti, G.; Di Mattia, C.; Santarelli, V.; Mastrocola, D.; Pittia, P. Use of vacuum impregnation for the production of high quality fresh-like apple products. J. Food Eng. 2016, 207, 163–178. [Google Scholar] [CrossRef]
- Wu, L.; Orikasa, T.; Tokuyasu, K.; Shiina, T.; Tagawa, A. Applicability of vacuum-dehydrofreezing technique for the long-term preservation of fresh-cut eggplant: Effects of process conditions on the quality attributes of the samples. J. Food Eng. 2008, 91, 560–565. [Google Scholar] [CrossRef]
- Demirci, K.; Bayraktar, B.; Özdemir, E.E.; Görgüç, A.; Yılmaz, F.M. The potential of nanoscale polysaccharides for the cryoprotection of deep-frozen food products. Food Biosci. 2025, 68, 106381. [Google Scholar] [CrossRef]
- Tappi, S.; Tylewicz, U.; Romani, S.; Siroli, L.; Patrignani, F.; Dalla Rosa, M.; Rocculi, P. Optimization of vacuum impregnation with calcium lactate of minimally processed melon and shelf-life study in real storage conditions. J. Food Sci. 2016, 81, E2734–E2742. [Google Scholar] [CrossRef]
- Martins, F.C.; Sentanin, M.A.; Souza, D.D. Analytical methods in food additives determination: Compounds with functional applications. Food Chem. 2019, 272, 732–750. [Google Scholar] [CrossRef]
- Gurova, T.A.; Denisyuk, S.G. The relationship of cell membrane permeability of wheat seedlings with resistance of the variety. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 042034. [Google Scholar] [CrossRef]
- Xian, M.; Bi, J.; Hu, L.; Xie, Y.; Zhao, Y.; Jin, X. Synergistic mechanism of steam blanching and freezing conditions on the texture of frozen yellow peaches based on macroscopic and microscopic properties. J. Texture Stud. 2024, 55, e12830. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.; Canet, W.; Rodríguez, M.T. Mechanical assessment of texture of sweet cherries: Effects of freezing. J. Sci. Food Agr. 1994, 66, 1–7. [Google Scholar] [CrossRef]
- Kong, C.H.Z.; Hamid, N.; Ma, Q.; Lu, J.; Wang, B.-G.; Sarojini, V. Antifreeze peptide pretreatment minimizes freeze-thaw damage to cherries: An in-depth investigation. LWT-Food Sci. Technol. 2017, 84, 441–448. [Google Scholar] [CrossRef]
- Jha, P.K.; Chapleau, N.; Meyers, P.E.; Pathier, D.; Le-Bail, A. Can cryogenic freezing preserve the quality of fruit matrices during long-term storage compared to the mechanical method? Appl. Food Res. 2024, 4, 100374. [Google Scholar] [CrossRef]
- Song, J.; Meng, L.; Li, D.; Min, Q.; Liu, C. Vacuum impregnation pretreatment with maltose syrup to improve the quality of frozen lotus root. Int. J. Refrig. 2017, 76, 261–270. [Google Scholar] [CrossRef]
- Loredo, A.B.G.; Guerrero, S.N.; Alzamora, S.M. Relationships between texture and rheological properties in blanched apple slices (var. Granny Smith) studied by partial least squares regression. Food Bioprocess Technol. 2014, 7, 2840–2854. [Google Scholar] [CrossRef]
- Krasaekoopt, W.; Suthanwong, B. Vacuum impregnation of probiotics in fruit pieces and their survival during refrigerated storage. Agric. Nat. Resour. 2008, 42, 723–731. Available online: https://li01.tci-thaijo.org/index.php/anres/article/view/244509 (accessed on 3 July 2025).
- Song, L.; Yu, H.; Yu, Z. Methylcyclopropene treatment retards the yellowing in pak choi (Brassica rapa subsp. Chinensis) through modulating the programmed cell death during storage at 20 °C. Sci. Hortic. 2023, 312, 111885. [Google Scholar] [CrossRef]
- Liu, W.; Gao, J.; Sun, X.; Wang, Y.; Xiao, H.; Liu, C.; Wang, H. Sorbitol impregnation reduces freeze-thaw damage in potato slices subjected to different freezing methods. Int. J. Food Sci. Tech. 2025, 60, vvaf036. [Google Scholar] [CrossRef]
- Hornberger, K.; Li, R.; Duarte, A.R.C.; Hubel, A. Natural deep eutectic systems for nature-inspired cryopreservation of cells. AIChE J. 2020, 67, e17085. [Google Scholar] [CrossRef]
- Torreggiani, D.; Bertolo, G. Osmotic pretreatments in fruit processing: Chemical, physical and structural effects. J. Food Eng. 2001, 49, 247–253. [Google Scholar] [CrossRef]
- Moreno, J.; Chiralt, A.; Escriche, I.; Serra, J.A. Effect of blanching/osmotic dehydration combined methods on quality and stability of minimally processed strawberries. Food Res. Int. 2000, 33, 609–616. [Google Scholar] [CrossRef]
- Herrero, A.M.; Carmona, P.; García, M.L.; Solas, M.T.; Careche, M. Ultrastructural changes and structure and mobility of myowater in frozen-stored hake (Merluccius merluccius L.) muscle: Relationship with functionality and texture. J. Agric. Food Chem. 2005, 53, 2558–2566. [Google Scholar] [CrossRef]
- Kumar, A.; Cincotti, A.; Aparicio, S. Insights into the interaction between lipid bilayers and trehalose aqueous solutions. J. Mol. Liq. 2020, 314, 113639. [Google Scholar] [CrossRef]
Impregnation Method | Impregnation Time | Trehalose | Sorbitol |
---|---|---|---|
Control (without impregnation) | 61.07 ± 7.38 Af | 61.07 ± 0.37 Ai | |
Atmospheric pressure impregnation | 0.5 h | 217.93 ± 14.64 Be | 284.17 ± 5.19 Af |
1 h | 222.63 ± 12.74 Be | 237.13 ± 6.77 Ah | |
1.5 h | 268.47 ± 7.80 Ad | 365.83 ± 9.35 Ac | |
2 h | 337.17 ± 4.15 Aab | 259.27 ± 9.90 Bg | |
2.5 h | 299.57 ± 10.62 Ac | 311.17 ± 9.11 Ae | |
Vacuum impregnation | 30 min | 332.83 ± 5.80 Bb | 423.60 ± 12.61 Ab |
40 min | 333.17 ± 14.67 Bb | 357.83 ± 4.46 Ac | |
50 min | 345.17 ± 7.05 Bab | 500.80 ± 13.76 Aa | |
60 min | 354.63 ± 11.17 Aa | 352.13 ± 7.04 Ac | |
70 min | 335.37 ± 5.41 Ab | 335.47 ± 7.60 Ad |
Impregnation Method | Impregnation Time | Trehalose | Sorbitol |
---|---|---|---|
Control (without impregnation) | 12.57 ± 0.55 Aab | 12.57 ± 0.55 Aa | |
Atmospheric pressure impregnation | 0.5 h | 13.07 ± 2.15 Aab | 8.01 ± 1.58 Bd |
1 h | 13.26 ± 0.54 Aa | 8.22 ± 0.91 Bd | |
1.5 h | 12.92 ± 0.45 Aab | 7.80 ± 0.67 Bd | |
2 h | 12.83 ± 0.81 Aab | 8.80 ± 0.85 Bcd | |
2.5 h | 13.51 ± 0.65 Aa | 10.60 ± 0.51 Bb | |
Vacuum impregnation | 30 min | 12.31 ± 0.99 Aab | 8.51 ± 0.24 Bcd |
40 min | 12.39 ± 0.02 Aab | 9.73 ± 0.27 Bbc | |
50 min | 12.23 ± 0.98 Aab | 8.18 ± 1.06 Bd | |
60 min | 11.40 ± 0.94 Ab | 7.69 ± 0.69 Bd | |
70 min | 12.55 ± 0.19 Aab | 7.58 ± 0.47 Bd |
Impregnation Method | Impregnation Time | Trehalose | Sorbitol |
---|---|---|---|
Control (without impregnation) | 41.66 ± 2.06 Aabc | 41.66 ± 2.06 Ab | |
Atmospheric pressure impregnation | 0.5 h | 41.92 ± 2.75 Aabc | 37.59 ± 1.27 Bc |
1 h | 38.77 ± 1.58 Abcd | 38.50 ± 3.37 Ac | |
1.5 h | 38.55 ± 2.98 Abcd | 31.87 ± 1.46 Be | |
2 h | 38.08 ± 0.18 Abcd | 33.63 ± 1.49 Bde | |
2.5 h | 48.85 ± 2.15 Aa | 35.86 ± 0.80 Bcd | |
Vacuum impregnation | 30 min | 45.52 ± 0.93 Aab | 41.63 ± 1.41 Bb |
40 min | 36.94 ± 1.20 Bbcd | 45.21 ± 1.26 Aa | |
50 min | 33.63 ± 1.38 Bcde | 37.61 ± 1.18 Ac | |
60 min | 31.44 ± 1.35 Bde | 36.05 ± 1.75 Acd | |
70 min | 24.91 ± 0.57 Be | 32.90 ± 1.83 Ade |
Impregnation Method | Impregnation Time | Hardness/N | Chewiness/N·mm | Cohesiveness/Ratio | Springiness/mm | ||||
---|---|---|---|---|---|---|---|---|---|
Trehalose | Sorbitol | Trehalose | Sorbitol | Trehalose | Sorbitol | Trehalose | Sorbitol | ||
Fresh-cut samples | 188.25 ± 2.86 Aa | 188.25 ± 2.86 Aa | 94.06 ± 1.54 Aa | 94.06 ± 1.54 Aa | 0.42 ± 0.01 Ab | 0.42 ± 0.01 Ad | 1.19 ± 0.01 Aa | 1.19 ± 0.01 Aa | |
Control (without impregnation) | 43.36 ± 4.46 Ab | 43.36 ± 4.46 Ab | 21.88 ± 2.39 Abc | 21.88 ± 2.39 Ab | 0.52 ± 0.01 Aab | 0.52 ± 0.01 Aabc | 0.97 ± 0.02 Abcd | 0.97 ± 0.02 Ab | |
Atmospheric pressure impregnation | 0.5 h | 37.19 ± 0.68 Ab | 21.25 ± 0.38 Bghj | 17.60 ± 6.03 Abc | 8.48 ± 1.22 Bf | 0.50 ± 0.07 Ab | 0.51 ± 0.04 Aabc | 0.92 ± 0.19 Abcd | 0.77 ± 0.04 Be |
1 h | 39.60 ± 3.69 Ab | 25.31 ± 2.00 Bdefg | 17.90 ± 1.71 Abc | 10.36 ± 1.86 Bef | 0.48 ± 0.02 Ab | 0.50 ± 0.02 Abc | 0.95 ± 0.02 Abcd | 0.82 ± 0.06 Bde | |
1.5 h | 36.84 ± 4.69 Ab | 27.87 ± 2.05 Bdef | 16.29 ± 0.28 Ac | 14.04 ± 1.22 Bcde | 0.51 ± 0.02 Ba | 0.58 ± 0.02 Aa | 0.87 ± 0.06 Ade | 0.87 ± 0.05 Abcde | |
2 h | 40.10 ± 1.93 Ab | 19.85 ± 0.54 Bi | 21.88 ± 2.29 Abc | 8.57 ± 0.67 Bf | 0.53 ± 0.07 Aab | 0.51 ± 0.02 Aabc | 1.02 ± 0.02 Ab | 0.84 ± 0.07 Bcde | |
2.5 h | 44.57 ± 3.66 Ab | 29.07 ± 3.36 Bde | 16.68 ± 4.55 Ac | 12.17 ± 3.60 Acdef | 0.68 ± 0.28 Aa | 0.52 ± 0.05 Babc | 0.87 ± 0.05 Ade | 0.80 ± 0.06 Ade | |
Vacuum impregnation | 30 min | 42.35 ± 10.68 b | 37.04 ± 3.99 c | 18.89 ± 5.7 3bc | 15.87 ± 0.98 cd | 0.49 ± 0.01 b | 0.49 ± 0.03 c | 0.89 ± 0.05 Acde | 0.87 ± 0.02 Abcde |
40 min | 38.24 ± 7.01 b | 29.77 ± 1.88 d | 17.89 ± 3.52 bc | 16.81 ± 1.86 c | 0.52 ± 0.03 ab | 0.57 ± 0.03 ab | 0.91 ± 0.05 Abcd | 0.99 ± 0.03 Ab | |
50 min | 37.64 ± 4.77 b | 24.81 ± 3.16 efg | 18.64 ± 0.95 bc | 12.46 ± 2.51 cdef | 0.54 ± 0.03 ab | 0.54 ± 0.05 abc | 0.92 ± 0.02 Abcd | 0.92 ± 0.02 Abcd | |
60 min | 45.46 ± 7.18 b | 33.98 ± 1.69 c | 23.76 ± 2.41 b | 14.82 ± 3.56 cde | 0.52 ± 0.02 ab | 0.49 ± 0.08 c | 1.00 ± 0.07 Abc | 0.89 ± 0.08 Abcde | |
70 min | 22.06 ± 2.05 c | 23.41 ± 2.71 fgi | 8.48 ± 1.71 d | 12.85 ± 4.10 cdef | 0.49 ± 0.04 b | 0.57 ± 0.05 ab | 0.77 ± 0.03 Ae | 0.95 ± 0.15 Abc |
Impregnation Method | Cell Equivalent Diameter/(μm) | Cell Roundness |
---|---|---|
Fresh-cut samples | 36.138 ± 1.87 a | 0.899 ± 0.04 a |
Control (without impregnation) | 17.021 ± 1.82 c | 0.601 ± 0.03 d |
Vacuum impregnation with trehalose solution for 60 min | 23.422 ± 1.37 b | 0.658 ± 0.05 c |
Vacuum impregnation with sorbitol solution for 60 min. | 20.891 ± 1.75 b | 0.716 ± 0.04 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xuan, W.; Qi, Y.; Wan, X.; Gao, X.; Wang, H.; Wu, H. Effects of Different Trehalose and Sorbitol Impregnation Methods on Freeze–Thaw Damage to Potato Slices. Foods 2025, 14, 2389. https://doi.org/10.3390/foods14132389
Xuan W, Qi Y, Wan X, Gao X, Wang H, Wu H. Effects of Different Trehalose and Sorbitol Impregnation Methods on Freeze–Thaw Damage to Potato Slices. Foods. 2025; 14(13):2389. https://doi.org/10.3390/foods14132389
Chicago/Turabian StyleXuan, Wenfang, Yiyang Qi, Xueqian Wan, Xuemei Gao, Haiou Wang, and Huichang Wu. 2025. "Effects of Different Trehalose and Sorbitol Impregnation Methods on Freeze–Thaw Damage to Potato Slices" Foods 14, no. 13: 2389. https://doi.org/10.3390/foods14132389
APA StyleXuan, W., Qi, Y., Wan, X., Gao, X., Wang, H., & Wu, H. (2025). Effects of Different Trehalose and Sorbitol Impregnation Methods on Freeze–Thaw Damage to Potato Slices. Foods, 14(13), 2389. https://doi.org/10.3390/foods14132389