Enrichment of Rice Flour with Almond Bagasse Powder: The Impact on the Physicochemical and Functional Properties of Gluten-Free Bread
Abstract
1. Introduction
2. Materials and Methods
2.1. Almond Bagasse and Almond Bagasse Powder Production
2.2. Bread Production Using Almond Bagasse Powder
2.3. Analytical Determinations
2.3.1. Physicochemical Properties
2.3.2. Techno-Functional Properties
2.3.3. Rheological Properties
2.3.4. Antioxidant Properties
2.4. Statistical Analysis
3. Results
3.1. Physicochemical and Techno-Functional Properties of Flour and Bread Under Fresh and Stored Conditions
3.2. Rheological Properties of Flours
3.3. Textural Characteristics of Gels and Bread Under Fresh and Stored Conditions
3.4. Antioxidant Properties and Reducing Sugar Content of Flour and Bread Under Fresh and Stored Conditions
- The increases observed in the fresh bread with almond bagasse substitution relative to the control are mainly attributed to the contribution of bioactive compounds and sugars present in the almond bagasse, as well as to Maillard reactions generated during the thermal pre-treatment of the bagasse powder and the bread baking process. These factors promote the release or transformation of phenolic compounds, enhancing the functional properties of the bread.
- Breads stored for seven days and formulated with hot air-dried bagasse (HAD60) showed more pronounced increases, possibly because antioxidant compounds continue to form during storage as a result of ongoing Maillard reactions, further enhancing the bread’s functional properties. Therefore, the drying method clearly influences the stability and retention of these bioactive compounds during storage.
3.5. Potential Strategies for Texture Optimisation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia-Perez, P.; Xiao, J.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Rajoka, M.S.R.; Barros, L.; Mascoloti Sprea, R.; Amaral, J.S.; Prieto, M.A.; et al. Revalorization of Almond By-Products for the Design of Novel Functional Foods: An Updated Review. Foods 2021, 10, 1823. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Pulido, B.; Bas-Bellver, C.; Betoret, N.; Barrera, C.; Seguí, L. Valorization of Vegetable Fresh-Processing Residues as Functional Powdered Ingredients. A Review on the Potential Impact of Pretreatments and Drying Methods on Bioactive Compounds and Their Bioaccessibility. Front. Sustain. Food Syst. 2021, 5, 654313. [Google Scholar] [CrossRef]
- Tseng, A.; Zhao, Y. Wine Grape Pomace as Antioxidant Dietary Fibre for Enhancing Nutritional Value and Improving Storability of Yogurt and Salad Dressing. Food Chem. 2013, 138, 356–365. [Google Scholar] [CrossRef]
- Barral-Martinez, M.; Fraga-Corral, M.; Garcia-Perez, P.; Simal-Gandara, J.; Prieto, M.A. Almond By-Products: Valorization for Sustainability and Competitiveness of the Industry. Foods 2021, 10, 1793. [Google Scholar] [CrossRef]
- Prgomet, I.; Goncalves, B.; Domínguez-Perles, R.; Pascual-Seva, N.; Barros, A.I.R.N.A. Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application. Molecules 2017, 22, 1774. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.; Betoret, E.; Barrera, C.; Seguí, L.; Betoret, N. Integral Recovery of Almond Bagasse through Dehydration: Physico-Chemical and Technological Properties and Hot Air-Drying Modelling. Sustainability 2023, 15, 10704. [Google Scholar] [CrossRef]
- Mordor Intelligence Análisis de Participación y Tamaño Del Mercado de Leche de Almendras—Informe de Investigación de La Industria—Tendencias de Crecimiento. Available online: https://www.mordorintelligence.com/es/industry-reports/global-almond-milk-market (accessed on 22 June 2025).
- Karam, M.C.; Petit, J.; Zimmer, D.; Baudelaire Djantou, E.; Scher, J. Effects of Drying and Grinding in Production of Fruit and Vegetable Powders: A Review. J. Food Eng. 2016, 188, 32–49. [Google Scholar] [CrossRef]
- Soares Mateus, A.R.; Pena, A.; Sanches-Silva, A. Unveiling the Potential of Bioactive Compounds in Vegetable and Fruit By-Products: Exploring Phytochemical Properties, Health Benefits, and Industrial Opportunities. Curr. Opin. Green. Sustain. Chem. 2024, 48, 100938. [Google Scholar] [CrossRef]
- Upadhyay, S.; Tiwari, R.; Kumar, S.; Gupta, S.M.; Kumar, V.; Rautela, I.; Kohli, D.; Rawat, B.S.; Kaushik, R. Utilization of Food Waste for the Development of Composite Bread. Sustainability 2023, 15, 13079. [Google Scholar] [CrossRef]
- Amoah, I.; Taarji, N.; Johnson, P.N.T.; Barrett, J.; Cairncross, C.; Rush, E. Plant-Based Food By-Products: Prospects for Valorisation in Functional Bread Development. Sustainability 2020, 12, 7785. [Google Scholar] [CrossRef]
- Duarte, S.; Puchades, A.; Jiménez-Hernández, N.; Betoret, E.; Gosalbes, M.J.; Betoret, N. Almond (Prunus dulcis) Bagasse as a Source of Bioactive Compounds with Antioxidant Properties: An In Vitro Assessment. Antioxidants 2023, 12, 1229. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.; Harasym, J.; Sánchez-García, J.; Kelaidi, M.; Betoret, E.; Betoret, N. Suitability of Almond Bagasse Powder as a Wheat Flour Substitute in Biscuit Formulation. J. Food Qual. 2024, 2024, 7152554. [Google Scholar] [CrossRef]
- Marti, A.; Tyl, C.E.; Bresciani, A.; Nedviha, S.; Harasym, J. Characteristics of Soft Wheat and Tiger Nut (Cyperus esculentus) Composite Flour Bread. Foods 2025, 14, 229. [Google Scholar] [CrossRef]
- AACC (American Association of Cereal Chemists). Approved Methods of the AACC.; American Association of Cereal Chemists: St. Paul., MN, USA, 2000. [Google Scholar]
- Hu, R.; Lin, L.; Liu, T.; Ouyang, P.; He, B.; Liu, S. Reducing Sugar Content in Hemicellulose Hydrolysate by DNS Method: A Revisit. J. Biobased Mater. Bioenergy 2008, 2, 156–161. [Google Scholar] [CrossRef]
- Başkan, K.S.; Tütem, E.; Akyüz, E.; Özen, S.; Apak, R. Spectrophotometric Total Reducing Sugars Assay Based on Cupric Reduction. Talanta 2016, 147, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Abebe, W.; Collar, C.; Ronda, F. Impact of Variety Type and Particle Size Distribution on Starch Enzymatic Hydrolysis and Functional Properties of Tef Flours. Carbohydr. Polym. 2015, 115, 260–268. [Google Scholar] [CrossRef]
- Harasym, J.; Satta, E.; Kaim, U. Ultrasound Treatment of Buckwheat Grains Impacts Important Functional Properties of Resulting Flour. Molecules 2020, 25, 3012. [Google Scholar] [CrossRef] [PubMed]
- International Association for Cereal Science and Technology. Rapid Pasting Method Using the Newport Rapid Visco Analyser; 1996. Available online: https://icc.or.at/icc-standards/standards-overview/162-standard-method (accessed on 2 July 2025).
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Nixdorf, S.L.; Hermosín-Gutiérrez, I. Brazilian Red Wines Made from the Hybrid Grape Cultivar Isabel: Phenolic Composition and Antioxidant Capacity. Anal. Chim. Acta 2010, 659, 208–215. [Google Scholar] [CrossRef]
- Olędzki, R.; Lutosławski, K.; Nowicka, P.; Wojdyło, A.; Harasym, J. Non-Commercial Grapevines Hybrids Fruits as a Novel Food of High Antioxidant Activity. Foods 2022, 11, 2216. [Google Scholar] [CrossRef]
- Aguilar, N.; Albanell, E.; Miñarro, B.; Guamis, B.; Capellas, M. Effect of Tiger Nut-Derived Products in Gluten-Free Batter and Bread. Food Sci. Technol. Int. 2015, 21, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Wani, T.A.; Wani, S.M.; Masoodi, F.A.; Gani, A. Incorporation of Carrot Pomace Powder in Wheat Flour: Effect on Flour, Dough and Cookie Characteristics. J. Food Sci. Technol. 2016, 53, 3715–3724. [Google Scholar] [CrossRef]
- Djeghim, F.; Bourekoua, H.; Różyło, R.; Bieńczak, A.; Tanaś, W.; Zidoune, M.N. Effect of By-Products from Selected Fruits and Vegetables on Gluten-Free Dough Rheology and Bread Properties. Appl. Sci. 2021, 11, 4605. [Google Scholar] [CrossRef]
- Bas-Bellver, C.; Barrera, C.; Betoret, N.; Seguí, L.; Harasym, J. White Cabbage Waste Powder Improves Gluten-Free Rice-Based Breadsticks Functional and Nutritional Characteristics. LWT 2024, 212, 117008. [Google Scholar] [CrossRef]
- Bodart, M.; de Peñaranda, R.; Deneyer, A.; Flamant, G. Photometry and Colorimetry Characterisation of Materials in Daylighting Evaluation Tools. Build. Environ. 2008, 43, 2046–2058. [Google Scholar] [CrossRef]
- Chareonthaikij, P.; Uan-On, T.; Prinyawiwatkul, W. Effects of Pineapple Pomace Fibre on Physicochemical Properties of Composite Flour and Dough, and Consumer Acceptance of Fibre-Enriched Wheat Bread. Int. J. Food Sci. Technol. 2016, 51, 1120–1129. [Google Scholar] [CrossRef]
- Monteiro, J.S.; Farage, P.; Zandonadi, R.P.; Botelho, R.B.A.; de Oliveira, L.d.L.; Raposo, A.; Shakeel, F.; Alshehri, S.; Mahdi, W.A.; Araújo, W.M.C. A Systematic Review on Gluten-Free Bread Formulations Using Specific Volume as a Quality Indicator. Foods 2021, 10, 614. [Google Scholar] [CrossRef]
- Shofian, N.M.; Hamid, A.A.; Osman, A.; Saari, N.; Anwar, F.; Dek, M.S.P.; Hairuddin, M.R. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits. Int. J. Mol. Sci. 2011, 12, 4678–4692. [Google Scholar] [CrossRef] [PubMed]
- Baik, M.Y.; Chinachoti, P. Moisture Redistribution and Phase Transitions during Bread Staling. Cereal Chem. 2000, 77, 484–488. [Google Scholar] [CrossRef]
- Ratti, C. Hot Air and Freeze-Drying of High-Value Foods: A Review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Martínez-Las Heras, R.; Landines, E.F.; Heredia, A.; Castelló, M.L.; Andrés, A. Influence of Drying Process and Particle Size of Persimmon Fibre on Its Physicochemical, Antioxidant, Hydration and Emulsifying Properties. J. Food Sci. Technol. 2017, 54, 2902–2912. [Google Scholar] [CrossRef]
- Kahlaoui, M.; Bertolino, M.; Barbosa-Pereira, L.; Ben Haj Kbaier, H.; Bouzouita, N.; Zeppa, G. Almond Hull as a Functional Ingredient of Bread: Effects on Physico-Chemical, Nutritional, and Consumer Acceptability Properties. Foods 2022, 11, 777. [Google Scholar] [CrossRef]
- Kotoki, D.; Deka, S.C. Baking Loss of Bread with Special Emphasis on Increasing Water Holding Capacity. J. Food Sci. Technol. 2010, 47, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.; Betoret, E.; Betoret, N. Shelf Life and Functional Quality of Almond Bagasse Powders as Influenced by Dehydration and Storing Conditions. Foods 2024, 13, 744. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Leelavathi, K.; Prasada Rao, U.J.S. Improvement of Dietary Fiber Content and Antioxidant Properties in Soft Dough Biscuits with the Incorporation of Mango Peel Powder. J. Cereal Sci. 2008, 48, 319–326. [Google Scholar] [CrossRef]
- Gray, J.A.; Bemiller, J.N. Bread Staling: Molecular Basis and Control. Compr. Rev. Food Sci. Food Saf. 2003, 2, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Fadda, C.; Sanguinetti, A.M.; Del Caro, A.; Collar, C.; Piga, A. Bread Staling: Updating the View. Compr. Rev. Food Sci. Food Saf. 2014, 13, 473–492. [Google Scholar] [CrossRef]
- Bas-Bellver, C.; Barrera, C.; Betoret, N.; Seguí, L.; Harasym, J. IV-Range Carrot Waste Flour Enhances Nutritional and Functional Properties of Rice-Based Gluten-Free Muffins. Foods 2024, 13, 1312. [Google Scholar] [CrossRef]
- Caparino, O.A.; Tang, J.; Nindo, C.I.; Sablani, S.S.; Powers, J.R.; Fellman, J.K. Effect of Drying Methods on the Physical Properties and Microstructures of Mango (Philippine ‘Carabao’ Var.) Powder. J. Food Eng. 2012, 111, 135–148. [Google Scholar] [CrossRef]
- Armero, E.; Collar, C. Texture Properties of Formulated Wheat Doughs Relationships with Dough and Bread Technological Quality. Eur. Food Res. Technol. 2015, 240, 136–145. [Google Scholar] [CrossRef]
- Dus, S.J.; Kokini, J.L. Prediction of the Nonlinear Viscoelastic Properties of a Hard Wheat Flour Dough Using the Bird–Carreau Constitutive Model. J. Rheol. 1990, 34, 1069–1084. [Google Scholar] [CrossRef]
- Fetouhi, A.; Benatallah, L.; Nawrocka, A.; Szymańska-Chargot, M.; Bouasla, A.; Tomczyńska-Mleko, M.; Zidoune, M.N.; Sujak, A. Investigation of Viscoelastic Behaviour of Rice-Field Bean Gluten-Free Dough Using the Biophysical Characterization of Proteins and Starch: A FT-IR Study. J. Food Sci. Technol. 2019, 56, 1316–1327. [Google Scholar] [CrossRef]
- Kırbaş, Z.; Kumcuoglu, S.; Tavman, S. Effects of Apple, Orange and Carrot Pomace Powders on Gluten-Free Batter Rheology and Cake Properties. J. Food Sci. Technol. 2019, 56, 914–926. [Google Scholar] [CrossRef] [PubMed]
- Lazaridou, A.; Duta, D.; Papageorgiou, M.; Belc, N.; Biliaderis, C.G. Effects of Hydrocolloids on Dough Rheology and Bread Quality Parameters in Gluten-Free Formulations. J. Food Eng. 2007, 79, 1033–1047. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, F. Plant Protein Heat-Induced Gels: Formation Mechanisms and Regulatory Strategies. Coatings 2023, 13, 1899. [Google Scholar] [CrossRef]
- Verbeke, C.; Debonne, E.; Versele, S.; Van Bockstaele, F.; Eeckhout, M. Technological Evaluation of Fiber Effects in Wheat-Based Dough and Bread. Foods 2024, 13, 2582. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Ahlborn, G.J.; Pike, O.A.; Hendrix, S.B.; Hess, W.M.; Huber, C.S. Sensory, Mechanical, and Microscopic Evaluation of Staling in Low-Protein and Gluten-Free Breads. Cereal Chem. 2005, 82, 328–335. [Google Scholar] [CrossRef]
- Wojdyło, A.; Figiel, A.; Oszmiański, J. Effect of Drying Methods with the Application of Vacuum Microwaves on the Bioactive Compounds, Color, and Antioxidant Activity of Strawberry Fruits. J. Agric. Food Chem. 2009, 57, 1337–1343. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Hall, R.D.; Capanoglu, E. A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2016, 56 (Suppl. S1), S110–S129. [Google Scholar] [CrossRef]
- Dewanto, V.; Xianzhong, W.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Nooshkam, M.; Varidi, M.; Bashash, M. The Maillard Reaction Products as Food-Born Antioxidant and Antibrowning Agents in Model and Real Food Systems. Food Chem. 2019, 275, 644–660. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zou, H.; Jiang, L.; Yao, J.; Liang, J.; Wang, Q. Semi-Solid State Fermentation of Food Waste for Production of Bacillus Thuringiensis Biopesticide. Biotechnol. Bioprocess. Eng. 2015, 20, 1123–1132. [Google Scholar] [CrossRef]
- Zhou, L.; Cao, Z.; Bi, J.; Yi, J.; Chen, Q.; Wu, X.; Zhou, M. Degradation Kinetics of Total Phenolic Compounds, Capsaicinoids and Antioxidant Activity in Red Pepper during Hot Air and Infrared Drying Process. Int. J. Food Sci. Technol. 2016, 51, 842–853. [Google Scholar] [CrossRef]
- de Ancos, B.; Sánchez-Moreno, C.; Zacarías, L.; Rodrigo, M.J.; Sáyago Ayerdí, S.; Blancas Benítez, F.J.; Domínguez Avila, J.A.; González-Aguilar, G.A. Effects of Two Different Drying Methods (Freeze-Drying and Hot Air-Drying) on the Phenolic and Carotenoid Profile of ‘Ataulfo’ Mango by-Products. J. Food Meas. Charact. 2018, 12, 2145–2157. [Google Scholar] [CrossRef]
- Mandalari, G.; Vardakou, M.; Faulks, R.; Bisignano, C.; Martorana, M.; Smeriglio, A.; Trombetta, D. Food Matrix Effects of Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion. Nutrients 2016, 8, 568. [Google Scholar] [CrossRef]
- de la Cueva, S.P.; Seiquer, I.; Mesías, M.; Rufián-Henares, J.Á.; Delgado-Andrade, C. Evaluation of the Availability and Antioxidant Capacity of Maillard Compounds Present in Bread Crust: Studies in Caco-2 Cells. Foods 2017, 6, 5. [Google Scholar] [CrossRef]
- Zieliński, H.; Michalska, A.; Ceglińska, A.; Lamparski, G. Antioxidant Properties and Sensory Quality of Traditional Rye Bread as Affected by the Incorporation of Flour with Different Extraction Rates in the Formulation. Eur. Food Res. Technol. 2008, 226, 671–680. [Google Scholar] [CrossRef]
- Michalska, A.; Amigo-Benavent, M.; Zielinski, H.; del Castillo, M.D. Effect of Bread Making on Formation of Maillard Reaction Products Contributing to the Overall Antioxidant Activity of Rye Bread. J. Cereal Sci. 2008, 48, 123–132. [Google Scholar] [CrossRef]
- Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B.; Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant Compounds and Their Antioxidant Mechanism. In Antioxidants; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Zamora, R.; Hidalgo, F.J. Coordinate Contribution of Lipid Oxidation and Maillard Reaction to the Nonenzymatic Food Browning. Crit. Rev. Food Sci. Nutr. 2005, 45, 49–59. [Google Scholar] [CrossRef]
- Garrido, I.; Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B. Polyphenols and Antioxidant Properties of Almond Skins: Influence of Industrial Processing. J. Food Sci. 2008, 73, C106–C115. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Chiodelli, G.; Giuberti, G.; Masoero, F.; Trevisan, M.; Lucini, L. Evaluation of Phenolic Profile and Antioxidant Capacity in Gluten-Free Flours. Food Chem. 2017, 228, 367–373. [Google Scholar] [CrossRef]
- Purlis, E. Browning Development in Bakery Products—A Review. J. Food Eng. 2010, 99, 239–249. [Google Scholar] [CrossRef]
- Muttagi, G.C.; Ravindra, U. Chemical and Nutritional Composition of Traditional Rice Varieties of Karnataka. J. Pharmacogn. Phytochem. 2020, 9, 2300–2309. [Google Scholar] [CrossRef]
- Carl Hoseney, R. Chemical Changes in Carbohydrates Produced by Thermal Processing. J. Chem. Educ. 1984, 61, 308–312. [Google Scholar] [CrossRef]
- Mrázková, M.; Sumczynski, D.; Orsavová, J. Influence of Storage Conditions on Stability of Phenolic Compounds and Antioxidant Activity Values in Nutraceutical Mixtures with Edible Flowers as New Dietary Supplements. Antioxidants 2023, 12, 962. [Google Scholar] [CrossRef] [PubMed]
- Galmarini, M.V.; Maury, C.; Mehinagic, E.; Sanchez, V.; Baeza, R.I.; Mignot, S.; Zamora, M.C.; Chirife, J. Stability of Individual Phenolic Compounds and Antioxidant Activity During Storage of a Red Wine Powder. Food Bioproc Tech. 2013, 6, 3585–3595. [Google Scholar] [CrossRef]
- Mastrocola, D.; Munari, M. Progress of the Maillard Reaction and Antioxidant Action of Maillard Reaction Products in Preheated Model Systems during Storage. J. Agric. Food Chem. 2000, 48, 3555–3559. [Google Scholar] [CrossRef]
Sample | Xw (g Water/g) | WAC (g Water/g) | OAC (g Oil/g) | Colour | ||||
---|---|---|---|---|---|---|---|---|
L* | a* | b* | C* | ∆E | ||||
LYO 1 | 0.02 ± 0.08 | 8.4 ± 1.8 | 4.20 ± 0.06 | 66.56 ± 0.01 | 6.039 ± 0.002 | 15.026 ± 0.014 | 16.190 ± 0.012 | 6.7 ± 0.2 |
HAD60 1 | 0.014 ± 0.002 | 2.9 ± 0.5 | 2.3 ± 0.5 | 62.358 ± 0.010 | 4.999 ± 0.009 | 14.279 ± 0.006 | 15.128 ± 0.08 | 9.8 ± 0.5 |
Rice flour | 0.1228 ± 0.0010 g | 2.25 ± 0.03 f | 1.57 ± 0.03 ab | 56.6 ± 0.8 a | 2.655 ± 0.006 i | 10.5 ± 0.3 d | 11.20 ± 0.07 b | - |
HAD60-5% | 0.0968 ± 0.0004 a | 2.13 ± 0.04 def | 1.60 ± 0.03 abc | 115 ± 2 g | 1.809 ± 0.011 b | 8.95 ± 0.14 a | 9.1 ± 0.2 a | 3 ± 2 b |
HAD60-10% | 0.0921 ± 0.0008 b | 2.06 ± 0.07 bcd | 1.56 ± 0.11 ab | 112.4 ± 1.3 efg | 1.820 ± 0.012 b | 9.09 ± 0.09 a | 9.13 ± 0.13 a | 3.1 ± 0.2 b |
HAD60-15% | 0.087 ± 0.002 c | 2.08 ± 0.07 bcde | 1.53 ± 0.10 ab | 113.8 ± 1.0 fg | 1.88 ± 0.02 c | 9.47 ± 0.08 b | 9.65 ± 0.08 | 3.5 ± 0.4 |
HAD60-20% | 0.0848 ± 0.0004 d | 2.10 ± 0.11 cde | 1.55 ± 0.10 ab | 111.2 ± 1.5 def | 2.015 ± 0.040 d | 9.7 ± 0.2 bc | 10.2 ± 0.2 ab | 5 ± 2 d |
HAD60-25% | 0.0812 ± 0.0002 e | 1.97 ± 0.08 ab | 1.52 ± 0.02 a | 109.3 ± 1.1 cd | 2.247 ± 0.023 f | 10.6 ± 0.3 d | 10.27 ± 0.27 ab | 6 ± 2 d |
HAD60-30% | 0.0771 ± 0.0004 f | 1.99 ± 0.09 abc | 1.59 ± 0.03 abc | 106.2 ± 2.3 b | 2.55 ± 0.04 h | 11.2 ± 0.2 e | 8.9 ± 5.1 a | 7 ± 2 de |
LYO-5% | 0.09554 ± 0.00014 a | 2.182 ± 0.007 ef | 1.73 ± 0.08 d | 111.4 ± 2.6 def | 1.70 ± 0.03 a | 8.9 ± 0.2 a | 9.0 ± 0.2 a | 2.3 ± 0.2 a |
LYO-10% | 0.09196 ± 0.00006 a | 2.135 ± 0.003 def | 1.69 ± 0.08 cd | 112.5 ± 0.3 efg | 1.80 ± 0.02 b | 8.9 ± 0.2 a | 9.06 ± 0.01 a | 3.0 ± 0.3 b |
LYO-15% | 0.0876 ± 0.0004 c | 2.04 ± 0.02 abcd | 1.63 ± 0.06 bcd | 110.0 ± 2.2 de | 2.21 ± 0.02 e | 10.4 ± 0.2 d | 10.6 ± 0.2 ab | 3.1 ± 0.2 b |
LYO-20% | 0.0837 ± 0.0007 d | 2.0 ± 0.2 abcd | 1.58 ± 0.02 ab | 112.6 ± 1.7 fg | 2.370 ± 0.01 g | 10.5 ± 0.2 d | 10.8 ± 0.2 ab | 3.3 ± 0.6 b |
LYO-25% | 0.077 ± 0.003 e | 2.00 ± 0.02 abc | 1.53 ± 0.03 ab | 109.6 ± 3.5 d | 2.37 ± 0.05 g | 10.0 ± 0.3 c | 10.3 ± 0.3 ab | 3.4 ± 0.3 bc |
LYO-30% | 0.076 ± 0.002 f | 1.94 ± 0.03 a | 1.54 ± 0.07 ab | 107.0 ± 1 bc | 2.378 ± 0.003 g | 10.5 ± 0.3 d | 10.40 ± 0.07 ab | 3.6 ± 0.4 c |
Sample | aw | Specific Volume (cm3/g) | Relative Weight | Colour | ||||
---|---|---|---|---|---|---|---|---|
L* | a* | b* | C* | ∆E | ||||
Fresh bread | ||||||||
Rice flour | 0.985 ± 0.002 a | 2.34 ± 0.02 e | - | 57.2 ± 1.3 de | −4.06 ± 0.14 a | 10.9 ± 0.2 bcdfg | 11.6 ± 0.2 e | - |
HAD60-5% | 0.992 ± 0.006 b | 2.38 ± 0.03 ef | 1.02 ± 0.08 a | 57.1 ± 2.3 de | −3.7 ± 0.4 ab | 9.9 ± 0.6 a | 10.5 ± 0.6 a | 2 ± 3 ab |
HAD60-10% | 0.989 ± 0.005 ab | 2.586 ± 0.011 h | 1.00 ± 0.05 a | 58.1 ± 3.4 cd | −3.1 ± 0.5 bc | 11.0 ± 0.6 dfg | 11.5 ± 0.5 e | 2 ± 4 ab |
HAD60-15% | 0.9890 ± 0.0010 ab | 2.05 ± 0.03 cd | 1.02 ± 0.06 a | 54.4 ± 3.1 abc | −2.4 ± 0.5 d | 10.6 ± 0.4 bcd | 10.9 ± 0.4 bc | 2 ± 3 ab |
HAD60-20% | 0.9883 ± 0.0006 ab | 2.02 ± 0.03 bcd | 1.03 ± 0.07 a | 55 ± 3 bcd | −2.0 ± 0.6 de | 10.6 ± 0.4 bc | 10.7 ± 0.2 abc | 2 ± 2 ab |
HAD60-25% | 0.984 ± 0.003 a | 1.944 ± 0.005 ab | 1.05 ± 0.09 a | 53 ± 3 ab | −1.8 ± 0.4 ef | 10.5 ± 0.4 cde | 10.6 ± 0.7 ab | 2 ± 2 ab |
HAD60-30% | 0.987 ± 0.002 ab | 1.970 ± 0.006 abc | 1.05 ± 0.07 a | 52.9 ± 3.1 a | −1.5 ± 0.7 fg | 10.9 ± 0.7 bc | 11.0 ± 0.3 c | 4 ± 2 b |
LYO-5% | 0.986 ± 0.004 ab | 1.93 ± 0.12 ab | 1.03 ± 0.09 a | 55.6 ± 2.2 cd | −3.1 ± 0.3 c | 10.4 ± 0.3 b | 10.9 ± 0.4 abc | 2 ± 2 a |
LYO-10% | 0.990 ± 0.005 ab | 1.917 ± 0.004 ab | 1.06 ± 0.06 a | 55.6 ± 2.2 cd | −2.0 ± 1.8 def | 10.7 ± 0.6 bcd | 11.1 ± 0.3 cd | 2 ± 2 ab |
LYO-15% | 0.989 ± 0.003 ab | 1.875 ± 0.012 a | 1.06 ± 0.07 a | 56.6 ± 2.2 de | −2.2 ± 0.4 de | 10.4 ± 0.3 b | 10.9 ± 0.4 abc | 2 ± 3 ab |
LYO-20% | 0.989 ± 0.002 ab | 2.10 ± 0.07 d | 1.06 ± 0.07 a | 56 ± 2 cde | −3.1 ± 0.3 c | 11.3 ± 0.4 gh | 11.5 ± 0.5 | 2 ± 2 ab |
LYO-25% | 0.9897 ± 0.0012 ab | 2.453 ± 0.015 fg | 1.06± 0.08 a | 56 ± 2 cde | −1.7 ± 0.5 efg | 11.3 ± 0.5 fgh | 11.4 ± 0.6 de | 2 ± 3 ab |
LYO-30% | 0.989 ± 0.002 ab | 2.51 ± 0.10 gh | 1.04 ± 0.08 a | 55.9 ± 1.6 cd | −1.2 ± 0.6 g | 11.4 ± 0.6 h | 11.6 ± 0.2 e | 4 ± 2 b |
7-day stored bread | ||||||||
Rice flour | 0.989 ± 0.003 ab | 2.40 ± 0.07 c | - | 56 ± 4 ab | −9.3 ± 1.2 a | 16.5 ± 0.7 fg | 18.9 ± 1.2 e | 8.5 ± 0.8 c |
HAD60-5% | 0.989 ± 0.006 abc | 2.5776 ± 0.0012 de | 2.46 ± 0.02 abc | 60 ± 5 c | −6.8 ± 0.7 b | 15.1 ± 0.6 de | 16.5 ± 0.7 cd | 3.5 ± 9 ab |
HAD60-10% | 0.994 ± 0.004 c | 2.7230 ± 0.0013 f | 2.58 ± 0.02 c | 63.4 ± 1.3 d | −5.8 ± 0.4 b | 15.4 ± 0.7 de | 16.4 ± 0.6 cd | 3.8 ± 6.6 ab |
HAD60-15% | 0.988 ± 0.002 ab | 2.30 ± 0.08 b | 2.25 ± 0.09 ab | 59.7 ± 2.4 bc | −3.41 ± 0.04 cd | 9.8 ± 0.4 a | 10.5 ± 0.3 ab | 4 ± 4 ab |
HAD60-20% | 0.9883 ± 0.0006 ab | 2.26 ± 0.04 b | 2.26 ± 0.05 ab | 59 ± 2 c | −1.7 ± 0.9 b | 11.2 ± 0.4 b | 11.3 ± 0.4 b | 4 ± 4 ab |
HAD60-25% | 0.985 ± 0.002 a | 2.26 ± 0.02 b | 2.26 ± 0.02 a | 58 ± 3 bc | −2.0 ± 0.6 de | 10.9 ± 0.4 b | 11.1 ± 0.3 ab | 4.4 ± 2.4 a |
HAD60-30% | 0.985 ± 0.003 a | 2.16 ± 0.03 a | 2.15 ± 0.03 a | 54 ± 3 a | −1.3 ± 0.8 e | 11.23 ± 1.03 b | 11.5 ± 0.9 b | 4.5 ± 3.0 ab |
LYO-5% | 0.989 ± 0.006 | 2.25 ± 0.04 ab | 2.21 ± 0.02 ab | 60.1 ± 0.9 | −3.4 ± 0.2 cd | 10.8 ± 0.2 b | 10 ± 0.2 a | 2 ± 4 a |
LYO-10% | 0.991 ± 0.002 bc | 2.261 ± 0.011 b | 2.259 ± 0.003 bc | 58.6 ± 0.8 bc | −2.6 ± 0.3 de | 11.2 ± 0.5 b | 11.5 ± 0.5 b | 2.7 ± 2.7 a |
LYO-15% | 0.987 ± 0.002 ab | 2.51 ± 0.02 d | 2.518 ± 0.006 ab | 59 ± 3 bc | −6.7 ± 0.3 b | 14.0 ± 0.5 c | 15.4 ± 0.5 c | 3 ± 2 a |
LYO-20% | 0.987 ± 0.002 ab | 2.41 ± 0.08 c | 2.45 ± 0.09 ab | 60.77 ± 0.96 c | −6.7 ± 0.4 c | 15.0 ± 0.4 d | 16.3 ± 0.2 cd | 4± 3 ab |
LYO-25% | 0.989 ± 0.003 ab | 2.521 ± 0.003 d | 2.53 ± 0.03 abc | 60.4 ± 1.2 c | −5.6 ± 0.7 b | 16.5 ± 0.8 g | 17.4 ± 0.6 de | 4 ± 3 ab |
LYO-30% | 0.988 ± 0.003 ab | 2.65 ± 0.04 ef | 2.62 ± 0.06 ab | 60.0 ± 2.4 c | −6.1 ± 0.5 b | 15.8 ± 0.5 ef | 16.9 ± 0.6 d | 4.2 ± 2 ab |
Fresh Bread | 7-day Stored Bread | |||
---|---|---|---|---|
HAD60 | LYO | HAD60 | LYO | |
Antioxidant activity (DPPH) | 15–738% (386%) | 188–580% (402%) | 55–1805% (907%) | 47–1649% (877%) |
Antioxidant activity (FRAP) | 137–621% (307%) | 180–615% (315%) | 88–570% (297%) | 103–521% (287%) |
Total phenol content | 40–134% (82%) | 20–147% (86%) | 39–157% (95%) | 25–142% (84%) |
Reducing sugars | 88–134% (108%) | 38–72% (53%) | 143–202% (168%) | 25–117% (77%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, S.; Sánchez-García, J.; Harasym, J.; Betoret, N. Enrichment of Rice Flour with Almond Bagasse Powder: The Impact on the Physicochemical and Functional Properties of Gluten-Free Bread. Foods 2025, 14, 2382. https://doi.org/10.3390/foods14132382
Duarte S, Sánchez-García J, Harasym J, Betoret N. Enrichment of Rice Flour with Almond Bagasse Powder: The Impact on the Physicochemical and Functional Properties of Gluten-Free Bread. Foods. 2025; 14(13):2382. https://doi.org/10.3390/foods14132382
Chicago/Turabian StyleDuarte, Stevens, Janaina Sánchez-García, Joanna Harasym, and Noelia Betoret. 2025. "Enrichment of Rice Flour with Almond Bagasse Powder: The Impact on the Physicochemical and Functional Properties of Gluten-Free Bread" Foods 14, no. 13: 2382. https://doi.org/10.3390/foods14132382
APA StyleDuarte, S., Sánchez-García, J., Harasym, J., & Betoret, N. (2025). Enrichment of Rice Flour with Almond Bagasse Powder: The Impact on the Physicochemical and Functional Properties of Gluten-Free Bread. Foods, 14(13), 2382. https://doi.org/10.3390/foods14132382