Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3397 KiB  
Article
Application of Spatial Offset Raman Spectroscopy (SORS) and Machine Learning for Sugar Syrup Adulteration Detection in UK Honey
by Mennatullah Shehata, Sophie Dodd, Sara Mosca, Pavel Matousek, Bhavna Parmar, Zoltan Kevei and Maria Anastasiadi
Foods 2024, 13(15), 2425; https://doi.org/10.3390/foods13152425 - 31 Jul 2024
Cited by 1 | Viewed by 2727
Abstract
Honey authentication is a complex process which traditionally requires costly and time-consuming analytical techniques not readily available to the producers. This study aimed to develop non-invasive sensor methods coupled with a multivariate data analysis to detect the type and percentage of exogenous sugar [...] Read more.
Honey authentication is a complex process which traditionally requires costly and time-consuming analytical techniques not readily available to the producers. This study aimed to develop non-invasive sensor methods coupled with a multivariate data analysis to detect the type and percentage of exogenous sugar adulteration in UK honeys. Through-container spatial offset Raman spectroscopy (SORS) was employed on 17 different types of natural honeys produced in the UK over a season. These samples were then spiked with rice and sugar beet syrups at the levels of 10%, 20%, 30%, and 50% w/w. The data acquired were used to construct prediction models for 14 types of honey with similar Raman fingerprints using different algorithms, namely PLS-DA, XGBoost, and Random Forest, with the aim to detect the level of adulteration per type of sugar syrup. The best-performing algorithm for classification was Random Forest, with only 1% of the pure honeys misclassified as adulterated and <3.5% of adulterated honey samples misclassified as pure. Random Forest was further employed to create a classification model which successfully classified samples according to the type of adulterant (rice or sugar beet) and the adulteration level. In addition, SORS spectra were collected from 27 samples of heather honey (24 Calluna vulgaris and 3 Erica cinerea) produced in the UK and corresponding subsamples spiked with high fructose sugar cane syrup, and an exploratory data analysis with PCA and a classification with Random Forest were performed, both showing clear separation between the pure and adulterated samples at medium (40%) and high (60%) adulteration levels and a 90% success at low adulteration levels (20%). The results of this study demonstrate the potential of SORS in combination with machine learning to be applied for the authentication of honey samples and the detection of exogenous sugars in the form of sugar syrups. A major advantage of the SORS technique is that it is a rapid, non-invasive method deployable in the field with potential application at all stages of the supply chain. Full article
Show Figures

Graphical abstract

25 pages, 1504 KiB  
Review
Sourdough Bread Quality: Facts and Factors
by Md Ahmadul Islam and Shahidul Islam
Foods 2024, 13(13), 2132; https://doi.org/10.3390/foods13132132 - 4 Jul 2024
Cited by 1 | Viewed by 1736
Abstract
The term “sourdough” denotes a dough composed of flour and water, fermented through the action of yeast and lactic acid bacteria. The utilization of sourdough fermentation technology can enhance the nutritional attributes of bread made from wheat grain. In recent times, sourdough bread [...] Read more.
The term “sourdough” denotes a dough composed of flour and water, fermented through the action of yeast and lactic acid bacteria. The utilization of sourdough fermentation technology can enhance the nutritional attributes of bread made from wheat grain. In recent times, sourdough bread has experienced a resurgence, fueled by growing consumer demand for healthier bread options. The market dynamics for sourdough illustrate its rapid expansion and significant role in the contemporary food industry. Sourdough fermentation improves nutritional qualities by altering the structure and function of proteins and starch, enhancing dietary fiber, volatile compound profiles, and antioxidant activity, and reducing FODMAPs. The quality of sourdough bread is influenced by several factors, including fermentation environment, flour particle size, protein quality, starch characteristics, and dietary fiber composition. Moreover, the incorporation of alternative grains (intermediate wheatgrass and legume flour) and non-flour ingredients (fruits, herbs, and dairy products) presents opportunities for creating sourdough bread with unique sensory and nutritional profiles. This review offers updated insights on the quality aspects of sourdough fermentation, the factors that influence the effectiveness of the sourdough fermentation process, sourdough technology with unconventional and non-flour ingredients, and the potential market for frozen sourdough, considering its convenience and extended shelf life. Full article
(This article belongs to the Special Issue Functional Cereal Food: Properties, Functionality and Applications)
Show Figures

Graphical abstract

29 pages, 1050 KiB  
Review
Valorization of Seafood Waste for Food Packaging Development
by Zhijing Zhan, Yiming Feng, Jikai Zhao, Mingyu Qiao and Qing Jin
Foods 2024, 13(13), 2122; https://doi.org/10.3390/foods13132122 - 3 Jul 2024
Viewed by 1447
Abstract
Packaging plays a crucial role in protecting food by providing excellent mechanical properties as well as effectively blocking water vapor, oxygen, oil, and other contaminants. The low degradation of widely used petroleum-based plastics leads to environmental pollution and poses health risks. This has [...] Read more.
Packaging plays a crucial role in protecting food by providing excellent mechanical properties as well as effectively blocking water vapor, oxygen, oil, and other contaminants. The low degradation of widely used petroleum-based plastics leads to environmental pollution and poses health risks. This has drawn interest in renewable biopolymers as sustainable alternatives. The seafood industry generates significant waste that is rich in bioactive substances like chitin, chitosan, gelatins, and alginate, which can replace synthetic polymers in food packaging. Although biopolymers offer biodegradability, biocompatibility, and non-toxicity, their films often lack mechanical and barrier properties compared with synthetic polymer films. This comprehensive review discusses the chemical structure, characteristics, and extraction methods of biopolymers derived from seafood waste and their usage in the packaging area as reinforcement or base materials to guide researchers toward successful plastics replacement and commercialization. Our review highlights recent advancements in improving the thermal durability, mechanical strength, and barrier properties of seafood waste-derived packaging, explores the mechanisms behind these improvements, and briefly mentions the antimicrobial activities and mechanisms gained from these biopolymers. In addition, the remaining challenges and future directions for using seafood waste-derived biopolymers for packaging are discussed. This review aims to guide ongoing efforts to develop seafood waste-derived biopolymer films that can ultimately replace traditional plastic packaging. Full article
Show Figures

Figure 1

18 pages, 481 KiB  
Article
The Nutritional Potential of Avocado By-Products: A Focus on Fatty Acid Content and Drying Processes
by Roko Marović, Marija Badanjak Sabolović, Mladen Brnčić, Antonela Ninčević Grassino, Kristina Kljak, Sandra Voća, Sven Karlović and Suzana Rimac Brnčić
Foods 2024, 13(13), 2003; https://doi.org/10.3390/foods13132003 - 25 Jun 2024
Cited by 2 | Viewed by 1411
Abstract
The aim of this study was to analyze the content of fatty acids and tocopherols in various components (pulp, seeds, peel) of avocado (Persea americana), which are often neglected as by-products. In addition, the effects of different drying processes on these [...] Read more.
The aim of this study was to analyze the content of fatty acids and tocopherols in various components (pulp, seeds, peel) of avocado (Persea americana), which are often neglected as by-products. In addition, the effects of different drying processes on these components were investigated and the health benefits of the main fatty acids contained in avocados were highlighted. The samples were subjected to three drying processes: hot air (HAD), vacuum (VD), and hot-air microwave (HAMD). In all parts of fresh avocado, oleic acid was the most abundant (41.28–57.93%), followed by palmitic acid (19.90–29.45%) and linoleic acid (8.44–14.95%). Drying led to a significant reduction in the oleic acid content, with palmitic acid showing the greatest stability. HAD resulted in higher levels of oleic acid and linoleic acid in dried pulp and peel samples compared with VD and HAMD, while HAMD had the highest content of α-linolenic acid in all parts. In addition, HAMD had the shortest drying time. HAMD duration was 35 min, which was 76.7% shorter than HAD (150 min) and 82.5% shorter than VD (200 min). Considering fatty acid retention and drying efficiency, HAMD appears to have been the most effective method, especially for the avocado peel. Remarkably, the avocado peel consistently contained higher total tocopherol, with δ-tocopherol generally being the most abundant form. The high content of tocopherols, oleic acid, and linoleic acid in the avocado peel suggests promising health benefits. Full article
Show Figures

Figure 1

19 pages, 3891 KiB  
Article
A Snapshot, Using a Multi-Omic Approach, of the Metabolic Cross-Talk and the Dynamics of the Resident Microbiota in Ripening Cheese Inoculated with Listeria innocua
by Alessandra Tata, Andrea Massaro, Brunella Miano, Sara Petrin, Pietro Antonelli, Arianna Peruzzo, Alessandra Pezzuto, Michela Favretti, Marco Bragolusi, Carmela Zacometti, Carmen Losasso and Roberto Piro
Foods 2024, 13(12), 1912; https://doi.org/10.3390/foods13121912 - 18 Jun 2024
Cited by 1 | Viewed by 958
Abstract
Raw milk cheeses harbor complex microbial communities. Some of these microorganisms are technologically essential, but undesirable microorganisms can also be present. While most of the microbial dynamics and cross-talking studies involving interaction between food-derived bacteria have been carried out on agar plates in [...] Read more.
Raw milk cheeses harbor complex microbial communities. Some of these microorganisms are technologically essential, but undesirable microorganisms can also be present. While most of the microbial dynamics and cross-talking studies involving interaction between food-derived bacteria have been carried out on agar plates in laboratory-controlled conditions, the present study evaluated the modulation of the resident microbiota and the changes of metabolite production directly in ripening raw milk cheese inoculated with Listeria innocua strains. Using a proxy of the pathogenic Listeria monocytogenes, we aimed to establish the key microbiota players and chemical signals that characterize Latteria raw milk cheese over 60 days of ripening time. The microbiota of both the control and Listeria-inoculated cheeses was analyzed using 16S rRNA targeted amplicon sequencing, while direct analysis in real time mass spectrometry (DART-HRMS) was applied to investigate the differences in the metabolic profiles of the cheeses. The diversity analysis showed the same microbial diversity trend in both the control cheese and the inoculated cheese, while the taxonomic analysis highlighted the most representative genera of bacteria in both the control and inoculated cheese: Lactobacillus and Streptococcus. On the other hand, the metabolic fingerprints revealed that the complex interactions between resident microbiota and L. innocua were governed by continuously changing chemical signals. Changes in the amounts of small organic acids, hydroxyl fatty acids, and antimicrobial compounds, including pyroglutamic acid, hydroxy-isocaproic acid, malic acid, phenyllactic acid, and lactic acid, were observed over time in the L. innocua-inoculated cheese. In cheese that was inoculated with L. innocua, Streptococcus was significantly correlated with the volatile compounds carboxylbenzaldheyde and cyclohexanecarboxylic acid, while Lactobacillus was positively correlated with some volatile and flavor compounds (cyclohexanecarboxylic acid, pyroxidal acid, aminobenzoic acid, and vanillic acid). Therefore, we determined the metabolic markers that characterize a raw milk cheese inoculated with L. innocua, the changes in these markers with the ripening time, and the positive correlation of flavor and volatile compounds with the resident microbiota. This multi-omics approach could suggest innovative food safety strategies based on the enhanced management of undesirable microorganisms by means of strain selection in raw matrices and the addition of specific antimicrobial metabolites to prevent the growth of undesirable microorganisms. Full article
(This article belongs to the Special Issue Foodomics Fifteen Years On From. Where Are We Now, What’s Next)
Show Figures

Figure 1

15 pages, 3747 KiB  
Article
Effect of Black Tea Polysaccharides on Alleviating Type 2 Diabetes Mellitus by Regulating PI3K/Akt/GLUT2 Pathway
by Zhenbiao Zhang, Xuming Deng, Ruohong Chen, Qiuhua Li, Lingli Sun, Junxi Cao, Zhaoxiang Lai, Xingfei Lai, Zaihua Wang, Shili Sun and Lingzhi Zhang
Foods 2024, 13(12), 1908; https://doi.org/10.3390/foods13121908 - 17 Jun 2024
Cited by 1 | Viewed by 734
Abstract
The bioactivity of tea polysaccharides (TPs) has been widely reported, but studies to date have focused on green tea. Some human health investigations have implied that black tea may possess potential antidiabetic effects, but less is known about their potential role and related [...] Read more.
The bioactivity of tea polysaccharides (TPs) has been widely reported, but studies to date have focused on green tea. Some human health investigations have implied that black tea may possess potential antidiabetic effects, but less is known about their potential role and related antidiabetic mechanism. The present study was, therefore, conducted to investigate the chemical properties and antidiabetic activity of TPs from black tea. Monosaccharide composition revealed that Alduronic acid (77.8 mol%) considerably predominated in the fraction. TP conformation analysis indicated that three components in TPs were all typical of high-branching structures. Oral administration of TPs could effectively alleviate fasting blood glucose in type 2 diabetes mellitus (T2D) mice, with the values 23.6 ± 1.42, 19.6 ± 2.25, and 16.4 ± 2.07 mmol/L in the 200, 400, and 800 mg/kg·BW groups, respectively. Among these TPs groups, the 800 mg/kg·BW groups significantly decreased by 37.88% when compared with the T2D+water group (p < 0.05). Further studies demonstrated that TP treatment upregulated the expression of p-Akt/p-PI3K (p < 0.001). Additionally, TP treatment significantly promoted glucose transporter protein 2 (GLUT2) translocation in the liver (p < 0.001). These findings suggest that TPs from black tea protect against T2D by activating PI3K/Akt/GLUT2 signaling and might serve as a novel therapeutic candidate for T2D. Full article
Show Figures

Graphical abstract

26 pages, 2643 KiB  
Review
Tomato Residue Management from a Biorefinery Perspective and towards a Circular Economy
by Patrícia V. Almeida, Licínio M. Gando-Ferreira and Margarida J. Quina
Foods 2024, 13(12), 1873; https://doi.org/10.3390/foods13121873 - 14 Jun 2024
Cited by 1 | Viewed by 995
Abstract
The tomato industry is a relevant socio-economic activity in the European Union, while it generates a large variety of residues. Tomatoes unfit for consumption, tomato peels, seeds, industrial pomace, and plants are examples of residues of this industry. Commonly, some of the residues [...] Read more.
The tomato industry is a relevant socio-economic activity in the European Union, while it generates a large variety of residues. Tomatoes unfit for consumption, tomato peels, seeds, industrial pomace, and plants are examples of residues of this industry. Commonly, some of the residues can be left in the field, composted, used for animal feeding, or valorized through anaerobic digestion. However, more economic value can be attributed to these residues if a biorefinery approach is applied. Indeed, many value-added compounds can be obtained by the integration of different processes while closing the carbon and nutrient loops. The extraction of bioactive compounds followed by anaerobic digestion and composting seems to be a viable proposal for a biorefinery approach. Thus, this study aims to review the biorefinery strategies for valorizing tomato residues, highlighting the main processes proposed. The recovery of lycopene, β-carotene, and phenolic compounds has been widely studied at the lab scale, while energy recovery has already been applied at the industrial scale. Although techno-economic analysis is scarce for tomato residue valorization processes, positive net present values (NPV) and low payback times (PBT) have been reported in the literature. Thus, more work comparing multiple extraction technologies and biorefinery strategies coupled with economic and environmental assessment should be performed to select the most promising management route for tomato residues. Full article
Show Figures

Figure 1

17 pages, 633 KiB  
Review
Effect of Bioactive Peptides on Gut Microbiota and Their Relations to Human Health
by Tharuka Wijesekara, Edirisinghe Dewage Nalaka Sandun Abeyrathne and Dong Uk Ahn
Foods 2024, 13(12), 1853; https://doi.org/10.3390/foods13121853 - 13 Jun 2024
Cited by 2 | Viewed by 1531
Abstract
Bioactive peptides derived from both exogenous and endogenous origins have been studied extensively to use their beneficial effects in humans and animals. Bioactive peptides exhibit beneficial bodily functions and contribute to a healthy gastrointestinal system by influencing barrier functions, immune responses, and gut [...] Read more.
Bioactive peptides derived from both exogenous and endogenous origins have been studied extensively to use their beneficial effects in humans and animals. Bioactive peptides exhibit beneficial bodily functions and contribute to a healthy gastrointestinal system by influencing barrier functions, immune responses, and gut microbiota. Gut microbiota is a diverse microbial community that significantly influences the overall well-being and homeostasis of the body. Factors such as diet, age, lifestyle, medication, and environmental circumstances can affect the composition and diversity of the gut microbiota. The disturbances or imbalances in the gut microbiota have been associated with various health problems. The interplays between bioactive peptides and gut microbiota are not fully understood, but bioactive peptides hold promise as modulators of the gut microbiota to promote gut health. Almost all the bioactive research on human health, including the development of therapeutics and nutritional interventions, uses cell culture, even though their direct biofunctional activities can only occur when absorbed in the intestine and into the blood system. This review focuses on the current understanding of bioactive peptides in gut microbiota and their impact and mechanisms on gut and human health. The novelty of this review lies in its comprehensive analysis of the multifaceted interactions between bioactive peptides and gut microbiota, integrating knowledge from diverse disciplines between microbiology and nutrition. By elucidating the underlying mechanisms and identifying current research gaps, this review offers an outlook on the potential of bioactive peptides in promoting gut health and shaping future therapeutic and nutritional interventions. Full article
(This article belongs to the Special Issue Advances in Bioactive Compounds from Food on Human Health)
Show Figures

Graphical abstract

22 pages, 1412 KiB  
Article
Comparative Analysis of Black Chokeberry (Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility
by Mihaela Saracila, Arabela Elena Untea, Alexandra Gabriela Oancea, Iulia Varzaru and Petru Alexandru Vlaicu
Foods 2024, 13(12), 1856; https://doi.org/10.3390/foods13121856 - 13 Jun 2024
Cited by 2 | Viewed by 950
Abstract
The study aims to compare the nutrient composition, antioxidant potential, and polyphenol bioaccessibility of the fruit, leaves, and pomace of black chokeberry. Phytochemical characterization, antioxidant activity, and the effect of in vitro gastrointestinal digestion on the individual phenolic compounds of fruit, leaves, and [...] Read more.
The study aims to compare the nutrient composition, antioxidant potential, and polyphenol bioaccessibility of the fruit, leaves, and pomace of black chokeberry. Phytochemical characterization, antioxidant activity, and the effect of in vitro gastrointestinal digestion on the individual phenolic compounds of fruit, leaves, and pomace of black chokeberry were assessed. Results showed that leaves had a higher content of polyphenols (61.06 mg GAE/g dw), flavonoids (8.47 mg QE/g), and tocopherols (1172.20 mg/kg) than fruit (27.99 mg GAE/g dw polyphenols, 5.23 mg QE/g flavonoids, 38.48 mg/kg tocopherols) and pomace (22.94 mg GAE/g dw polyphenols, 1.89 mg QE/g flavonoids and 157.19 mg/kg tocopherols), with superior in vitro antioxidant activity. Chlorogenic acids were the dominant phenolic compounds in black chokeberry undigested samples (2.713 mg/g in fruit, 17.954 mg/g in leaves, and 1.415 mg/g in pomace) but are poorly absorbed (bioaccessibility index in intestinal phase of 28.84% for fruit, 8.81% for leaves, and 31.90% for pomace). Hydroxybenzoic acids were highly stable in leaves and fruit during simulated digestion and had high bioaccessibility. In conclusion, residues from black chokeberry processing are also valuable sources of bioactive compounds, but the pomace had higher polyphenol bioaccessibility than leaves and might be a promising supplement for the food industry. Full article
Show Figures

Figure 1

20 pages, 349 KiB  
Review
Liposomes as Carriers of Bioactive Compounds in Human Nutrition
by Magdalena Rudzińska, Anna Grygier, Geoffrey Knight and Dominik Kmiecik
Foods 2024, 13(12), 1814; https://doi.org/10.3390/foods13121814 - 9 Jun 2024
Cited by 5 | Viewed by 2129
Abstract
This article provides an overview of the literature data on the role of liposomal structures and encapsulated substances in food technology and human nutrition. The paper briefly describes how liposomes are created and how they encapsulate food ingredients, which can either be individual [...] Read more.
This article provides an overview of the literature data on the role of liposomal structures and encapsulated substances in food technology and human nutrition. The paper briefly describes how liposomes are created and how they encapsulate food ingredients, which can either be individual compounds or plant extracts. Another very interesting application of liposomes is their use as antimicrobial carriers to protect food products from spoilage during storage. The encapsulation of food ingredients in liposomes can increase their bioavailability, which is particularly important for compounds with health-promoting properties but low bioavailability. Particular attention was paid to compounds such as phytosterols, which lower blood cholesterol levels but have very low absorption in the human body. In addition, consumer expectations and regulations for liposomes in food are discussed. To date, no in vivo human studies have been conducted to indicate which encapsulation methods give the best results for gastrointestinal effects and which food-added substances are most stable during food storage and processing. The paper identifies further lines of research that are needed before liposomes can be introduced into food. Full article
(This article belongs to the Special Issue Lipids in Plant Food: Extraction, Characteristic and Health Benefits)
17 pages, 4114 KiB  
Review
Morzeddhu: A Unique Example of a Traditional and Sustainable Typical Dish from Catanzaro
by Stefano Alcaro, Roberta Rocca, Maria Grazia Rotundo, Francesco Bianco and Luigi Scordamaglia
Foods 2024, 13(12), 1810; https://doi.org/10.3390/foods13121810 - 8 Jun 2024
Viewed by 2030
Abstract
Morzeddhu” in the local dialect of Catanzaro (“Morzello” in Italian) is an official typical dish of the capital of the Calabria region. It is a peasant dish, almost unknown at an international level, that labels, in an extraordinary way, [...] Read more.
Morzeddhu” in the local dialect of Catanzaro (“Morzello” in Italian) is an official typical dish of the capital of the Calabria region. It is a peasant dish, almost unknown at an international level, that labels, in an extraordinary way, the culinary identity of Catanzaro, a city founded around the X century. After America’s discovery, its preparation was optimized and definitively fixed. Its recipe is strictly based on a cow’s “fifth quarter” combined with spicy and typical Mediterranean vegetables. Remarkably, no pork meat is used, and when all traditional ingredients are included in the complex and quite long preparation of this special dish, it can deserve the title of “Illustrissimo”. This review provides a scientific description of Illustrissimo, emphasizing its unique properties and connection to the circular economy, food security, and the Mediterranean diet. We also highlight its unique quality compared to other alternatives through an analysis of their nutritional facts and bioactive compounds. Nutritionally, offal and fifth quarter components are a rich source of high-quality protein, with lower levels of total fat and saturated fatty acids compared to other meat cuts. In essence, this dish offers a great example of a high-quality yet affordable meal, aligning perfectly with a Mediterranean diet. Full article
Show Figures

Figure 1

16 pages, 983 KiB  
Review
Enhancing the Biological Effects of Bioactive Compounds from Microalgae through Advanced Processing Techniques: Pioneering Ingredients for Next-Generation Food Production
by Monize Bürck, Sergiana dos Passos Ramos and Anna Rafaela Cavalcante Braga
Foods 2024, 13(12), 1811; https://doi.org/10.3390/foods13121811 - 8 Jun 2024
Cited by 2 | Viewed by 1856
Abstract
The heightened interest in healthy dietary practices and the preference for fresh, minimally processed foods with reduced additives have witnessed a significant surge among consumers. Within this context, bioactive compounds have garnered attention as potent agents offering beneficial biological effects when integrated into [...] Read more.
The heightened interest in healthy dietary practices and the preference for fresh, minimally processed foods with reduced additives have witnessed a significant surge among consumers. Within this context, bioactive compounds have garnered attention as potent agents offering beneficial biological effects when integrated into food formulations. Nevertheless, the efficacy of these bioactive compounds in product development encounters numerous challenges during various processing and storage stages due to their inherent instability. Addressing these limitations necessitates exploring novel technological approaches tailored explicitly to the application of bioactive compounds in food production. These approaches should not only focus on preserving the bioactive compounds within food matrices but also on retaining the sensory attributes (color, taste, and aroma) of the final food products. The impact of microalgae and their bioactive compounds on human health and well-being has been extensively reported in the literature. However, there is still a gap regarding the processing and stability of microalgal bioactive compounds to improve their application in the food industry. The main goal of the present work is to point out how to overcome technological challenges in enhancing the stability of bioactive compounds from microalgae for optimal food applications. Full article
Show Figures

Graphical abstract

15 pages, 299 KiB  
Review
Protein Nutrition: Understanding Structure, Digestibility, and Bioavailability for Optimal Health
by Nneka Ajomiwe, Mike Boland, Suphat Phongthai, Manisha Bagiyal, Jaspreet Singh and Lovedeep Kaur
Foods 2024, 13(11), 1771; https://doi.org/10.3390/foods13111771 - 5 Jun 2024
Viewed by 4846
Abstract
This review discusses different protein sources and their role in human nutrition, focusing on their structure, digestibility, and bioavailability. Plant-based proteins, such as those found in legumes, nuts, and seeds, may contain anti-nutritional factors that impact their bioavailability apart from structural and compositional [...] Read more.
This review discusses different protein sources and their role in human nutrition, focusing on their structure, digestibility, and bioavailability. Plant-based proteins, such as those found in legumes, nuts, and seeds, may contain anti-nutritional factors that impact their bioavailability apart from structural and compositional differences from animal proteins. Animal proteins are generally highly digestible and nutritionally superior to plant proteins, with higher amino acid bioavailability. Alternative protein sources are also processed in different ways, which can alter their structure and nutritional value, which is also discussed. Full article
21 pages, 6679 KiB  
Article
Comparison of the Lipid Composition of Milk Fat Globules in Goat (Capra hircus) Milk during Different Lactations and Human Milk
by Guangqin Liao, Tiancai Wang, Xiabing Li, Jingyi Gu, Qi Jia, Zishuang Wang, Houru Li, Yongzhong Qian and Jing Qiu
Foods 2024, 13(11), 1618; https://doi.org/10.3390/foods13111618 - 23 May 2024
Cited by 2 | Viewed by 962
Abstract
Goat milk is considered the optimal substitute for human milk and is characterized by variations in the lipid composition of its fat globules across lactation phases. Therefore, the objective of this study was to thoroughly analyze the differences between goat milk during different [...] Read more.
Goat milk is considered the optimal substitute for human milk and is characterized by variations in the lipid composition of its fat globules across lactation phases. Therefore, the objective of this study was to thoroughly analyze the differences between goat milk during different lactations and human milk, aiming to offer scientific guidance for the production of functional dairy products. Compared with transitional and mature milk, the findings indicated that the total membrane protein content in goat colostrum exhibited greater similarity to that found in human milk. Additionally, goat milk exhibited higher milk fat globule size, as well as a higher total lipid and protein content than human milk. A total of 1461 lipid molecules across 61 subclasses were identified in goat milk and human milk. The contents of glycerides and glycerophospholipids were higher in goat colostrum, whereas sphingolipids and fatty acids were more abundant in human milk. Meanwhile, the compositions of lipid subclasses were inconsistent. There were 584 differentially expressed lipids identified between human and goat milk, including 47 subclasses that were primarily involved in the metabolism of glycerophospholipids, sphingolipids, and triglycerides. In summary, for both the membrane protein and the lipid composition, there were differences between the milk of different goat lactations and human milk. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

25 pages, 667 KiB  
Review
Food Insecurity in Greece and across the Globe: A Narrative Literature Review
by Emmanouil Alexandros Fotakis, Ioanna Kontele, Milia Tzoutzou, Maria G. Grammatikopoulou, Eirini Arvanitaki, Theodoros N. Sergentanis, Konstantinos Kotrokois, Eleni Kornarou and Tonia Vassilakou
Foods 2024, 13(10), 1579; https://doi.org/10.3390/foods13101579 - 18 May 2024
Cited by 2 | Viewed by 1932
Abstract
Food insecurity comprises a major global public health threat, as its effects are detrimental to the mental, physical, and social aspects of the health and well-being of those experiencing it. We performed a narrative literature review on the magnitude of global food insecurity [...] Read more.
Food insecurity comprises a major global public health threat, as its effects are detrimental to the mental, physical, and social aspects of the health and well-being of those experiencing it. We performed a narrative literature review on the magnitude of global food insecurity with a special emphasis on Greece and analyzed the major factors driving food insecurity, taking into consideration also the effect of the COVID-19 pandemic. An electronic search of international literature was conducted in three databases. More than 900 million people worldwide experience severe food insecurity, with future projections showing increasing trends. Within Europe, Eastern and Southern European countries display the highest food insecurity prevalence rates, with Greece reporting a prevalence of moderate or severe food insecurity ranging between 6.6% and 8% for the period 2019–2022. Climate change, war, armed conflicts and economic crises are major underlying drivers of food insecurity. Amidst these drivers, the COVID-19 pandemic had a profound impact on food insecurity levels around the globe, through halting economic growth, disrupting food supply chains and increasing unemployment and poverty. Tackling food insecurity through addressing its key drivers is essential to any progress towards succeeding the Sustainable Development Goal of “Zero Hunger”. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

17 pages, 2591 KiB  
Article
Decoding the Effects of High Hydrostatic Pressure and High-Temperature Short-Time Sterilization on the Volatile Aroma Profile of Red Raspberry Juice
by Wentao Zhang, Xuejie Li, Xuzeng Wang, He Li, Xiaojun Liao, Fei Lao, Jihong Wu and Jian Li
Foods 2024, 13(10), 1574; https://doi.org/10.3390/foods13101574 - 18 May 2024
Cited by 2 | Viewed by 833
Abstract
The loss of distinctive aromas due to sterilization significantly hinders efforts to enhance the sensory quality of fruit and vegetable juices. This study aimed to elucidate the impacts of high-hydrostatic pressure (HHP) and high-temperature short-time (HTST) sterilization methods on the loss of C6 [...] Read more.
The loss of distinctive aromas due to sterilization significantly hinders efforts to enhance the sensory quality of fruit and vegetable juices. This study aimed to elucidate the impacts of high-hydrostatic pressure (HHP) and high-temperature short-time (HTST) sterilization methods on the loss of C6 aldehyde aroma-active compounds in red raspberry juice. External standard quantification and quantitative descriptive analysis (QDA) revealed a notable decline in the levels of hexanal and (Z)-3-hexenal following the HHP and HTST treatments (p < 0.05), resulting in a marked attenuation of the grassy aroma characteristic of red raspberry juice. Furthermore, a comprehensive examination of the precursors, pivotal enzymes, intermediates, and downstream aromas within the fatty acid metabolism pathway in different raspberry juice samples indicated that the C6 aldehydes loss induced by HHP and HTST sterilizations was primarily ascribed to the competitive inhibition of β-oxidation and the hindered enzymatic oxidation of fatty acids. These insights suggest that modifying sterilization protocols and enhancing enzymatic stability may help preserve the aroma integrity of raspberry juice. Our findings offer practical guidance for optimizing juice processing techniques to maintain flavor. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

18 pages, 1183 KiB  
Article
Enriching Eggs with Bioactive Compounds through the Inclusion of Grape Pomace in Laying Hens Diet: Effect on Internal and External Egg Quality Parameters
by Beatriz Herranz, Carlos Romero, Inés Sánchez-Román, Mónica López-Torres, Agustín Viveros, Ignacio Arija, María Dolores Álvarez, Sonia de Pascual-Teresa and Susana Chamorro
Foods 2024, 13(10), 1553; https://doi.org/10.3390/foods13101553 - 16 May 2024
Cited by 1 | Viewed by 1378
Abstract
(1) Background: Grapes and their associated by-products (such as grape pomace, GP) stand out for their polyphenol content, which makes them a source of bioactive compounds with antioxidant capacity. The aim of this research was to determine if the inclusion of 50 g/kg [...] Read more.
(1) Background: Grapes and their associated by-products (such as grape pomace, GP) stand out for their polyphenol content, which makes them a source of bioactive compounds with antioxidant capacity. The aim of this research was to determine if the inclusion of 50 g/kg of GP in the diet of hens could enrich eggs with antioxidants and to study its effect on internal and external egg quality parameters. (2) Methods: A trial was conducted with two genetic lines of hens, which were fed either a control diet or a diet containing 50 g/kg of GP. Performance, internal and external egg quality, and egg yolk content of vitamins E and A and gallic acid were determined. (3) Results: In eggs laid by hens fed a GP diet, Haugh units and yolk color scores were enhanced, and eggshells became thinner, but without affecting the breaking strength. No dietary effect was observed on the vitamin contents of the yolk. A higher gallic acid content was observed in the yolks of eggs laid by hens fed the GP diet, suggesting that some dietary phenolic compounds could be transferred to the eggs. Hen genetics influenced egg weight, albumen Haugh units, shell thickness, and α- and γ-tocopherol concentration in yolks. (4) Conclusions: Dietary inclusion of GP improved the internal quality of eggs, enriching yolks with a phenolic compound but reducing shell thickness. Full article
(This article belongs to the Special Issue Circular Economy Approach to Produce Sustainable and Healthy Foods)
Show Figures

Figure 1

26 pages, 6737 KiB  
Article
Effect of Pod Storage and Drying Temperature on Fermentation Dynamics and Final Bean Quality of Cacao Nacional in Ecuador
by Stefanie Streule, Susette Freimüller Leischtfeld, Karin Chatelain and Susanne Miescher Schwenninger
Foods 2024, 13(10), 1536; https://doi.org/10.3390/foods13101536 - 15 May 2024
Cited by 3 | Viewed by 1060
Abstract
The impact of pod storage (PS) and two drying temperatures of fermented cocoa beans was investigated in Ecuador. Therefore, four variations were simultaneously carried out three times at two locations, independently: 0, 3, and 5 days of PS, dried at 60 °C and [...] Read more.
The impact of pod storage (PS) and two drying temperatures of fermented cocoa beans was investigated in Ecuador. Therefore, four variations were simultaneously carried out three times at two locations, independently: 0, 3, and 5 days of PS, dried at 60 °C and 0 days of PS, dried at 80 °C. Pod weight during storage, pulp content, pH, temperature, microbial counts, total free amino acids, protein profiles, sugars, organic acids, cut-test, fermentation index, and sensory profiles were analyzed. Minor differences in fermentation dynamics and bean quality were found between variations with and without PS. A rather accelerated fermentation with pod-stored beans was observed (e.g., faster color change, slightly lower pH in cotyledon after 48 h), along with a significantly higher maximal temperature during 24–42 h (43.1 ± 3.2 °C compared to 39.2 ± 2.0 °C without PS). More well-fermented beans were reached with PS (52.3 ± 22.6%) than without (62.7 ± 9.2%). Differences during fermentation were observed between the locations (e.g., pH, acids, sugars), but sensory evaluation indicated that the impact of location was mitigated with PS. Drying at 80 °C showed no adverse effects, as evidenced by the results of the cut-test and fermentation index. However, sensory evaluations revealed significant differences between 80 °C and 60 °C, with the former exhibiting more bitter and astringent cocoa liquor. Full article
Show Figures

Figure 1

23 pages, 1933 KiB  
Systematic Review
Determinants of Consumers’ Acceptance and Adoption of Novel Food in View of More Resilient and Sustainable Food Systems in the EU: A Systematic Literature Review
by Monica Laureati, Annalisa De Boni, Anna Saba, Elsa Lamy, Fabio Minervini, Amélia M. Delgado and Fiorella Sinesio
Foods 2024, 13(10), 1534; https://doi.org/10.3390/foods13101534 - 15 May 2024
Cited by 3 | Viewed by 2060
Abstract
This review article aims to provide an up-to-date overview of the main determinants of consumers’ acceptance of novel foods (new foods and ingredients) in the EU with emphasis on product’s intrinsic properties (sensory characteristics) and individual factors (socio-demographics, perceptive, psychological) by adopting a [...] Read more.
This review article aims to provide an up-to-date overview of the main determinants of consumers’ acceptance of novel foods (new foods and ingredients) in the EU with emphasis on product’s intrinsic properties (sensory characteristics) and individual factors (socio-demographics, perceptive, psychological) by adopting a systematic approach following the PRISMA methodology. Case studies on terrestrial (i.e., insects, cultured meat and other animal origin products, plant-based food including mushrooms, plant-based analogues, pulses, and cereals) and aquatic systems (i.e., algae and jellyfish) are included focusing on age-related and cross-national differences in consumer acceptance of novel foods and ingredients. General trends have emerged that are common to all the novel foods analysed, regardless of their aquatic or terrestrial origin. Aspects such as food neophobia, unfamiliarity, and poor knowledge of the product are important barriers to the consumption of novel foods, while healthiness and environmental sustainability perception are drivers of acceptance. Sensory properties are challenging for more familiar ingredients such as plant-based food (e.g., novel food made by pulses, mushrooms, cereals and pseudocereals). Results are discussed in terms of feasibility of introducing these products in the EU food systems highlighting strategies that can encourage the use of new ingredients or novel foods. Full article
Show Figures

Figure 1

19 pages, 1909 KiB  
Review
A Review of the Impact of Starch on the Quality of Wheat-Based Noodles and Pasta: From the View of Starch Structural and Functional Properties and Interaction with Gluten
by Jinrong Wang, Yonghui Li, Xiaona Guo, Kexue Zhu and Zijian Wu
Foods 2024, 13(10), 1507; https://doi.org/10.3390/foods13101507 - 13 May 2024
Cited by 1 | Viewed by 1925
Abstract
Starch, as a primary component of wheat, plays a crucial role in determining the quality of noodles and pasta. A deep understanding of the impact of starch on the quality of noodles and pasta is fundamentally important for the industrial progression of these [...] Read more.
Starch, as a primary component of wheat, plays a crucial role in determining the quality of noodles and pasta. A deep understanding of the impact of starch on the quality of noodles and pasta is fundamentally important for the industrial progression of these products. The starch structure exerts an influence on the quality of noodles and pasta by affecting its functional attributes and the interaction of starch–gluten proteins. The effects of starch structure (amylopectin structure, amylose content, granules size, damaged starch content) on the quality of noodles and pasta is discussed. The relationship between the functional properties of starch, particularly its swelling power and pasting properties, and the texture of noodles and pasta is discussed. It is important to note that the functional properties of starch can be modified during the processing of noodles and pasta, potentially impacting the quality of the end product, However, this aspect is often overlooked. Additionally, the interaction between starch and gluten is addressed in relation to its impact on the quality of noodles and pasta. Finally, the application of exogenous starch in improving the quality of noodles and pasta is highlighted. Full article
(This article belongs to the Special Issue Cereal-Based Staple Foods: Processing, Quality and Health Benefits)
Show Figures

Figure 1

15 pages, 885 KiB  
Article
Proposal and Validation of a Measurement Scale of the Acceptance of Ultra-Processed Food Products
by Cristina Calvo-Porral, Sergio Rivaroli and Javier Orosa-González
Foods 2024, 13(10), 1481; https://doi.org/10.3390/foods13101481 - 10 May 2024
Cited by 1 | Viewed by 1194
Abstract
Today, there is an increasing consumption of ultra-processed food products (UPFs), while more healthy options are available; however, there is no scale available that can adequately measure this phenomenon. In this context, the present study aims to develop and validate a measurement scale [...] Read more.
Today, there is an increasing consumption of ultra-processed food products (UPFs), while more healthy options are available; however, there is no scale available that can adequately measure this phenomenon. In this context, the present study aims to develop and validate a measurement scale of the consumers’ acceptance of ultra-processed food products. Research data (n = 478) were analyzed using Exploratory Factor Analysis (EFA), followed by a Confirmatory Factor Analysis (CFA). The results confirm the validity of the proposed measurement scale comprising nine factors: the quality of ultra-processed food products, ability to save time, low affordable price, effortless preparation, convenience, hedonic nature, marketing strategies, satisfaction and purchase intention. The present study makes a noticeable contribution to food marketing, and food companies could consider these factors to design and commercialize ultra-processed foods. Full article
(This article belongs to the Special Issue Consumer Behavior and Food Choice—Volume III)
Show Figures

Figure 1

28 pages, 1016 KiB  
Review
Advancements in Litchi chinensis Peel Processing: A Scientific Review of Drying, Extraction, and Isolation of Its Bioactive Compounds
by Christian Iván Cano-Gómez, Angel Josabad Alonso-Castro, Candy Carranza-Alvarez and Jorge E. Wong-Paz
Foods 2024, 13(10), 1461; https://doi.org/10.3390/foods13101461 - 9 May 2024
Cited by 1 | Viewed by 1364
Abstract
This article systematically reviews the advancements in processing litchi peel (Litchi chinensis), emphasizing drying, extraction, purification methods, and the potential of bioactive compounds obtained from litchi peel. This work also highlights the impact of various drying techniques on phytochemical profiles, focusing [...] Read more.
This article systematically reviews the advancements in processing litchi peel (Litchi chinensis), emphasizing drying, extraction, purification methods, and the potential of bioactive compounds obtained from litchi peel. This work also highlights the impact of various drying techniques on phytochemical profiles, focusing on how methods such as hot air and freeze-drying affect the preservation of bioactive compounds. The study delves into extraction methods, detailing how different solvents and techniques influence the efficiency of extracting bioactive compounds from litchi peel. Furthermore, the purification and characterization of active compounds, showcasing the role of chromatographic techniques in isolating specific bioactive molecules, is discussed. Biological properties and mechanisms of action, such as antioxidant, antihyperglycemic, cardioprotective, hepatoprotective, anti-atherosclerotic, and anticancer activities, are reviewed, providing insight into the potential health benefits of litchi peel compounds. This review highlights the importance of optimizing and selecting accurate drying and extraction methods to maximize the therapeutic effects of litchi peel and its bioactive compounds. This review also reveals the broad pharmacological potential of the isolated compounds, underscoring the need for further research to discover their specific actions and health benefits. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

27 pages, 2121 KiB  
Review
Pre- and Postharvest Strategies for Pleurotus ostreatus Mushroom in a Circular Economy Approach
by Mafalda Silva, Ana Cristina Ramos, Fernando J. Lidon, Fernando H. Reboredo and Elsa M. Gonçalves
Foods 2024, 13(10), 1464; https://doi.org/10.3390/foods13101464 - 9 May 2024
Viewed by 2353
Abstract
Mushroom cultivation presents a viable solution for utilizing agro-industrial byproducts as substrates for growth. This process enables the transformation of low-economic-value waste into nutritional foods. Enhancing the yield and quality of preharvest edible mushrooms, along with effectively preserving postharvest mushrooms, stands as a [...] Read more.
Mushroom cultivation presents a viable solution for utilizing agro-industrial byproducts as substrates for growth. This process enables the transformation of low-economic-value waste into nutritional foods. Enhancing the yield and quality of preharvest edible mushrooms, along with effectively preserving postharvest mushrooms, stands as a significant challenge in advancing the industry. Implementing pre- and postharvest strategies for Pleurotus ostreatus (Jacq.) P. Kumm (oyster mushroom) within a circular economy framework involves optimizing resource use, minimizing waste, and creating a sustainable and environmentally friendly production system. This review aimed to analyze the development and innovation of the different themes and trends by bibliometric analysis with a critical literature review. Furthermore, this review outlines the cultivation techniques for Pleurotus ostreatus, encompassing preharvest steps such as spawn production, substrate preparation, and the entire mushroom growth process, which includes substrate colonization, fruiting, harvesting, and, finally, the postharvest. While novel methodologies are being explored for maintaining quality and extending shelf-life, the evaluation of the environmental impact of the entire mushroom production to identify areas for improvement is needed. By integrating this knowledge, strategies can be developed for a more sustainable and circular approach to Pleurotus ostreatus mushroom cultivation, promoting environmental stewardship and long-term viability in this industry. Full article
Show Figures

Figure 1

22 pages, 1115 KiB  
Review
Globe Artichoke (Cynara scolymus L.) By-Products in Food Applications: Functional and Biological Properties
by Raffaella Colombo, Giulia Moretto, Vanessa Pellicorio and Adele Papetti
Foods 2024, 13(10), 1427; https://doi.org/10.3390/foods13101427 - 7 May 2024
Cited by 1 | Viewed by 2076
Abstract
Globe artichoke (Cynara cardunculus var. scolymus L.) is widely cultivated in the Mediterranean area and Italy is one of the largest producers. A great issue is represented by its high amount of by-product, mainly consisting of external bracts and stems, but also [...] Read more.
Globe artichoke (Cynara cardunculus var. scolymus L.) is widely cultivated in the Mediterranean area and Italy is one of the largest producers. A great issue is represented by its high amount of by-product, mainly consisting of external bracts and stems, but also of residual leaves, stalks, roots, and seeds. Artichoke by-products are rich in nutrients (carbohydrates and proteins) and bioactive compounds (polyphenols and terpenes) and represent potential ingredients for foodstuffs, functional foods, and food supplements, due to their functional and biological properties. In fact, artichoke by-products’ components exhibit many beneficial effects, such as dyspeptic, prebiotic, antioxidant, anti-inflammatory, antiglycative, antimicrobial, anticarcinogenic, and hypolipidemic properties. Therefore, they can be considered potential food ingredients useful in reducing the risk of developing metabolic and age-related disorders. This work summarizes the economic and environmental impact of the recovery and valorization of artichoke by-products, focusing on rheological, physical, and biological properties of the different components present in each by-product and their different food applications. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

16 pages, 1465 KiB  
Article
Influence of Casting Variables on Release Kinetics of Orally Disintegrating Film
by Jang-Ho Shin and Jung-Ah Han
Foods 2024, 13(9), 1418; https://doi.org/10.3390/foods13091418 - 5 May 2024
Cited by 1 | Viewed by 1035
Abstract
As a new form for supplying vitamin C, orally disintegrating films (ODFs) were developed C based on hyaluronic acid (HA) under varying casting conditions and the properties were analyzed. The films with different thicknesses (2, 3, and 8 mm, for CT2, CT4, and [...] Read more.
As a new form for supplying vitamin C, orally disintegrating films (ODFs) were developed C based on hyaluronic acid (HA) under varying casting conditions and the properties were analyzed. The films with different thicknesses (2, 3, and 8 mm, for CT2, CT4, and CT8, respectively) were produced by adjustments made to casting height. Two types of 8 mm thick ODFs produced by single or double casting (4 + 4 mm for CTD4+4) methods were also compared. As film thickness increased, water vapor permeability and tensile strength also increased. Even at equal thickness, manufacturing with double casting exhibited a stronger texture and reduced disintegration compared to single casting. All ODFs met the World Health Organization’s recommended daily vitamin C intake (45 mg/day) with a single sheet. Films showed over 80% dissolution in various solvents, adhering to the Hixson–Crowell cube root law, indicating vitamin C release occurred via porous penetration of the eluate. For CT2, CT4, and CTD4+4, vitamin C release was primarily governed by diffusion within the gel matrix and HA erosion. However, for CT8, HA erosion-induced release somewhat dominated. Based on the sensory test, it seems desirable to adjust the thickness of the film to 2 or 4 mm, because a thickness greater than that increased the foreign body sensation due to prolonged residence in the oral cavity. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

19 pages, 2731 KiB  
Article
Enhancing Cutin Extraction Efficiency from Industrially Derived Tomato Processing Residues by High-Pressure Homogenization
by Elham Eslami, Francesco Donsì, Giovanna Ferrari and Gianpiero Pataro
Foods 2024, 13(9), 1415; https://doi.org/10.3390/foods13091415 - 4 May 2024
Cited by 1 | Viewed by 1740
Abstract
This study primarily aimed to enhance the extraction of cutin from industrial tomato peel residues. Initially, the conventional extraction process was optimized using response surface methodology (RSM). Subsequently, high-pressure homogenization (HPH) was introduced to improve extraction efficiency and sustainability. The optimization process focused [...] Read more.
This study primarily aimed to enhance the extraction of cutin from industrial tomato peel residues. Initially, the conventional extraction process was optimized using response surface methodology (RSM). Subsequently, high-pressure homogenization (HPH) was introduced to improve extraction efficiency and sustainability. The optimization process focused on determining the optimal conditions for conventional extraction via chemical hydrolysis, including temperature (100–130 °C), time (15–120 min), and NaOH concentration (1–3%). The optimized conditions, determined as 130 °C, 120 min, and 3% NaOH solution, yielded a maximum cutin extraction of 32.5%. Furthermore, the results indicated that applying HPH pre-treatment to tomato peels before alkaline hydrolysis significantly increased the cutin extraction yield, reaching 46.1%. This represents an approximately 42% increase compared to the conventional process. Importantly, HPH pre-treatment enabled cutin extraction under milder conditions using a 2% NaOH solution, reducing NaOH usage by 33%, while still achieving a substantial cutin yield of 45.6%. FT-IR analysis confirmed that cutin obtained via both conventional and HPH-assisted extraction exhibited similar chemical structures, indicating that the main chemical groups and structure of cutin remained unaltered by HPH treatment. Furthermore, cutin extracts from both conventional and HPH-assisted extraction demonstrated thermal stability up to approximately 200 °C, with less than 5% weight loss according to TGA analysis. These findings underscore the potential of HPH technology to significantly enhance cutin extraction yield from tomato peel residues while utilizing milder chemical hydrolysis conditions, thereby promoting a more sustainable and efficient cutin extraction process. Full article
Show Figures

Graphical abstract

23 pages, 736 KiB  
Review
Nutritional Quality and Socio-Ecological Benefits of Mare Milk Produced under Grazing Management
by Ana Blanco-Doval, Luis Javier R. Barron and Noelia Aldai
Foods 2024, 13(9), 1412; https://doi.org/10.3390/foods13091412 - 4 May 2024
Viewed by 1732
Abstract
This review discusses the scientific evidence that supports the nutritional value of mare milk and how its properties are essentially achieved when mares are managed under grazing conditions. Mare milk’s similarity with the chemical composition of human milk makes this food and its [...] Read more.
This review discusses the scientific evidence that supports the nutritional value of mare milk and how its properties are essentially achieved when mares are managed under grazing conditions. Mare milk’s similarity with the chemical composition of human milk makes this food and its derived products not only suitable for human consumption but also an interesting food regarding human health. The contribution of horse breeding under grazing management to other socio-ecological benefits generated by equine farms is also highlighted. Both the high added value of mare milk and the socio-ecological benefits derived from pasture-based systems could be explored to improve the performance of equine farms located in arid and semi-arid areas or in regions with moderately harsh environmental conditions as equids have a strong adaptation capacity. Full article
Show Figures

Figure 1

19 pages, 3281 KiB  
Article
Effect of Pulsed Electric Fields on the Shelf Stability and Sensory Acceptability of Osmotically Dehydrated Spinach: A Mathematical Modeling Approach
by George Dimopoulos, Alexandros Katsimichas, Konstantinos Balachtsis, Efimia Dermesonlouoglou and Petros Taoukis
Foods 2024, 13(9), 1410; https://doi.org/10.3390/foods13091410 - 3 May 2024
Cited by 1 | Viewed by 981
Abstract
This study focused on the osmotic dehydration (OD) of ready-to-eat spinach leaves combined with the pulsed electric field (PEF) pre-treatment. Untreated and PEF-treated (0.6 kV/cm, 0–200 pulses) spinach leaves were osmotically dehydrated at room temperature for up to 120 min. The application of [...] Read more.
This study focused on the osmotic dehydration (OD) of ready-to-eat spinach leaves combined with the pulsed electric field (PEF) pre-treatment. Untreated and PEF-treated (0.6 kV/cm, 0–200 pulses) spinach leaves were osmotically dehydrated at room temperature for up to 120 min. The application of PEF (0.6 kV/20 pulses) prior to OD (60% glycerol, 25 °C, 60 min) lowered water activity (aw = 0.891) while achieving satisfactory product acceptability (total sensory hedonic scoring of 8). During the storage of the product (at 4, 8, 12, and 20 °C for up to 30 d), a significant reduction in total microbial count evolution was observed (9.7 logCFU/g for the untreated samples vs. 5.1 logCFU/g for the PEF-OD-treated samples after 13 d of storage at 4 °C). The selection of these PEF and OD treatment conditions enabled the extension of the product shelf life by up to 33 d under chilled storage. Osmotically treated spinach could find application in ready-to-eat salad products with an extended shelf life, which is currently not possible due to the high perishability of the specific plant tissue. Full article
(This article belongs to the Special Issue Impacts of Innovative Processing Technologies on Food Quality)
Show Figures

Figure 1

19 pages, 6007 KiB  
Communication
Fabrication of Magnetic Molecularly Imprinted Polymers for Selective Extraction of Dibutyl Phthalates in Food Matrices
by Lina Li, Yunzhu Lu, Chengtao Wang and Lei Cheng
Foods 2024, 13(9), 1397; https://doi.org/10.3390/foods13091397 - 1 May 2024
Viewed by 1358
Abstract
In this study, a novel magnetic molecularly imprinted polymeric material (Fe3O4@MOF@MIP-160) with a metal-organic backbone (Fe3O4@MOF) carrier was prepared using dibutyl phthalate (DBP) as a template. The material can be used for the efficient, rapid, [...] Read more.
In this study, a novel magnetic molecularly imprinted polymeric material (Fe3O4@MOF@MIP-160) with a metal-organic backbone (Fe3O4@MOF) carrier was prepared using dibutyl phthalate (DBP) as a template. The material can be used for the efficient, rapid, and selective extraction of trace amounts of phthalic acid esters (PAEs) in food and can detect them via gas chromatography-mass spectrometry (GC-MS). The synthesis conditions of the materials were optimized to prepare the Fe3O4@MOF@MIP160 with the highest adsorption performance. Transmission electron microscopy (TEM), Fourier Transform Infrared Spectra (FT-IR), Vibration Sample Magnetic (VSM), and the Brunauer–Emmett–Teller (BET) method were used to characterize the materials. Compared with Fe3O4@MOF and the magnetic non-imprinted polymeric material (Fe3O4@MOF@NIP), Fe3O4@MOF@MIP-160 possesses the advantages of easy and rapid manipulation of magnetic materials, the advantages of high specific surface area and the stability of metal–organic frameworks, and the advantages of high selectivity of molecularly imprinted polymers. Fe3O4@MOF@MIP-160 has good recognition and adsorption capacity for di-butyl phthalate (DBP) and diethylhexyl phthalate (DEHP): the adsorption capacity for DBP and DEHP is 260 mg·g−1 and 240.2 mg·g−1, and the adsorption rate is fast (reaching equilibrium in about 20 min). Additionally, Fe3O4@MOF@MIP160 could be recycled six times, making it cost-effective, easy to operate, and time-saving as compared to traditional solid-phase extraction materials. The phthalate ester content in drinking water, fruit juice, and white wine was analyzed, with recoveries ranging from 70.3% to 100.7%. This proved that Fe3O4@MOF@MIP160 was suitable for detecting and removing PAEs from food matrices. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

14 pages, 3488 KiB  
Article
Combined Effect of an Active AgIon® Absorbent Pad and a Chitosan Coating on the Preservation of Fresh Beef
by Dimitrios Komodromos, Daniel Sergelidis, Ioannis Amvrosiadis and Michael G. Kontominas
Foods 2024, 13(9), 1387; https://doi.org/10.3390/foods13091387 - 30 Apr 2024
Cited by 1 | Viewed by 1056
Abstract
In the present study, the combined effect of an AgIon® antimicrobial absorbent (Ζ) pad and a chitosan coating (C) on the preservation of fresh beef stored aerobically at 5 °C was investigated. Microbiological, physicochemical, and sensory attributes were monitored for up to [...] Read more.
In the present study, the combined effect of an AgIon® antimicrobial absorbent (Ζ) pad and a chitosan coating (C) on the preservation of fresh beef stored aerobically at 5 °C was investigated. Microbiological, physicochemical, and sensory attributes were monitored for up to 10 days of storage. The microbiological data indicated that the C and chitosan coating plus absorbent pad (CZ) treatments were the most efficient in reducing total viable counts (TVC) by 4.09 and 3.53 log cfu/g compared to the control W and Z treatments on day 4 of storage (p < 0.05). An analogous reduction in the counts of the other microbial groups monitored was recorded. pH values were ca. 5.7 for treatments W and Z and 5.45 for treatments C and CZ on day 4 of storage (p < 0.05). The total volatile basic nitrogen (TVB-N) values remained <20 mg/100 g for all treatments on day 4 and for treatments C and CZ on day 10 of storage. The total color difference values decreased (p < 0.05) during storage for treatments W and Z, but remained constant for treatments C and CZ. Based on sensory, microbiological and physico-chemical data, beef shelf life was ca ^# + 3 days for samples W and Z and at least 10 + 3 days for samples C and CZ. Between the two antimicrobial treatments, chitosan was considerably more effective than the AgIon® antimicrobial absorbent pad, which showed practically no antimicrobial activity in direct contact with beef meat. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

17 pages, 603 KiB  
Article
Manufacture of Low-Na White Soft Brined Cheese: Effect of NaCl Substitution with a Combination of Na-K Salts on Proximate Composition, Mineral Content, Microstructure, and Sensory Acceptance
by Vladimir S. Kurćubić, Steva Lević, Vlada Pavlović, Ružica Mihailović, Aleksandra Nikolić, Mirjana Lukić, Jelena Jovanović, Bojana Danilović, Mira Milinković, Fatih Oz, Volker Heinz and Igor Tomasevic
Foods 2024, 13(9), 1381; https://doi.org/10.3390/foods13091381 - 30 Apr 2024
Cited by 1 | Viewed by 1279
Abstract
All over the world, especially in Western societies, table salt intake that is inordinately higher than the acceptable level has been observed. An excess of Na in the human diet, mostly from processed foods, is becoming the “number one killer”, leading to increased [...] Read more.
All over the world, especially in Western societies, table salt intake that is inordinately higher than the acceptable level has been observed. An excess of Na in the human diet, mostly from processed foods, is becoming the “number one killer”, leading to increased blood pressure. Therefore, the food industry is faced with a need to reduce Na in human nutrition in an effort to raise public health protection to a higher level. In this study, a commercially available combination of Na/K salts (COMB) at different concentrations was used as a NaCl substitute in the production of a modified, healthier, Na-reduced cheese. Samples of the modified low-Na white soft-brined cheese (WSBC) were produced by adding four different concentrations of COMB to production lots PL-1 to PL-4, and the control (CON) samples were prepared by salting with the usual, non-reduced concentration of NaCl. The effects of NaCl replacement on the physical–chemical parameters, major- and micro-elements, and microstructural and sensory properties of the WSBC were investigated. The obtained results indicated that there was no significant influence on the ash content, pH, and aw. The Na and K levels differed among treatments (p < 0.001). The lowest Na level in this study was recorded in PL-4 (only COMB was added) and was 334.80 ± 24.60 mg/100 g. According to the Na content, WSBC PL4 can be labeled with the nutrient claim “reduced amount of Na”. A significant difference (p < 0.05) was noticed in overall acceptance between the CON and PL-4, with no statistically significant difference found amongst other WSBC production lots. The replacement of NaCl resulted in a slightly greater firmness of the WSBC. The results confirm the possibility of producing low-Na WSBC when optimal amounts of a suitable mineral salt are used as a substitute for NaCl, thus reducing the risk of high Na intake in the human body through the consumption of evaluated cheese. Full article
(This article belongs to the Special Issue Salt Reducing Strategies in Food Production)
Show Figures

Figure 1

17 pages, 2843 KiB  
Article
Efficient Anthocyanin Recovery from Black Bean Hulls Using Eutectic Mixtures: A Sustainable Approach for Natural Dye Development
by Mayara Kuasnei, Laís Benvenutti, David Fernando dos Santos, Sandra Regina Salvador Ferreira, Vânia Zanella Pinto and Acácio Antonio Ferreira Zielinski
Foods 2024, 13(9), 1374; https://doi.org/10.3390/foods13091374 - 29 Apr 2024
Cited by 2 | Viewed by 1059
Abstract
There is a growing interest in exploring new natural sources of colorants. This study aimed to extract anthocyanins from broken black bean hulls (Phaseolus vulgaris L.) by modifying water with a eutectic mixture (choline chloride:citric acid (ChCl:Ca)). Ultrasound-assisted extraction (UAE) was employed [...] Read more.
There is a growing interest in exploring new natural sources of colorants. This study aimed to extract anthocyanins from broken black bean hulls (Phaseolus vulgaris L.) by modifying water with a eutectic mixture (choline chloride:citric acid (ChCl:Ca)). Ultrasound-assisted extraction (UAE) was employed and optimized in terms of temperature (30–70 °C), ultrasound power (150–450 W), and eutectic mixture concentration in water (1–9% (w/v)), resulting in an optimal condition of 66 °C, 420 W, and 8.2% (w/v), respectively. The main quantified anthocyanins were delphinidin-3-O-glycoside, petunidin-3-O-glycoside, and malvidin-3-O-glycoside. The half-life of the anthocyanins at 60 °C increased twelvefold in the eutectic mixture extract compared to the control, and when exposed to light, the half-life was 10 times longer, indicating greater resistance of anthocyanins in the extracted eutectic mixture. Additionally, the extracts were concentrated through centrifuge-assisted cryoconcentration, with the initial cycle almost double the extract value, making this result more favorable regarding green metrics. The first concentration cycle, which showed vibrant colors of anthocyanins, was selected to analyze the color change at different pH levels. In general, the technology that uses eutectic mixtures as water modifiers followed by cryoconcentration proved to be efficient for use as indicators in packaging, both in quantity and quality of anthocyanins. Full article
(This article belongs to the Special Issue Investigation of Biopolymers for Functional Food Packaging)
Show Figures

Graphical abstract

19 pages, 3922 KiB  
Review
Canola Seed Protein: Pretreatment, Extraction, Structure, Physicochemical and Functional Characteristics
by Huipeng Zhu, Lu Wang, Xiaoyu Li, John Shi, Martin Scanlon, Sophia Xue, Matthew Nosworthy and Nazanin Vafaei
Foods 2024, 13(9), 1357; https://doi.org/10.3390/foods13091357 - 28 Apr 2024
Cited by 1 | Viewed by 1706
Abstract
The rapid growth of the global population has led to an unprecedented demand for dietary protein. Canola seeds, being a widely utilized oil resource, generate substantial meal by-products following oil extraction. Fortunately, canola meals are rich in protein. In this present review, foremost [...] Read more.
The rapid growth of the global population has led to an unprecedented demand for dietary protein. Canola seeds, being a widely utilized oil resource, generate substantial meal by-products following oil extraction. Fortunately, canola meals are rich in protein. In this present review, foremost attention is directed towards summarizing the characteristics of canola seed and canola seed protein. Afterwards, points of discussion related to pretreatment include an introduction to pulsed electric field treatment (PEF), microwave treatment (MC), and ultrasound treatment (UL). Then, the extraction method is illustrated, including alkaline extraction, isoelectric precipitation, acid precipitation, micellization (salt extraction), and dry fractionation and tribo-electrostatic separation. Finally, the structural complexity, physicochemical properties, and functional capabilities of rapeseed seeds, as well as the profound impact of various applications of rapeseed proteins, are elaborated. Through a narrative review of recent research findings, this paper aims to enhance a comprehensive understanding of the potential of canola seed protein as a valuable nutritional supplement, highlighting the pivotal role played by various extraction methods. Additionally, it sheds light on the broad spectrum of applications where canola protein demonstrates its versatility and indispensability as a resource. Full article
Show Figures

Figure 1

15 pages, 5818 KiB  
Article
Antimicrobial Activity and Mechanisms of Punicalagin against Vibrio parahaemolyticus
by Hongli Liu, Wenxiu Zhu, Yue Zou and Xiaodong Xia
Foods 2024, 13(9), 1366; https://doi.org/10.3390/foods13091366 - 28 Apr 2024
Cited by 2 | Viewed by 1191
Abstract
This study sought to explore the antimicrobial activity of punicalagin against V. parahaemolyticus and its potential modes of action. V. parahaemolyticus ATCC 17802 and RIMD 2210633Sm were exposed to punicalagin, and the energy production, membrane potential, and envelope permeability, as well as [...] Read more.
This study sought to explore the antimicrobial activity of punicalagin against V. parahaemolyticus and its potential modes of action. V. parahaemolyticus ATCC 17802 and RIMD 2210633Sm were exposed to punicalagin, and the energy production, membrane potential, and envelope permeability, as well as the interaction with cell biomolecules, were measured using a variety of fluorescent probes combined with electrophoresis and Raman spectroscopy. Punicalagin treatment disrupted the envelope integrity and induced a decrease in intracellular ATP and pH. The uptake of 1-N-phenyl-naphtylamine (NPN) demonstrated that punicalagin weakened the outer membrane. Punicalagin damaged the cytoplasmic membrane, as indicated by the membrane depolarization and the leakage of intracellular potassium ions, proteins, and nucleic acids. Electronic microscopy observation visualized the cell damage caused by punicalagin. Further, gel electrophoresis coupled with the Raman spectrum assay revealed that punicalagin affected the protein expression of V. parahaemolyticus, and there was no effect on the integrity of genomic DNA. Therefore, the cell envelope and proteins of V. parahaemolyticus were the assailable targets of punicalagin treatment. These findings suggested that punicalagin may be promising as a natural bacteriostatic agent to control the growth of V. parahaemolyticus. Full article
Show Figures

Figure 1

14 pages, 55816 KiB  
Article
Cultivation of Bovine Mesenchymal Stem Cells on Plant-Based Scaffolds in a Macrofluidic Single-Use Bioreactor for Cultured Meat
by Gilad Gome, Benyamin Chak, Shadi Tawil, Dafna Shpatz, Jonathan Giron, Ilan Brajzblat, Chen Weizman, Andrey Grishko, Sharon Schlesinger and Oded Shoseyov
Foods 2024, 13(9), 1361; https://doi.org/10.3390/foods13091361 - 28 Apr 2024
Cited by 1 | Viewed by 2617
Abstract
Reducing production costs, known as scaling, is a significant obstacle in the advancement of cultivated meat. The cultivation process hinges on several key components, e.g., cells, media, scaffolds, and bioreactors. This study demonstrates an innovative approach, departing from traditional stainless steel or glass [...] Read more.
Reducing production costs, known as scaling, is a significant obstacle in the advancement of cultivated meat. The cultivation process hinges on several key components, e.g., cells, media, scaffolds, and bioreactors. This study demonstrates an innovative approach, departing from traditional stainless steel or glass bioreactors, by integrating food-grade plant-based scaffolds and thermoplastic film bioreactors. While thermoplastic films are commonly used for constructing fluidic systems, conventional welding methods are cost-prohibitive and lack rapid prototyping capabilities, thus inflating research and development expenses. The developed laser welding technique facilitates contamination-free and leakproof sealing of polyethylene films, enabling the efficient fabrication of macrofluidic systems with various designs and dimensions. By incorporating food-grade plant-based scaffolds, such as rice seeded with bovine mesenchymal stem cells, into these bioreactors, this study demonstrates sterile cell proliferation on scaffolds within macrofluidic systems. This approach not only reduces bioreactor prototyping and construction costs but also addresses the need for scalable solutions in both research and industrial settings. Integrating single-use bioreactors with minimal shear forces and incorporating macro carriers such as puffed rice may further enhance biomass production in a scaled-out model. The use of food-grade plant-based scaffolds aligns with sustainable practices in tissue engineering and cultured-meat production, emphasizing its suitability for diverse applications. Full article
(This article belongs to the Special Issue Recombinant Proteins for Food Applications)
Show Figures

Graphical abstract

27 pages, 45608 KiB  
Article
Characterization of Grape Pomace Extract Microcapsules: The Influence of Carbohydrate Co-Coating on the Stabilization of Goat Whey Protein as a Primary Coating
by Gabriela Perković, Josipa Martinović, Gordana Šelo, Ana Bucić-Kojić, Mirela Planinić and Rita Ambrus
Foods 2024, 13(9), 1346; https://doi.org/10.3390/foods13091346 - 27 Apr 2024
Viewed by 1303
Abstract
Both grape pomace and whey are waste products from the food industry that are rich in valuable ingredients. The utilization of these two by-products is becoming increasingly possible as consumer awareness of upcycling increases. The biological activities of grape pomace extract (GPE) are [...] Read more.
Both grape pomace and whey are waste products from the food industry that are rich in valuable ingredients. The utilization of these two by-products is becoming increasingly possible as consumer awareness of upcycling increases. The biological activities of grape pomace extract (GPE) are diverse and depend on its bioavailability, which is influenced by processes in the digestive system. In this work, goat whey protein (GW) was used as the primary coating to protect the phenolic compounds of GPE during the spray drying process. In addition, trehalose (T), sucrose (S), xylose (X), and maltodextrin (MD) were added to the goat whey proteins as co-coatings and protein stabilizers. All spray drying experiments resulted in microcapsules (MC) with a high encapsulation efficiency (77.6–95.5%) and yield (91.5–99.0%) and almost 100% recovery of phenolic compounds during the release test. For o-coumaric acid, the GW-coated microcapsules (MC) showed a bioavailability index of up to 731.23%. A semi-crystalline structure and hydrophilicity were characteristics of the MC coated with 10% T, S, X, or 5% MD. GW alone or in combination with T, S, MD, or X proved to be a promising carrier for polyphenols from grape pomace extract and ensured good bioavailability of these natural antioxidants. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

19 pages, 5508 KiB  
Article
Enhancing the Retention and Oxidative Stability of Volatile Flavors: A Novel Approach Utilizing O/W Pickering Emulsions Based on Agri-Food Byproducts and Spray-Drying
by César Burgos-Díaz, Fernando Leal-Calderon, Yohanna Mosi-Roa, Manuel Chacón-Fuentes, Karla Garrido-Miranda, Mauricio Opazo-Navarrete, Andrés Quiroz and Mariela Bustamante
Foods 2024, 13(9), 1326; https://doi.org/10.3390/foods13091326 - 26 Apr 2024
Cited by 2 | Viewed by 1277
Abstract
Spray-drying is a commonly used method for producing powdered flavors, but the high temperatures involved often result in the loss of volatile molecules. To address this issue, our study focused on a novel approach: developing O/W Pickering emulsions with agri-food byproducts to encapsulate [...] Read more.
Spray-drying is a commonly used method for producing powdered flavors, but the high temperatures involved often result in the loss of volatile molecules. To address this issue, our study focused on a novel approach: developing O/W Pickering emulsions with agri-food byproducts to encapsulate and protect D-limonene during spray-drying and storage. Emulsions formulated with lupin hull, lupin-byproduct (a water-insoluble protein–fiber byproduct derived from the production of lupin protein isolate), and camelina press-cake were subjected to spray-drying at 160 °C. The results revealed that these emulsions exhibited good stability against creaming. The characteristics of the dry emulsions (powders) were influenced by the concentration of byproducts. Quantitative analysis revealed that Pickering emulsions enhanced the retention of D-limonene during spray-drying, with the highest retention achieved using 3% lupin hull and 1% camelina press-cake. Notably, lupin-stabilized emulsions yielded powders with enhanced oxidative stability compared to those stabilized with camelina press-cake. Our findings highlight the potential of food-grade Pickering emulsions to improve the stability of volatile flavors during both processing and storage. Full article
Show Figures

Graphical abstract

19 pages, 3230 KiB  
Article
Enhancing Mechanical Properties of Corn Bran Arabinoxylan Films for Sustainable Food Packaging
by Abdulrahman Alahmed and Senay Simsek
Foods 2024, 13(9), 1314; https://doi.org/10.3390/foods13091314 - 25 Apr 2024
Cited by 2 | Viewed by 1249
Abstract
Arabinoxylan (AX)-based films can improve the mechanical characteristics of biodegradable materials when utilized for food packaging. However, the mechanical properties of AX films for food packaging applications require thorough investigation to establish their viability. In this study, AX was extracted from corn bran [...] Read more.
Arabinoxylan (AX)-based films can improve the mechanical characteristics of biodegradable materials when utilized for food packaging. However, the mechanical properties of AX films for food packaging applications require thorough investigation to establish their viability. In this study, AX was extracted from corn bran coproducts of dry-milling (DCB), wet-milling (WCB), and dried distiller’s grains with solubles (DDGS) using an acid–alkali method. Packaging materials were produced using these AX extracts, each combined with laccase and sorbitol, forming the basis for three different films. These films were then modified by immersing the surface in a lipase–acetate solution. We evaluated their mechanical characteristics, including thickness, tensile properties, tear resistance, and puncture resistance. The thickness and tensile properties of the modified AX films derived from DCB and DDGS showed significant improvements (p < 0.05) compared to the unmodified AX films. In contrast, the modified AX films from WCB showed no significant changes (p > 0.05) in thickness and tensile properties compared to the unmodified WCB AX films. A significant increase in tear resistance (p < 0.05) was observed in all modified AX films after immersion in the lipase–acetate mixture. While puncture resistance was enhanced in the modified AX films, the improvement was not statistically significant (p > 0.05) compared to the unmodified films. The presence of hydroxyl (OH) and carbonyl (CO) groups on the surfaces of AX films from DCB and DDGS, modified by the lipase–acetate solution, suggests excellent biodegradability properties. The modification process positively affected the AX films, rendering them more bendable, flexible, and resistant to deformation when stretched, compared to the unmodified AX films. Full article
(This article belongs to the Special Issue Advances in the Development of Sustainable Food Packaging)
Show Figures

Graphical abstract

20 pages, 4806 KiB  
Article
Effect of Mechanical Damage in Green-Making Process on Aroma of Rougui Tea
by Fuming Lin, Huini Wu, Zhaolong Li, Yan Huang, Xiying Lin, Chenxi Gao, Zhihui Wang, Wenquan Yu and Weijiang Sun
Foods 2024, 13(9), 1315; https://doi.org/10.3390/foods13091315 - 25 Apr 2024
Cited by 1 | Viewed by 1216
Abstract
Rougui Tea (RGT) is a typical Wuyi Rock Tea (WRT) that is favored by consumers for its rich taste and varied aroma. The aroma of RGT is greatly affected by the process of green-making, but its mechanism is not clear. Therefore, in this [...] Read more.
Rougui Tea (RGT) is a typical Wuyi Rock Tea (WRT) that is favored by consumers for its rich taste and varied aroma. The aroma of RGT is greatly affected by the process of green-making, but its mechanism is not clear. Therefore, in this study, fresh leaves of RGT in spring were picked, and green-making (including shaking and spreading) and spreading (unshaken) were, respectively, applied after sun withering. Then, they were analyzed by GC-TOF-MS, which showed that the abundance of volatile compounds with flowery and fruity aromas, such as nerolidol, jasmine lactone, jasmone, indole, hexyl hexanoate, (E)-3-hexenyl butyrate and 1-hexyl acetate, in green-making leaves, was significantly higher than that in spreading leaves. Transcriptomic and proteomic studies showed that long-term mechanical injury and dehydration could activate the upregulated expression of genes related to the formation pathways of the aroma, but the regulation of protein expression was not completely consistent. Mechanical injury in the process of green-making was more conducive to the positive regulation of the allene oxide synthase (AOS) branch of the α-linolenic acid metabolism pathway, followed by the mevalonate (MVA) pathway of terpenoid backbone biosynthesis, thus promoting the synthesis of jasmonic acid derivatives and sesquiterpene products. Protein interaction analysis revealed that the key proteins of the synthesis pathway of jasmonic acid derivatives were acyl-CoA oxidase (ACX), enoyl-CoA hydratase (MFP2), OPC-8:0 CoA ligase 1 (OPCL1) and so on. This study provides a theoretical basis for the further explanation of the formation mechanism of the aroma substances in WRT during the manufacturing process. Full article
(This article belongs to the Special Issue Study on Aroma Components and Bioactive Compounds of Tea)
Show Figures

Figure 1

39 pages, 6573 KiB  
Review
Contemporary Views of the Extraction, Health Benefits, and Industrial Integration of Rice Bran Oil: A Prominent Ingredient for Holistic Human Health
by Tabussam Tufail, Huma Bader Ul Ain, Jin Chen, Muhammad Safiullah Virk, Zahoor Ahmed, Jawad Ashraf, Noor Ul Ain Shahid and Bin Xu
Foods 2024, 13(9), 1305; https://doi.org/10.3390/foods13091305 - 24 Apr 2024
Cited by 1 | Viewed by 2183
Abstract
Globally, 50% of people consume rice (Oryza sativa), which is among the most abundant and extensively ingested cereal grains. Rice bran is a by-product of the cereal industry and is also considered a beneficial waste product of the rice processing industry. [...] Read more.
Globally, 50% of people consume rice (Oryza sativa), which is among the most abundant and extensively ingested cereal grains. Rice bran is a by-product of the cereal industry and is also considered a beneficial waste product of the rice processing industry. Rice bran oil (RBO) is created from rice bran (20–25 wt% in rice bran), which is the outermost layer of the rice kernel; has a lipid content of up to 25%; and is a considerable source of a plethora of bioactive components. The main components of RBO include high levels of fiber and phytochemicals, including vitamins, oryzanols, fatty acids, and phenolic compounds, which are beneficial to human health and well-being. This article summarizes the stabilization and extraction processes of rice bran oil from rice bran using different techniques (including solvent extraction, microwaving, ohmic heating, supercritical fluid extraction, and ultrasonication). Some studies have elaborated the various biological activities linked with RBO, such as antioxidant, anti-platelet, analgesic, anti-inflammatory, anti-thrombotic, anti-mutagenic, aphrodisiac, anti-depressant, anti-emetic, fibrinolytic, and cytotoxic activities. Due to the broad spectrum of biological activities and economic benefits of RBO, the current review article focuses on the extraction process of RBO, its bioactive components, and the potential health benefits of RBO. Furthermore, the limitations of existing studies are highlighted, and suggestions are provided for future applications of RBO as a functional food ingredient. Full article
Show Figures

Figure 1

24 pages, 3923 KiB  
Article
High-Pressure Processing Effects on Microbiological Stability, Physicochemical Properties, and Volatile Profile of a Fruit Salad
by Ana C. Lopes, Rui P. Queirós, Rita S. Inácio, Carlos A. Pinto, Susana Casal, Ivonne Delgadillo and Jorge A. Saraiva
Foods 2024, 13(9), 1304; https://doi.org/10.3390/foods13091304 - 24 Apr 2024
Cited by 1 | Viewed by 1217
Abstract
Nowadays, consumers are more aware of the effects of their diet on their health, and thus demand natural or minimally processed food products. Therefore, research has focused on processes that assure safe products without jeopardizing their nutritional properties. In this context, this work [...] Read more.
Nowadays, consumers are more aware of the effects of their diet on their health, and thus demand natural or minimally processed food products. Therefore, research has focused on processes that assure safe products without jeopardizing their nutritional properties. In this context, this work aimed to evaluate the effects of high-pressure processing (550 MPa/3 min/15 °C, HPP) on a fruit salad (composed of melon juice and pieces of Golden apple and Rocha pear) throughout 35 days of storage at 4 °C. For the physicochemical properties analysed (browning degree, polyphenol oxidase activity, antioxidant activity (ABTS assay), and volatile profile), a freshly made fruit salad was used, while for the microbiological tests (total aerobic mesophiles, and yeast and moulds) spoiled melon juice was added to the fruit salad to increase the microbial load and mimic a challenge test with a high initial microbial load. It was determined that processed samples were more microbiologically stable than raw samples, as HPP enabled a reduction of almost 4-log units of both total aerobic mesophiles and yeasts and moulds, as well as an almost 1.5-fold increase in titratable acidity of the unprocessed samples compared to HPP samples. Regarding browning degree, a significant increase (p < 0.05) was observed in processed versus unprocessed samples (roughly/maximum 68%), while the addition of ascorbic acid decreased the browning of the samples by 29%. For antioxidant activity, there were no significant differences between raw and processed samples during the 35 days of storage. An increase in the activity of polyphenol oxidase immediately after processing (about 150%) was confirmed, which was generally similar or higher during storage compared with the raw samples. Regarding the volatile profile of the product, it was seen that the compounds associated with melon represented the biggest relative percentage and processed samples revealed a decrease in the relative quantity of these compounds compared to unprocessed. Broadly speaking, HPP was shown to be efficient in maintaining the stability and overall quality of the product while assuring microbial safety (by inactivating purposely inoculated microorganisms), which allows for longer shelf life (7 versus 28 days for unprocessed and processed fruit salad, respectively). Full article
(This article belongs to the Special Issue Novel High Pressure-Based Applications in Food Technology)
Show Figures

Figure 1

17 pages, 7232 KiB  
Article
Dynamic In Vitro Gastric Digestion Behaviour of Commercial Infant Formulae Made with Cow, Goat and Sheep Milk
by Xuan Song, Xin Wang, Mengxiao Yang, Alejandra Acevedo-Fani, Harjinder Singh and Aiqian Ye
Foods 2024, 13(9), 1286; https://doi.org/10.3390/foods13091286 - 23 Apr 2024
Cited by 1 | Viewed by 1034
Abstract
There are a wide range of commercial infant formulae available on the market. These are made using milk from different species, such as goat, sheep, and cow. The different protein compositions of these milks and the process used during infant-formulae manufacture, such as [...] Read more.
There are a wide range of commercial infant formulae available on the market. These are made using milk from different species, such as goat, sheep, and cow. The different protein compositions of these milks and the process used during infant-formulae manufacture, such as heat treatment, may impact the digestion of nutrients. This study compared the effect of protein composition and heat treatment on the in vitro gastric digestion behaviour of commercial infant formulae made with cow, goat, and sheep milk using a dynamic infant human gastric simulator (IHGS). During the simulated dynamic gastric digestion, the goat milk infant formula (GIF) showed earlier signs of aggregate formation compared to cow milk infant formula (CIF) and sheep milk infant formula (SIF). In addition, the microstructures of GIF chyme showed fragmented and porous structures. On the contrary, CIF formed dense protein networks that trapped oil droplets, whereas SIF exhibited a microstructure of smooth oil droplets surrounded by fewer protein networks. The different aggregation behaviours and aggregate structures of the three infant-formulae chyme were related to their different protein compositions, especially the different casein compositions. Furthermore, the open fragile structure of GIF aggregates provided easier access to pepsin, allowing it to hydrolyse protein. The results from the present study provided some information to assist in understanding the coagulation and digestion behaviours of commercial infant formulae made from different species of milk. Full article
Show Figures

Figure 1

22 pages, 3813 KiB  
Article
Volatile Profiling of Spirulina Food Supplements
by Aikaterina Paraskevopoulou, Triantafyllos Kaloudis, Anastasia Hiskia, Martin Steinhaus, Dimitra Dimotikali and Theodoros M. Triantis
Foods 2024, 13(8), 1257; https://doi.org/10.3390/foods13081257 - 19 Apr 2024
Cited by 3 | Viewed by 2032
Abstract
Spirulina, a cyanobacterium widely used as a food supplement due to its high nutrient value, contains volatile organic compounds (VOCs). It is crucial to assess the presence of VOCs in commercial spirulina products, as they could influence sensory quality, various processes, and technological [...] Read more.
Spirulina, a cyanobacterium widely used as a food supplement due to its high nutrient value, contains volatile organic compounds (VOCs). It is crucial to assess the presence of VOCs in commercial spirulina products, as they could influence sensory quality, various processes, and technological aspects. In this study, the volatile profiles of seventeen commercial spirulina food supplements were determined using headspace solid-phase microextraction (HS-SPME), coupled with gas chromatography-mass spectrometry (GC-MS). The identification of volatile compounds was achieved using a workflow that combined data processing with software tools and reference databases, as well as retention indices (RI) and elution order data. A total of 128 VOCs were identified as belonging to chemical groups of alkanes (47.2%), ketones (25.7%), aldehydes (10.9%), alcohols (8.4%), furans (3.7%), alkenes (1.8%), esters (1.1%), pyrazines (0.8%), and other compounds (0.4%). Major volatiles among all samples were hydrocarbons, especially heptadecane and heptadec-8-ene, followed by ketones (i.e., 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3-buten-2-one, β-ionone, 2,2,6-trimethylcyclohexan-1-one), aldehydes (i.e., hexanal), and the alcohol oct-1-en-3-ol. Several volatiles were found in spirulina dietary supplements for the first time, including 6,10-dimethylundeca-5,9-dien-2-one (geranylacetone), 6,10,14-trimethylpentadecan-2-one, hept-2-enal, octanal, nonanal, oct-2-en-1-ol, heptan-1-ol, nonan-1-ol, tetradec-9-en-1-ol, 4,4-dimethylcyclohex-2-en-1-ol, 2,6-diethylpyrazine, and 1-(2,5-dimethylfuran-3-yl) ethanone. The methodology used for VOC analysis ensured high accuracy, reliability, and confidence in compound identification. Results reveal a wide variety of volatiles in commercial spirulina products, with numerous newly discovered compounds, prompting further research on sensory quality and production methods. Full article
(This article belongs to the Special Issue Volatiles in Foods—Its Importance on Consumer Acceptance Volume II)
Show Figures

Graphical abstract

19 pages, 1597 KiB  
Article
Precision Food Composition Data as a Tool to Decipher the Riddle of Ultra-Processed Foods and Nutritional Quality
by Antonis Vlassopoulos, Alexandra Katidi, Stamoulis Noutsos and Maria Kapsokefalou
Foods 2024, 13(8), 1259; https://doi.org/10.3390/foods13081259 - 19 Apr 2024
Viewed by 2188
Abstract
Background: Epidemiology supports a link between ultra-processed foods (UPFs) and health, mediated mainly through the clustering of foods with suboptimal nutrient profiles within UPFs. However, successful NOVA categorization requires access to a food’s ingredient list, which we hypothesized can impact both UPF identification [...] Read more.
Background: Epidemiology supports a link between ultra-processed foods (UPFs) and health, mediated mainly through the clustering of foods with suboptimal nutrient profiles within UPFs. However, successful NOVA categorization requires access to a food’s ingredient list, which we hypothesized can impact both UPF identification and the link between processing and composition. Methods: Foods (n = 4851) in the HelTH branded food composition database were classified as NOVA1-4, with or without using the ingredient lists (generic and branded approach, respectively), to identify differences in NOVA classification (chi-square test) and the estimated average nutritional composition of each NOVA group (Kruskal–Willis U test). Results: Using the ingredients list increased UPF identification by 30%. More than 30% of foods commonly assumed to be minimally processed (NOVA1-plain dairy, frozen vegetables, etc.) were reclassified as UPFs when using ingredient lists. These reclassified foods, however, had nutritional compositions comparable to NOVA1 foods and better than UPFs for energy, fat, sugars, and sodium (p < 0.001). In fact, UPFs did not show a uniform nutritional composition covering foods from Nutri-Score A (~10%) to Nutri-Score E (~20%). Conclusions: The assumption that all UPFs have the same unfavorable nutritional composition is challenged when NOVA is applied using the appropriate branded food composition database. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

22 pages, 2637 KiB  
Article
A Healthy Brazil Nut Beverage with Opuntia stricta var. dillenii Green Extract: Beverage Stability and Changes in Bioactives and Antioxidant Activity during Cold Storage
by Daniel A. Alvarado-López, Sara Parralejo-Sanz, M. Gloria Lobo and M. Pilar Cano
Foods 2024, 13(8), 1237; https://doi.org/10.3390/foods13081237 - 18 Apr 2024
Viewed by 2964
Abstract
Plant-based beverages are one of the foods that currently arouse a lot of interest in the population due to their composition with compounds beneficial to health in addition to their being used as milk substitutes for people who suffer from food disorders. Also, [...] Read more.
Plant-based beverages are one of the foods that currently arouse a lot of interest in the population due to their composition with compounds beneficial to health in addition to their being used as milk substitutes for people who suffer from food disorders. Also, their fortification with different nutrients or healthy ingredients with the aim of improving plant-based health potential is actually gaining importance in the food industry. For this reason, the aim of the present investigation was the preparation of a healthy Brazil nut beverage enriched with Opuntia stricta var. dillenii pulp green extracts (ODPs), in order to produce a healthy plant-based beverage with improved nutritional characteristics. The microstructural characterization of the Brazil nut beverage, its stability during cold storage for up to 24 days at 5 °C, the composition of bioactive compounds provided via ODP extract (betalains and phenolic compounds), and their antioxidant activity were evaluated in this study. Green ODP extracts (0.5 and 1 g/100 g beverage) were added to a standardized Brazil nut beverage (reduced fat beverage). The characterization of the bioactive composition (betalains and phenolic compounds) of the elaborated beverage was achieved via HPLC (UV-vis and MS-QT of detection), and the antioxidant activity measurements via ORAC were also carried out. Optical microscopy, particle size, and Z potential analysis was conducted to characterize the structure of the Brazil nut beverages as food emulsions in which ODP extract was added. Most of the bioactive compounds from the green ODP extract added to the beverages showed good retention and remained stable throughout the 24 days of storage at 7 °C, with encapsulation efficiencies ranging from 98.34% to 92.35% for betalains and from 93.67% and 81.20% for phenolic compounds. According to the results of this study, Brazil nut beverage seems to be a healthy and efficient food emulsion system to encapsulate ODP extract rich in betalains and phenolic compounds, with high antioxidant activity, making possible the development of a Brazil nut beverage with improved health potential. Full article
Show Figures

Figure 1

15 pages, 2160 KiB  
Review
Research Progress on New Functions of Animal and Plant Proteins
by Hao Duan, Gaigai Liu, Duo Feng, Zhuoye Wang and Wenjie Yan
Foods 2024, 13(8), 1223; https://doi.org/10.3390/foods13081223 - 17 Apr 2024
Cited by 2 | Viewed by 1680
Abstract
Protein is composed of peptides, essential nutrients for human survival and health, and the easy absorption of peptides further promotes human health. According to the source of the protein, it can be divided into plants, animals, and micro-organisms, which have important physiological effects [...] Read more.
Protein is composed of peptides, essential nutrients for human survival and health, and the easy absorption of peptides further promotes human health. According to the source of the protein, it can be divided into plants, animals, and micro-organisms, which have important physiological effects on the health of the body, especially in enhancing immunity. The most widely used raw materials are animal protein and plant protein, and the protein composition formed by the two in a certain proportion is called “double protein”. In recent years, China’s State Administration for Market Regulation has issued an announcement on the “Implementation Rules for the Technical Evaluation of New Functions and Products of Health Foods (Trial)”, which provides application conditions and listing protection for the research and development of new functions of health foods. At present, some researchers and enterprises have begun to pay attention to the potential of animal and plant proteins to be used in new functions. In this article, the research progress of animal and plant proteins in the new functions of Chinese health food is reviewed in detail, and suggestions for future research on animal and plant proteins are put forward. Full article
Show Figures

Figure 1

18 pages, 2937 KiB  
Article
Properties and Characterization of Sunflower Seeds from Different Varieties of Edible and Oil Sunflower Seeds
by Zhenyuan Li, Fei Xiang, Xuegang Huang, Manzhu Liang, Sarina Ma, Karim Gafurov, Fengying Gu, Qin Guo and Qiang Wang
Foods 2024, 13(8), 1188; https://doi.org/10.3390/foods13081188 - 13 Apr 2024
Cited by 3 | Viewed by 2235
Abstract
Sunflower seeds, oil, and protein powder are rich in nutritional value, but the quality of different varieties of sunflower seeds is quite different, and the comprehensive comparative analysis characteristics of edible and oil sunflower seeds are still unclear. The comprehensive analysis and comparison [...] Read more.
Sunflower seeds, oil, and protein powder are rich in nutritional value, but the quality of different varieties of sunflower seeds is quite different, and the comprehensive comparative analysis characteristics of edible and oil sunflower seeds are still unclear. The comprehensive analysis and comparison of the raw material indicators, physicochemical properties, and processing characteristics of four edible and four oil sunflower seed varieties were investigated. The results showed that the engineering properties, texture characteristics, single-cell structure, and oil, protein, and starch granule distribution were different between edible and oil sunflower seeds. The composition of fatty acids and amino acids was different among edible, oil sunflower seeds and different varieties. The oleic acid (18.72~79.30%) and linoleic acid (10.11~51.72%) were the main fatty acids in sunflower seed oil, and in amino acid composition, the highest content was glutamic acid (8.88~11.86 g/100 g), followed by aspartic acid (3.92~4.86 g/100 g) and arginine (4.03~4.80 g/100 g). Sunflower meal proteins were dominated by 11S globulin and 2S albumin, and the secondary structure was dominated by β-folding, with -SH and S-S varying greatly among different varieties. Sunflower meal proteins vary widely in terms of functional properties among different varieties, and specialized quality screening was necessary. This study provided a reference and theoretical support for understanding sunflower seeds to further promote the processing and utilization of sunflower seeds. Full article
(This article belongs to the Special Issue Edible Oil: Processing, Safety and Sustainability)
Show Figures

Graphical abstract

19 pages, 4888 KiB  
Article
Preparation, Characterization and Application of Active Food Packaging Films Based on Sodium Alginate and Twelve Varieties of Mandarin Peel Powder
by Dawei Yun and Jun Liu
Foods 2024, 13(8), 1174; https://doi.org/10.3390/foods13081174 - 12 Apr 2024
Cited by 1 | Viewed by 1433
Abstract
The industrial processing of mandarin fruits yields a large amount of peel waste, resulting in economic losses and environmental pollution. The peels of mandarin fruits are a good source of biomass and active substances that can be used to produce food packaging systems. [...] Read more.
The industrial processing of mandarin fruits yields a large amount of peel waste, resulting in economic losses and environmental pollution. The peels of mandarin fruits are a good source of biomass and active substances that can be used to produce food packaging systems. In this study, active food packaging films were prepared based on sodium alginate and twelve varieties of mandarin peel powder. The structures, properties, and corn oil packaging performance of the films were compared. Results showed that the twelve varieties of mandarin peel powder differed in pectin, lipid, protein, crude fiber, and total phenol contents. The prepared films all exhibited a yellow color, 117.73–152.45 μm thickness, 16.39–23.62% moisture content, 26.03–90.75° water contact angle, 5.38–8.31 × 10−11 g m−1 s−1 Pa−1 water vapor permeability, 5.26–12.91 × 10−20 m2 s−1 Pa−1 oxygen permeability, 4.87–7.90 MPa tensile strength, and 13.37–24.62% elongation at break. Notably, the films containing mandarin peel powder with high pectin and lipid contents showed high moisture/oxygen barrier ability and mechanical properties. The films containing mandarin peel powder with high total phenol content exhibited high antioxidant- and antimicrobial-releasing abilities and good performance in delaying corn oil oxidation. Overall, the results suggested that the films have good application potential in active food packaging. Full article
(This article belongs to the Special Issue Active Packaging in Food Storage: From Development to Utilization)
Show Figures

Figure 1

21 pages, 1630 KiB  
Review
The Valorization of Wastes and Byproducts from Cruciferous Vegetables: A Review on the Potential Utilization of Cabbage, Cauliflower, and Broccoli Byproducts
by Tharushi S. Shinali, Yiying Zhang, Moater Altaf, Assa Nsabiyeze, Zixin Han, Shuyuan Shi and Nan Shang
Foods 2024, 13(8), 1163; https://doi.org/10.3390/foods13081163 - 11 Apr 2024
Cited by 3 | Viewed by 2447
Abstract
The management of vegetable waste and byproducts is a global challenge in the agricultural industry. As a commonly consumed vegetable crop, cruciferous vegetables marked higher amounts of wastage during their supply chain processes, with a significant contribution from cabbage, cauliflower, and broccoli. Therefore, [...] Read more.
The management of vegetable waste and byproducts is a global challenge in the agricultural industry. As a commonly consumed vegetable crop, cruciferous vegetables marked higher amounts of wastage during their supply chain processes, with a significant contribution from cabbage, cauliflower, and broccoli. Therefore, the sustainable and resource-efficient utilization of discarded materials is crucial. This review explores potential applications of cruciferous vegetable waste and byproducts, spotlighting cabbage, cauliflower, and broccoli in food, medicinal, and other industries. Their significance of being utilized in value-added applications is addressed, emphasizing important biomolecules, technologies involved in the valorization process, and future aspects of practical applications. Cabbage, cauliflower, and broccoli generate waste and low-processing byproducts, including leaves, stems, stalks, and rot. Most of them contain high-value biomolecules, including bioactive proteins and phytochemicals, glucosinolates, flavonoids, anthocyanins, carotenoids, and tocopherols. Interestingly, isothiocyanates, derived from glucosinolates, exhibit strong anti-inflammatory and anticancer activity through various interactions with cellular molecules and the modulation of key signaling pathways in cells. Therefore, these cruciferous-based residues can be valorized efficiently through various innovative extraction and biotransformation techniques, as well as employing different biorefinery approaches. This not only minimizes environmental impact but also contributes to the development of high-value-added products for food, medicinal, and other related industries. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

19 pages, 1646 KiB  
Article
Chemical Profile and Biological Activities of Brassica rapa and Brassica napus Ex Situ Collection from Portugal
by Carmo Serrano, M. Conceição Oliveira, V. R. Lopes, Andreia Soares, Adriana K. Molina, Beatriz H. Paschoalinotto, Tânia C. S. P. Pires, Octávio Serra and Ana M. Barata
Foods 2024, 13(8), 1164; https://doi.org/10.3390/foods13081164 - 11 Apr 2024
Cited by 1 | Viewed by 1636
Abstract
This study aimed to analyse the chemical profile and biological activities of 29 accessions of Brassica rapa (turnips) and 9 of Brassica napus (turnips and seeds) collections, maintained ex situ in Portugal. HPLC-HRMS allowed the determination of glucosinolates (GLS) and polyphenolic compounds. The [...] Read more.
This study aimed to analyse the chemical profile and biological activities of 29 accessions of Brassica rapa (turnips) and 9 of Brassica napus (turnips and seeds) collections, maintained ex situ in Portugal. HPLC-HRMS allowed the determination of glucosinolates (GLS) and polyphenolic compounds. The antioxidant and antimicrobial activities were determined by using relevant assays. The chemical profiles showed that glucosamine, gluconasturtiin, and neoglucobrassin were the most abundant GLS in the extracts from the turnip accessions. Minor forms of GLS include gluconapoleiferin, glucobrassicanapin, glucoerucin, glucobrassin, and 4-hydroxyglucobrassin. Both species exhibited strong antioxidant activity, attributed to glucosinolates and phenolic compounds. The methanol extracts of Brassica rapa accessions were assessed against a panel of five Gram-negative bacteria (Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serovar, and Yersinia enterocolitica) and three Gram-positive bacteria (Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus). The extracts exhibited activity against S. enterica and S. aureus, and two showed inhibitory activity against E. coli and Y. enterocolitica. This study provides valuable insights into the chemical composition and biological properties of Brassica rapa and Brassica napus collections in Portugal. The selected accessions can constitute potential sources of natural antioxidants and bioactive compounds, which can be used in breeding programs and improving human health and to promote healthy food systems. Full article
Show Figures

Figure 1

Back to TopTop