Development of a Guava Jelly Drink with Potential Antioxidant, Anti-Inflammation, Neurotransmitter, and Gut Microbiota Benefits
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Guava-Based Jelly Drink
2.2. Determination of the Profile of Flavonoids and Vitamin C Assessment
2.3. Determination of the Polyphenols and Flavonoids Contents, and Biological Activities
2.3.1. Measurement of Phenolic Compounds
2.3.2. Measurement of Total Flavonoids Content
2.3.3. DPPH (2,2-diphenyl-1-picrylhydrazyl) Assay
2.3.4. FRAP (Ferric Reducing Antioxidant Power) Assay
2.3.5. ABTS (2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) Method
2.3.6. Determination of Acetylcholinesterase (AChE) Inhibition Activity
2.3.7. Determination of Monoamine Oxidase (MAO) Inhibition Activity
2.3.8. Determination of GABA-T Inhibition Activity
2.3.9. Determination of Glutamate Decarboxylase (GAD) Suppression Activity
2.3.10. Assessment of Cyclooxygenase-2 (COX-2) Suppression Activity
2.4. Determination of Lactic Acid-Producing Bacteria (LAB)
2.5. Sensory Evaluation
2.6. Statistical Analysis
3. Results
3.1. Determination of the Polyphenols and Flavonoids Contents, and Biological Activities of Guava Juice, Mint Syrup, and PPDF
3.2. Determination of the Polyphenol and Flavonoid Contents and Biological Activities of Three Formulations of Guava-Based Jelly Drink and Placebo
3.3. Determination of the Profile of Phenolic Compound, Flavonoid, and Nutrition Contents
3.4. The Shelf-Life Stability of Guava Jelly Drink Throughout the 6-Month Storage
3.5. Effect of the Developed Product on the Amount of LAB
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Mental Disorder. Available online: https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed on 19 January 2025).
- Campion, J.; Javed, A.; Lund, C.; Sartorius, N.; Saxena, S.; Marmot, M.; Allan, J.; Udomratn, P. Public mental health: Required actions to address implementation failure in the context of COVID-19. Lancet Psychiatry 2022, 9, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Erskine, H.E.; Moffitt, T.E.; Copeland, W.E.; Costello, E.J.; Ferrari, A.J.; Patton, G.; Degenhardt, L.; Vos, T.; Whiteford, H.A.; Scott, J.G. A heavy burden on young minds: The global burden of mental and substance use disorders in children and youth. Psychol. Med. 2015, 45, 1551–1563. [Google Scholar] [CrossRef] [PubMed]
- Sulakhiya, K.; Kumar, P.; Jangra, A.; Dwivedi, S.; Hazarika, N.K.; Baruah, C.C.; Lahkar, M. Honokiol abrogates lipopolysaccharide-induced depressive like behavior by impeding neuroinflammation and oxido-nitrosative stress in mice. Eur. J. Pharmacol. 2014, 744, 124–131. [Google Scholar] [CrossRef]
- van Zonneveld, S.M.; van den Oever, E.J.; Haarman, B.C.M.; Grandjean, E.L.; Nuninga, J.O.; van de Rest, O.; Sommer, I.E.C. An Anti-Inflammatory Diet and Its Potential Benefit for Individuals with Mental Disorders and Neurodegenerative Diseases-A Narrative Review. Nutrients 2024, 16, 2646. [Google Scholar] [CrossRef]
- Nazzi, C.; Avenanti, A.; Battaglia, S. The Involvement of Antioxidants in Cognitive Decline and Neurodegeneration: Mens Sana in Corpore Sano. Antioxidants 2024, 13, 701. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jin, M.; Xie, M.; Yang, Y.; Xue, F.; Li, W.; Zhang, M.; Li, Z.; Li, X.; Jia, N.; et al. Protective role of antioxidant supplementation for depression and anxiety: A meta-analysis of randomized clinical trials. J. Affect. Disord. 2023, 323, 264–279. [Google Scholar] [CrossRef] [PubMed]
- Fitton, R.; Sweetman, J.; Heseltine-Carp, W.; van der Feltz-Cornelis, C. Anti-inflammatory medications for the treatment of mental disorders: A scoping review. Brain Behav. Immun. Health 2022, 26, 100518. [Google Scholar] [CrossRef]
- Mekhora, C.; Lamport, D.J.; Spencer, J.P.E. An overview of the relationship between inflammation and cognitive function in humans, molecular pathways and the impact of nutraceuticals. Neurochem. Int. 2024, 181, 105900. [Google Scholar] [CrossRef]
- Monjotin, N.; Amiot, M.J.; Fleurentin, J.; Morel, J.M.; Raynal, S. Clinical Evidence of the Benefits of Phytonutrients in Human Healthcare. Nutrients 2022, 14, 1712. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Kwiecień, M.; Jachimowicz-Rogowska, K.; Donaldson, J.; Tomaszewska, E.; Baranowska-Wójcik, E. Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Polyphenols-Polyphenols as an Element of Diet Therapy in Depressive Disorders. Int. J. Mol. Sci. 2023, 24, 2258. [Google Scholar] [CrossRef]
- Fekete, M.; Lehoczki, A.; Major, D.; Fazekas-Pongor, V.; Csípő, T.; Tarantini, S.; Csizmadia, Z.; Varga, J.T. Exploring the Influence of Gut-Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients 2024, 16, 789. [Google Scholar] [CrossRef] [PubMed]
- Appleton, J. The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health. Integr. Med. 2018, 17, 28–32. [Google Scholar]
- Naseer, S.; Hussain, S.; Naeem, N.; Pervaiz, M.; Rahman, M. The phytochemistry and medicinal value of Psidium guajava (guava). Clin. Phytoscience 2018, 4, 32. [Google Scholar] [CrossRef]
- Li, P.Y.; Hsu, C.C.; Yin, M.C.; Kuo, Y.H.; Tang, F.Y.; Chao, C.Y. Protective Effects of Red Guava on Inflammation and Oxidative Stress in Streptozotocin-Induced Diabetic Mice. Molecules 2015, 20, 22341–22350. [Google Scholar] [CrossRef]
- Suwanwong, Y.; Boonpangrak, S. Phytochemical contents, antioxidant activity, and anticancer activity of three common guava cultivars in Thailand. Eur. J. Integr. Med. 2021, 42, 101290. [Google Scholar] [CrossRef]
- Sowmya, A.; Lakshmi, M. Value-addition of pummelo (Citrus grandis) Peel—A Review. Pharma Innov. 2023, 12, 40–45. [Google Scholar] [CrossRef]
- Wang, H.; Wang, P.; Kasapis, S.; Truong, T. Pomelo (Citrus grandis L.) peels as effective sorbents for diverse gel matrices: The influence of particle size and powder concentration. J. Food Eng. 2024, 370, 111966. [Google Scholar] [CrossRef]
- Ni, J.; Shangguan, Y.; Jiang, L.; He, C.; Ma, Y.; Xiong, H. Pomelo peel dietary fiber ameliorates alterations in obesity-related features and gut microbiota dysbiosis in mice fed on a high-fat diet. Food Chem. X 2023, 20, 100993. [Google Scholar] [CrossRef]
- Casertano, M.; Dekker, M.; Valentino, V.; De Filippis, F.; Fogliano, V.; Ercolini, D. Gaba-producing lactobacilli boost cognitive reactivity to negative mood without improving cognitive performance: A human Double-Blind Placebo-Controlled Cross-Over study. Brain Behav. Immun. 2024, 122, 256–265. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Y.; Wang, Z.; Wang, R.; Dong, Y. Lactiplantibacillus plantarum CR12 attenuates chronic unforeseeable mild stress induced anxiety and depression-like behaviors by modulating the gut microbiota-brain axis. J. Funct. Foods 2023, 107, 105710. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Wang, M.; Zheng, L.; Cen, Q.; Wang, F.; Zhu, L.; Pang, R.; Zhang, A. Bifidobacterium: A probiotic for the prevention and treatment of depression. Front. Microbiol. 2023, 14, 1174800. [Google Scholar] [CrossRef]
- Savignac, H.M.; Tramullas, M.; Kiely, B.; Dinan, T.G.; Cryan, J.F. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav. Brain Res. 2015, 287, 59–72. [Google Scholar] [CrossRef]
- Herz, R. Influences of Odors on Mood and Affective Cognition. In Olfaction, Taste, and Cognition; Cambridge University Press: Cambridge, UK, 2002; pp. 160–177. [Google Scholar]
- Forde, C.G.; de Graaf, K. Influence of Sensory Properties in Moderating Eating Behaviors and Food Intake. Front. Nutr. 2022, 9, 841444. [Google Scholar] [CrossRef] [PubMed]
- Hoult, L.; Longstaff, L.; Moss, M. Prolonged Low-Level Exposure to the Aroma of Peppermint Essential Oil Enhances Aspects of Cognition and Mood in Healthy Adults. Am. J. Plant Sci. 2019, 10, 1002–1012. [Google Scholar] [CrossRef]
- Islam, M.; Basri, R.; Rahman, M.; Uddin, M.; Islam, M.; Mamun Hossain, S.A.A. Nutritional Assessment of Guava for Quality Jelly Production. Malays. J. Halal Res. 2022, 5, 24–32. [Google Scholar] [CrossRef]
- Chaudhry, G.-E.S.; Matin, A.; Yeong, y.s.; Rahman, M.; Sifzizul, T.; Rahim, I. Effect of Pectin and Citric acid on Sensory Evaluation for Consumer’s acceptability of Preserved Guava Jelly. Res. J. Pharm. Technol. 2024, 17, 1–4. [Google Scholar] [CrossRef]
- Khatun, R. Studies on Storage and Stability of Guava Juice and Jelly. Master’s Degree, Bangladesh Agricultural University: Mymensingh, Bangladesh, 2011. [Google Scholar]
- Hasselmo, M.; Sarter, M. Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition. Neuropsychopharmacol 2011, 36, 52–73. [Google Scholar] [CrossRef] [PubMed]
- Dulawa, S.C.; Janowsky, D.S. Cholinergic regulation of mood: From basic and clinical studies to emerging therapeutics. Mol. Psychiatry 2019, 24, 694–709. [Google Scholar] [CrossRef]
- Jiang, Y.; Zou, D.; Li, Y.; Gu, S.; Dong, J.; Ma, X.; Xu, S.; Wang, F.; Huang, J.H. Monoamine Neurotransmitters Control Basic Emotions and Affect Major Dsepressive Disorders. Pharmaceuticals 2022, 15, 1203. [Google Scholar] [CrossRef]
- Boyle, N.; Betts, S.; Lu, H. Monoaminergic Modulation of Learning and Cognitive Function in the Prefrontal Cortex. Brain Sci. 2024, 14, 902. [Google Scholar] [CrossRef]
- Koh, W.; Kwak, H.; Cheong, E.; Lee, C.J. GABA tone regulation and its cognitive functions in the brain. Nat. Rev. Neurosci. 2023, 24, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Nutt, D.J. Role of GABA in anxiety and depression. Depress. Anxiety 2007, 24, 495–517. [Google Scholar] [CrossRef] [PubMed]
- Onaolapo, A.Y.; Onaolapo, O.J. Glutamate and depression: Reflecting a deepening knowledge of the gut and brain effects of a ubiquitous molecule. World J. Psychiatry 2021, 11, 297–315. [Google Scholar] [CrossRef]
- Pal, M.M. Glutamate: The Master Neurotransmitter and Its Implications in Chronic Stress and Mood Disorders. Front. Hum. Neurosci. 2021, 15, 722323. [Google Scholar] [CrossRef] [PubMed]
- Sanegthongpinit, W. Production and Properties of Dietary Fiber from Pomelo Albedo for Food Products. In Proceedings of the 1st NPRU Academic Conference, Nakhon Pathom, Thailand, 23–24 October 2008. [Google Scholar]
- Sharif, M.K.; Butt, M.S.; Sharif, H.R.; Nasir, M. Sensory evaluation and consumer acceptability. Handb. Food Sci. Technol. 2017, 10, 362–386. [Google Scholar]
- Palachai, N.; Wattanathorn, J.; Muchimapura, S.; Thukham-Mee, W. Antimetabolic Syndrome Effect of Phytosome Containing the Combined Extracts of Mulberry and Ginger in an Animal Model of Metabolic Syndrome. Oxid. Med. Cell Longev. 2019, 2019, 5972575. [Google Scholar] [CrossRef]
- Huang, Q.; Liao, C.; Ge, F.; Ao, J.; Liu, T. Acetylcholine bidirectionally regulates learning and memory. J. Neurorestoratology 2022, 10, 100002. [Google Scholar] [CrossRef]
- Jones, D.N.; Raghanti, M.A. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. J. Chem. Neuroanat. 2021, 114, 101957. [Google Scholar] [CrossRef]
- Arora, I.; Mal, P.; Arora, P.; Paul, A.; Kumar, M. GABAergic implications in anxiety and related disorders. Biochem. Biophys. Res. Commun. 2024, 724, 150218. [Google Scholar] [CrossRef]
- Stachowicz, K. Application potential of modulation of cyclooxygenase-2 activity: A cognitive approach. Postępy Hig. I Med. Doświadczalnej 2021, 75, 837–846. [Google Scholar] [CrossRef]
- Mueller, N. COX-2 inhibitors as antidepressants and antipsychotics: Clinical evidence. Curr. Opin. Investig. Drugs 2010, 11, 31–42. [Google Scholar]
- Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Cazin, J.-C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 2000, 72, 35–42. [Google Scholar] [CrossRef]
- Luximon-Ramma, A.; Bahorun, T.; Soobrattee, M.A.; Aruoma, O.I. Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. J. Agric. Food Chem. 2002, 50, 5042–5047. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.; Hosseinimehr, S.J.; Hamidinia, A.; Jafari, M. Antioxidant and free radical scavenging activity of Feijoa sallowiana fruits peel and leaves. Pharmacologyonline 2008, 1, 7–14. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Holt, A.; Sharman, D.F.; Baker, G.B.; Palcic, M.M. A continuous spectrophotometric assay for monoamine oxidase and related enzymes in tissue homogenates. Anal. Biochem. 1997, 244, 384–392. [Google Scholar] [CrossRef]
- Jacob, J.N.; Hesse, G.W.; Shashoua, V.E. Synthesis, brain uptake, and pharmacological properties of a glyceryl lipid containing GABA and the GABA-T inhibitor gamma-vinyl-GABA. J. Med. Chem. 1990, 33, 733–736. [Google Scholar] [CrossRef]
- Krnjević, K. Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 1974, 54, 418–540. [Google Scholar] [CrossRef]
- Hamed, N.O.; Al-Ayadhi, L.; Osman, M.A.; Elkhawad, A.O.; Qasem, H.; Al-Marshoud, M.; Merghani, N.M.; El-Ansary, A. Understanding the roles of glutamine synthetase, glutaminase, and glutamate decarboxylase autoantibodies in imbalanced excitatory/inhibitory neurotransmission as etiological mechanisms of autism. Psychiatry Clin. Neurosci. 2018, 72, 362–373. [Google Scholar] [CrossRef]
- Cho, H.; Yun, C.W.; Park, W.K.; Kong, J.Y.; Kim, K.S.; Park, Y.; Lee, S.; Kim, B.K. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol. Res. 2004, 49, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Süle, J.; Kõrösi, T.; Hucker, A.; Varga, L. Evaluation of culture media for selective enumeration of bifidobacteria and lactic acid bacteria. Braz. J. Microbiol. 2014, 45, 1023–1030. [Google Scholar] [CrossRef]
- Saikia, S.; Mahnot, N.K.; Mahanta, C.L.; Chattopadhyay, P.; Agnihotri, A. Optimisation of a carambola pomace fibre fortified mix fruit beverage powder, its characterization and in vivo study. J. Saudi Soc. Agric. Sci. 2022, 19, 14–21. [Google Scholar] [CrossRef]
- Pinsuwan, A.; Suwonsichon, S.; Chompreeda, P.; Prinyawiwatkul, W. Sensory Drivers of Consumer Acceptance, Purchase Intent and Emotions toward Brewed Black Coffee. Foods 2022, 11, 180. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.M.; Carpenter, D.E. (Eds.) Methods of Analysis for Nutrition Labeling; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1993. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Jabir, N.R.; Khan, F.R.; Tabrez, S. Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer’s disease. CNS Neurosci. Ther. 2018, 24, 753–762. [Google Scholar] [CrossRef]
- Szwajgier, D. Anticholinesterase Activities of Selected Polyphenols—A Short Report. Pol. J. Food Nutr. Sci. 2014, 64, 59–64. [Google Scholar] [CrossRef]
- Srichomphu, P.; Wattanathorn, J.; Thukham-Mee, W.; Muchimapura, S. Anxiety, Insomnia, and Memory Impairment in Metabolic Syndrome Rats Are Alleviated by the Novel Functional Ingredients from Anacardium occidentale. Antioxidants 2022, 11, 2203. [Google Scholar] [CrossRef]
- Grabska-Kobyłecka, I.; Szpakowski, P.; Król, A.; Książek-Winiarek, D.; Kobyłecki, A.; Głąbiński, A.; Nowak, D. Polyphenols and Their Impact on the Prevention of Neurodegenerative Diseases and Development. Nutrients 2023, 15, 3454. [Google Scholar] [CrossRef]
- Zhang, Z.; Hamada, H.; Gerk, P.M. Selectivity of Dietary Phenolics for Inhibition of Human Monoamine Oxidases A and B. Biomed. Res. Int. 2019, 2019, 8361858. [Google Scholar] [CrossRef]
- Rebas, E.; Rzajew, J.; Radzik, T.; Zylinska, L. Neuroprotective Polyphenols: A Modulatory Action on Neurotransmitter Pathways. Curr. Neuropharmacol. 2020, 18, 431–445. [Google Scholar] [CrossRef]
- Ren, T.; Zheng, P.; Zhang, K.; Liao, J.; Xiong, F.; Shen, Q.; Ma, Y.; Fang, W.; Zhu, X. Effects of GABA on the polyphenol accumulation and antioxidant activities in tea plants (Camellia sinensis L.) under heat-stress conditions. Plant Physiol. Biochem. 2021, 159, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, M.; Chen, P.; Narayan, S.; Matschinsky, F.M.; Bennett, M.J.; Stanley, C.A.; Smith, T.J. Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site. J. Biol. Chem. 2011, 286, 34164–34174. [Google Scholar] [CrossRef]
- Jiang, H.W.; Li, H.Y.; Yu, C.W.; Yang, T.T.; Hu, J.N.; Liu, R.; Deng, Z.Y. The Evaluation of Antioxidant Interactions among 4 Common Vegetables using Isobolographic Analysis. J. Food Sci. 2015, 80, C1162–C1169. [Google Scholar] [CrossRef]
- Teleanu, R.I.; Chircov, C.; Grumezescu, A.M.; Volceanov, A.; Teleanu, D.M. Antioxidant Therapies for Neuroprotection—A Review. J. Clin. Med. 2019, 8, 1659. [Google Scholar] [CrossRef]
- Terracina, S.; Petrella, C.; Francati, S.; Lucarelli, M.; Barbato, C.; Minni, A.; Ralli, M.; Greco, A.; Tarani, L.; Fiore, M.; et al. Antioxidant Intervention to Improve Cognition in the Aging Brain: The Example of Hydroxytyrosol and Resveratrol. Int. J. Mol. Sci. 2022, 23, 15674. [Google Scholar] [CrossRef] [PubMed]
- Gautam, M.; Agrawal, M.; Gautam, M.; Sharma, P.; Gautam, A.S.; Gautam, S. Role of antioxidants in generalised anxiety disorder and depression. Indian J. Psychiatry 2012, 54, 244–247. [Google Scholar] [CrossRef]
- Mallah, K.; Couch, C.; Borucki, D.M.; Toutonji, A.; Alshareef, M.; Tomlinson, S. Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go From Here? Front. Immunol. 2020, 11, 2021. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhan, W.; Huang, X.; Zhang, L.; Zhang, Z.; Zhou, M.; Wang, Z.; Ma, Y. The Relationship Between Mild Cognitive Impairment and Anti-Inflammatory/Pro-Inflammatory Nutrients in the Elderly in Northern China: A Bayesian Kernel Machine Regression Approach. J. Inflamm. Res. 2022, 15, 325–339. [Google Scholar] [CrossRef]
- Moreira, N.; Lima, J.; Marchiori, M.F.; Carvalho, I.; Sakamoto-Hojo, E.T. Neuroprotective Effects of Cholinesterase Inhibitors: Current Scenario in Therapies for Alzheimer’s Disease and Future Perspectives. J. Alzheimers Dis. Rep. 2022, 6, 177–193. [Google Scholar] [CrossRef]
- Johnson, S.; Tazik, S.; Lu, D.; Johnson, C.; Youdim, M.B.; Wang, J.; Rajkowska, G.; Ou, X.M. The New Inhibitor of Monoamine Oxidase, M30, has a Neuroprotective Effect Against Dexamethasone-Induced Brain Cell Apoptosis. Front. Neurosci. 2010, 4, 180. [Google Scholar] [CrossRef] [PubMed]
- Devita, M.; Masina, F.; Mapelli, D.; Anselmi, P.; Sergi, G.; Coin, A. Acetylcholinesterase inhibitors and cognitive stimulation, combined and alone, in treating individuals with mild Alzheimer’s disease. Aging Clin. Exp. Res. 2021, 33, 3039–3045. [Google Scholar] [CrossRef] [PubMed]
- Delumeau, J.C.; Bentué-Ferrer, D.; Gandon, J.M.; Amrein, R.; Belliard, S.; Allain, H. Monoamine oxidase inhibitors, cognitive functions and neurodegenerative diseases. J. Neural Transm. Suppl. 1994, 41, 259–266. [Google Scholar]
- Roth, M.; Guelfi, J.D. The efficacy of reversible monoamine oxidase inhibitors in depressive illness. Can. J. Psychiatry 1992, 37 (Suppl. S1), 18–24. [Google Scholar]
- Möhler, H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 2012, 62, 42–53. [Google Scholar] [CrossRef]
- Bhuia, M.S.; Rahaman, M.M.; Islam, T.; Bappi, M.H.; Sikder, M.I.; Hossain, K.N.; Akter, F.; Al Shamsh Prottay, A.; Rokonuzzman, M.; Gürer, E.S.; et al. Neurobiological effects of gallic acid: Current perspectives. Chin. Med. 2023, 18, 27. [Google Scholar] [CrossRef]
- Jafaripour, L.; Esmaeilpour, K.; Maneshian, M.; Bashiri, H.; Rajizadeh, M.A.; Ahmadvand, H.; Asadi-Shekaari, M. The effect of gallic acid on memory and anxiety-like behaviors in rats with bile duct ligation-induced hepatic encephalopathy: Role of AMPK pathway. Avicenna J. Phytomed 2022, 12, 425–438. [Google Scholar] [PubMed]
- Harrison, F.E.; May, J.M. Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2. Free Radic. Biol. Med. 2009, 46, 719–730. [Google Scholar] [CrossRef]
- Travica, N.; Ried, K.; Sali, A.; Scholey, A.; Hudson, I.; Pipingas, A. Vitamin C Status and Cognitive Function: A Systematic Review. Nutrients 2017, 9, 960. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, L.; Wang, L. Kaempferol, a potential neuroprotective agent in neurodegenerative diseases: From chemistry to medicine. Biomed. Pharmacother. 2023, 165, 115215. [Google Scholar] [CrossRef]
- Uysal, M.; Celikten, M.; Beker, M.; Polat, N.; Huseyinbas, O.; Terzioglu-Usak, S.; Elibol, B. Kaempferol treatment ameliorates memory impairments in STZ-induced neurodegeneration by acting on reelin signaling. Acta Neurobiol. Exp. 2023, 83, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Su, P.; Liu, L.; Gong, Y.; Peng, S.; Yan, X.; Bai, M.; Xu, E.; Li, Y. Kaempferol improves depression-like behaviors through shifting microglia polarization and suppressing NLRP3 via tilting the balance of PPARγ and STAT1 signaling. Int. Immunopharmacol. 2024, 143, 113538. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Wang, J.; Liang, L.F.; Shen, S.Y.; Li, W.; Chen, X.R.; Li, B.; Zhang, Y.Q.; Yu, J. Sirtuin 3 Plays a Critical Role in the Antidepressant- and Anxiolytic-like Effects of Kaempferol. Antioxidants 2022, 11, 1886. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.C.; Tsai, T.Y.; Wang, C.J. The Potential Benefits of Quercetin for Brain Health: A Review of Anti-Inflammatory and Neuroprotective Mechanisms. Int. J. Mol. Sci. 2023, 24, 6328. [Google Scholar] [CrossRef]
- Broman-Fulks, J.J.; Canu, W.H.; Trout, K.L.; Nieman, D.C. The effects of quercetin supplementation on cognitive functioning in a community sample: A randomized, placebo-controlled trial. Ther. Adv. Psychopharmacol. 2012, 2, 131–138. [Google Scholar] [CrossRef]
- Wang, D.; Yu, Z.; Yao, R.; Zhang, J.; Cui, W.; Dai, J.; Li, J.; Qian, H.; Zhao, X. Quercetin alleviates depressive-like behavior by modulating acetyl-H3K9 mediated ferroptosis pathway in hypothalamus of perimenopausal depression rat model. Biomed. Pharmacother. 2024, 179, 117369. [Google Scholar] [CrossRef]
- Lee, B.; Yeom, M.; Shim, I.; Lee, H.; Hahm, D.H. Protective Effects of Quercetin on Anxiety-Like Symptoms and Neuroinflammation Induced by Lipopolysaccharide in Rats. Evid. Based Complement. Altern. Med. 2020, 2020, 4892415. [Google Scholar] [CrossRef]
- Alhyari, D.; Qinna, N.A.; Sheldrake, H.M.; Kantamneni, S.; Ghanem, B.Y.; Paluch, K.J. Antioxidant, Anti-Inflammatory, and Oral Bioavailability of Novel Sulfonamide Derivatives of Gallic Acid. Antioxidants 2025, 14, 374. [Google Scholar] [CrossRef]
- Gęgotek, A.; Skrzydlewska, E. Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid. Antioxidants 2022, 11, 1993. [Google Scholar] [CrossRef]
- Lim, H.J.; Prajapati, R.; Seong, S.H.; Jung, H.A.; Choi, J.S. Antioxidant and Antineuroinflammatory Mechanisms of Kaempferol-3-O-β-d-Glucuronate on Lipopolysaccharide-Stimulated BV2 Microglial Cells through the Nrf2/HO-1 Signaling Cascade and MAPK/NF-κB Pathway. ACS Omega 2023, 8, 6538–6549. [Google Scholar] [CrossRef]
- Legault, J.; Perron, T.; Mshvildadze, V.; Girard-Lalancette, K.; Perron, S.; Laprise, C.; Sirois, P.; Pichette, A. Antioxidant and anti-inflammatory activities of quercetin 7-O-β-D-glucopyranoside from the leaves of Brasenia schreberi. J. Med. Food 2011, 14, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Front. Cell. Infect. Microbiol. 2012, 2, 86. [Google Scholar] [CrossRef] [PubMed]
- Clapp, M.; Aurora, N.; Herrera, L.; Bhatia, M.; Wilen, E.; Wakefield, S. Gut microbiota’s effect on mental health: The gut-brain axis. Clin. Pract. 2017, 7, 987. [Google Scholar] [CrossRef]
- Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct. Target. Ther. 2024, 9, 37. [Google Scholar]
- Hameed, M.; Noor, F.; Hussain, H.; Khan, R.G.; Khattak Haroon Ur Rashid, S.; Haroon Ur Rashid, S.; Atiq, A.; Ali, H.; Rida, S.E.; Abbasi, M.A. Gut-Brain Axis: Investigating the Effects of Gut Health on Cognitive Functioning in Adults. Cureus 2024, 16, e64286. [Google Scholar] [CrossRef] [PubMed]
- Petrut, S.M.; Bragaru, A.M.; Munteanu, A.E.; Moldovan, A.D.; Moldovan, C.A.; Rusu, E. Gut over Mind: Exploring the Powerful Gut-Brain Axis. Nutrients 2025, 17, 842. [Google Scholar] [CrossRef]
- Grant, E.T.; De Franco, H.; Desai, M.S. Non-SCFA microbial metabolites associated with fiber fermentation and host health. Trends Endocrinol. Metab. 2025, 36, 70–82. [Google Scholar] [CrossRef]
- La Torre, D.; Verbeke, K.; Dalile, B. Dietary fibre and the gut–brain axis: Microbiota-dependent and independent mechanisms of action. Gut Microbiome 2021, 2, e3. [Google Scholar] [CrossRef]
Ingredients | Placebo (%) | Formulation 1 (%) | Formulation 2 (%) | Formulation 3 (%) |
---|---|---|---|---|
Guava juice | 0.00 | 63.55 | 63.55 | 63.55 |
Mint syrup | 0.00 | 9.68 | 9.68 | 9.68 |
Honey syrup | 9.68 | 0.00 | 0.00 | 0.00 |
Pomelo peel powder | 0.14 | 0.14 | 0.14 | 0.14 |
Agar | 0.55 | 0.55 | 0.55 | 0.55 |
Ascorbic acid | 0.05 | 0.05 | 0.05 | 0.05 |
Fruit puree | 5.45 | 5.45 (pear puree) | 5.45 (apple puree) | 5.45 (orange puree) |
Water | 84.13 | 20.58 | 20.58 | 20.58 |
Total | 100.0 | 100.0 | 100.0 | 100.0 |
Samples | Phenolic Compounds | Flavonoids | DPPH | FRAP | ABTS |
---|---|---|---|---|---|
mg GAE/g | mg Quercetin/g | EC50 (mg/mL) | |||
Teng Mo (ripe) | 0.598 ± 0.003 *** | 0.186 ± 0.004 | 47.18 ± 0.87 *** | 57.61 ± 0.88 | 79.78 ± 2.60 *** |
Teng Mo (unripe) | 0.609 ± 0.002 *** | 0.174 ± 0.004 *** | 52.05 ± 0.65 *** | 69.02 ± 2.66 ** | 58.83 ± 0.59 *** |
Fen Hong Mi (ripe) | 0.658 ± 0.002 *** | 0.189 ± 0.000 | 42.08 ± 1.09 | 89.07 ± 1.71 *** | 47.04 ± 0.44 *** |
Fen Hong Mi (unripe) | 0.391 ± 0.004 | 0.188 ± 0.002 | 41.13 ± 0.70 | 49.66 ± 10.05 | 68.03 ± 2.40 |
Hong Chon Su (unripe) | 0.327 ± 0.003 *** | 0.185 ± 0.001 | 41.05 ± 0.77 | 79.13 ± 6.28 *** | 56.36 ± 0.88 *** |
Hong Chon Su (ripe) | 0.341 ± 0.002 *** | 0.192 ± 0.001 | 38.66 ± 0.37 * | 60.37 ± 1.13 | 57.07 ± 1.00 *** |
Mint syrup | 1.79 ± 0.08 | 0.82 ± 0.08 | 99.40 ± 9.91 | 121.0 ± 2.08 | 102.68 ± 5.12 |
PPDF | 37.90 ± 0.13 | 3.19 ± 0.42 | 5.9 ± 0.70 | 6.75 ± 0.65 | 2.21 ± 0.05 |
Standard | Gallic acid | Quercetin | Trolox 0.05 ± 0.00 | Trolox | Trolox 0.05 ± 0.00 |
Parameters | Unit | Formulation 1 | Formulation 2 | Formulation 3 | Placebo |
---|---|---|---|---|---|
Phenolic compounds | mg GAE/g | 4.45 ± 0.08 *** | 3.22 ± 0.13 *** | 3.87 ± 0.27 *** | 0.62 ± 0.19 |
Flavonoids | mg Quercetin/g | 0.69 ± 0.04 *** | 0.54 ± 0.02 *** | 0.66 ± 0.04 *** | 0.15 ± 0.03 |
DPPH | EC50 (mg/mL) | 23.30 ± 1.09 *** | 41.92 ± 1.78 *** | 16.26 ± 1.18 *** | 95.28 ± 1.35 |
FRAP | 12.33 ± 0.67 *** | 12.16 ± 0.74 *** | 14.11 ± 1.85 *** | 50.62 ± 3.01 | |
ABTS | 17.28 ± 0.15 *** | 22.23 ± 0.55 *** | 19.87± 1.18 *** | 63.19 ± 3.77 | |
AChE suppression effect | 17.21 ± 1.62 *** | 32.86 ± 1.62 ** | 30.5 ± 1.27 ** | 49.72 ± 7.97 | |
MAO suppression effect | 71.42 ± 3.92 *** | 89.74 ± 5.97 ** | 94.16 ± 8.75 ** | 138.59 ± 16.54 | |
GABA-T suppression effect | 300.7 ± 8.32 *** | 369.13 ± 11.38 *** | 242.47 ± 7.27 *** | 476.45 ± 18.68 | |
COX-2 suppression effect | 116.34 ± 11.83 *** | 137.19 ± 6.63 *** | 115.16 ± 10.90 *** | 548.26 ± 7.07 | |
GAD suppression effect | ng/mL | 2.05 ± 0.05 *** | 1.23 ± 0.11 *** | 1.77 ± 0.02 *** | 3.3 ± 0.18 |
Formulation | Color | Smell | Taste | Appearance | Overall Acceptability |
---|---|---|---|---|---|
Formulation 1 | 6.43 ± 1.48 | 5.93 ± 1.74 | 6.43 ± 1.33 | 6.10 ± 1.65 | 6.47 ± 1.50 |
Formulation 2 | 6.47 ± 1.43 | 5.97 ± 1.90 | 6.87 ± 1.48 | 6.27 ± 1.66 | 7.00 ± 1.46 |
Formulation 3 | 6.47 ± 1.28 | 6.07 ± 1.72 | 7.20 ± 1.50 | 6.13 ± 1.36 | 6.90 ± 1.49 |
p-value | p = 0.956 | p = 0.995 | p = 0.085 | p = 0.824 | p = 0.378 |
Test Item | Result | Reference Method |
---|---|---|
Calories | 37.70 Kcal | In-house method TE-CH-169 based on Method of Analysis for Nutrition Labeling (1993) P. 106. [60] |
Carbohydrate | 8.72 g | In-house method TE-CH-169 based on Method of Analysis for Nutrition Labeling (1993) P.106. [60] |
Cholesterol | Not Detected | In-house method TE-CH-143 based on AOAC (2019) 994.10. [61] |
Fat | 0.18 g | AOAC (2019) 922.06. [61] |
Protein | 0.30 g | AOAC (2019) 981.10. [61] |
Total dietary fiber | 0.28 g | In-house method TE-CH-076 based on AOAC (2019) 985.29. [61] |
Total sugar (HPLC) | 6.87 g | In-house method TE-CH-164 based on AOAC (2019) 977.20. [61] |
Parameter | Units | Baseline | 1 Month | 3 Months | 6 Months |
---|---|---|---|---|---|
Phenolic compounds | μg GAE/mg | 4.45 ± 0.08 | 4.43 ± 0.20 | 4.42 ± 0.26 | 3.95 ± 0.19 * |
% change | −0.45 | −0.67 | −11.24 | ||
Flavonoids | μg Quercetin/mg | 0.69 ± 0.04 | 0.71 ± 0.09 | 0.70 ± 0.10 | 0.68 ± 0.07 |
% change | 2.82 | 1.43 | −1.45 | ||
DPPH | EC50 (mg/mL) | 23.3 ± 1.09 | 22.78 ± 1.03 | 24.47 ± 0.97 | 30.45 ± 1.51 *** |
% change | 2.23 | −4.78 | −23.48 | ||
FRAP | EC50 (mg/mL) | 12.33 ± 0.67 | 11.87 ± 0.19 | 13.01 ± 0.37 | 17.37 ± 2.38 ** |
% change | 3.73 | −5.23 | −29.02 | ||
ABTS | EC50 (mg/mL) | 17.28 ± 0.15 | 17.65 ± 0.94 | 18.04 ± 1.48 | 32.86 ± 0.55 *** |
% change | −2.10 | −4.21 | −47.41 | ||
AChE suppression | EC50 (mg/mL) | 17.21 ± 1.62 | 16.45 ± 0.99 | 20.94 ± 1.40 * | 46.20 ± 0.81 *** |
% change | 4.62 | −17.81 | −62.75 | ||
MAO suppression | EC50 (mg/mL) | 71.42 ± 3.92 | 73.08 ± 1.50 | 83.55 ± 3.48 * | 86.10 ± 3.93 ** |
% change | −2.27 | −14.52 | −17.05 | ||
GABA-T suppression | EC50 (mg/mL) | 300.70 ± 8.32 | 304.90 ± 5.59 | 308.08 ± 3.86 | 468.59 ± 41.79 *** |
% change | −1.38 | −2.40 | −35.83 | ||
GAD suppression | ng/mL | 2.05 ± 0.05 | 1.95 ± 0.05 | 2.32 ± 0.04 ** | 2.47 ± 0.03 *** |
% change | 4.91 | −11.47 | −16.81 | ||
COX−2 suppression | EC50 (mg/mL) | 116.34 ± 11.83 | 110.83 ± 3.34 | 131.79 ± 35.78 | 153.53 ± 10.00 |
% change | 4.74 | −11.72 | −24.22 |
Samples | AChE Inhibition | MAO Inhibition | GABA-T Inhibition | Anti-GAD |
---|---|---|---|---|
EC50 (mg/mL) | ng/mL | |||
Teng Mo (ripe) | 51.74 ± 6.31 | 121.63 ± 2.93 | 388.63 ± 26.10 | 2.05 ± 0.01 *** |
Teng Mo (unripe) | 96.78 ± 4.13 *** | 138.31 ± 6.44 ** | 554.00 ± 84.42 *** | 1.89 ± 0.01 *** |
Fen Hong Mi (ripe) | 67.19 ± 5.17 ** | 152.59 ± 14.65 *** | 585.63 ± 32.30 *** | 2.65 ± 0.03 *** |
Fen Hong Mi (unripe) | 35.43 ± 5.31 | 106.4 ± 2.19 | 348.12 ± 21.12 | 4.21 ± 0.01 |
Hong Chon Su (unripe) | 63.91 ± 12.8 ** | 152.09 ± 5.42 *** | 329.40 ± 20.12 | 3.92 ± 0.01 *** |
Hong Chon Su (ripe) | 41.09 ± 2.79 | 166.02 ± 4.02 *** | 380.48 ± 8.16 | 3.61 ± 0.02 *** |
Mint syrup | 24.68 ± 4.05 | 98.40 ± 5.37 | 267.75 ± 9.30 | 0.32 ± 0.13 |
PPDF | 1.57 ± 0.35 | 11.23 ± 2.50 | 5.73 ± 0.24 | 1.89 ± 0.03 |
Standard | Donepezil 0.18 ± 0.01 | H2O2 0.09 ± 0.00 | Vigabatrin 0.80 ± 0.01 | GAD-Ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.-H.; Wattanathorn, J.; Thukham-Mee, W.; Muchimapura, S.; Paholpak, P. Development of a Guava Jelly Drink with Potential Antioxidant, Anti-Inflammation, Neurotransmitter, and Gut Microbiota Benefits. Foods 2025, 14, 2401. https://doi.org/10.3390/foods14132401
Nguyen H-H, Wattanathorn J, Thukham-Mee W, Muchimapura S, Paholpak P. Development of a Guava Jelly Drink with Potential Antioxidant, Anti-Inflammation, Neurotransmitter, and Gut Microbiota Benefits. Foods. 2025; 14(13):2401. https://doi.org/10.3390/foods14132401
Chicago/Turabian StyleNguyen, Hai-Ha, Jintanaporn Wattanathorn, Wipawee Thukham-Mee, Supaporn Muchimapura, and Pongsatorn Paholpak. 2025. "Development of a Guava Jelly Drink with Potential Antioxidant, Anti-Inflammation, Neurotransmitter, and Gut Microbiota Benefits" Foods 14, no. 13: 2401. https://doi.org/10.3390/foods14132401
APA StyleNguyen, H.-H., Wattanathorn, J., Thukham-Mee, W., Muchimapura, S., & Paholpak, P. (2025). Development of a Guava Jelly Drink with Potential Antioxidant, Anti-Inflammation, Neurotransmitter, and Gut Microbiota Benefits. Foods, 14(13), 2401. https://doi.org/10.3390/foods14132401