Physicochemical Properties, Antioxidant and Antibacterial Activities and Anti-Hepatocarcinogenic Effect and Potential Mechanism of Schefflera oleifera Honey Against HepG2 Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Honey Samples, Bacteria and Cells
2.2. Determination of Physicochemical Properties of SH Samples
2.3. Determination of Antioxidant Activity of SH
2.4. Determination of Antibacterial Activity of SH
2.4.1. Determination of Minimum Inhibitory Concentration
2.4.2. Determination of Minimum Bactericidal Concentration
2.5. The Mechanism of SH Against HepG2 Cells Based on Network Pharmacology
2.5.1. Retrieve the Targets of HepG2 and the Main Components of SH
2.5.2. Retrieve the Interaction Targets and Bioinformatics Analysis
2.5.3. Experimental Verification
Determination of SRC, EGFR, and AKT1 Contents of HepG2 Cells
Antiproliferation Effect of SH5 and Saccharides on HepG2 Cells
2.6. Data Analysis
3. Results
3.1. Physicochemical Properties of SH Samples
3.1.1. Physicochemical Parameters of SH Samples
3.1.2. Chemical Composition of Methanol Extract of SH
3.2. Antioxidant Activity of SH Samples
3.3. Antibacterial Activity of SH Samples
3.4. Overlapping Targets of Main Components of SH and HepG2 Cells
3.5. GO Functional Enrichment, KEGG Pathway Enrichment and PPI Analysis Results
3.6. Antiproliferative Effects of SH5 and Saccharides on HepG2 Cells
3.7. Contents of EGFR, SRC and AKT1 in Culture Medium of HepG2 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Zakaria, Z.A.; Albujja, M.; Bakar, M.F.A. Honey and its nutritional and anti-inflammatory value. BMC Complement. Med. Ther. 2021, 21, 30. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Schulz, M.; Brugnerotto, P.; Silva, B.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Quality, composition and health-protective properties of citrus honey: A review. Food Res. Int. 2021, 143, 110268. [Google Scholar] [CrossRef]
- Ali, A.; Paramanya, A.; Poojari, P.; Arslan-Acaroz, D.; Acaroz, U.; Kostić, A.Ž. The utilization of bee products as a holistic approach to managing polycystic ovarian syndrome-related infertility. Nutrients 2023, 15, 1165. [Google Scholar] [CrossRef]
- Asma, S.T.; Bobiş, O.; Bonta, V.; Acaroz, U.; Shah, S.R.A.; Istanbullugil, F.R.; Arslan-Acaroz, D. General nutritional profile of bee products and their potential antiviral properties against mammalian viruses. Nutrients 2022, 14, 3579. [Google Scholar] [CrossRef]
- Tricou, L.P.; Guirguis, N.; Djebbar, S.; Freedman, B.R.; Matoori, S. Bee better: The role of honey in modern wound care. Adv. Ther. 2025, 8, 2400502. [Google Scholar] [CrossRef]
- Waheed, M.; Hussain, M.B.; Javed, A.; Mushtaq, Z.; Hassan, S.; Shariati, M.A.; Khan, M.U.; Majeed, M.; Nigam, M.; Mishra, A.P.; et al. Honey and cancer: A mechanistic review. Clin. Nutr. 2019, 38, 2499–2503. [Google Scholar] [CrossRef]
- Nurhidayah, I.; Rustina, Y.; Hastono, S.P.; Mediani, H.S. The effect of honey in oral care intervention against chemotherapy-induced mucositis in pediatric cancer patients: A pilot study. BMC Complement. Med. Ther. 2024, 24, 415. [Google Scholar] [CrossRef]
- Martinotti, S.; Bonsignore, G.; Ranzato, E. Understanding the anticancer properties of honey. Int. J. Mol. Sci. 2024, 25, 11724. [Google Scholar] [CrossRef]
- Bose, D.; Famurewa, A.C.; Akash, A.; Othman, E.M. The therapeutic mechanisms of honey in mitigating toxicity from anticancer chemotherapy toxicity: A review. J. Xenobiot. 2024, 14, 1109–1129. [Google Scholar] [CrossRef]
- Tomblin, V.; Ferguson, L.R.; Han, D.Y.; Murray, P.; Schlothauer, R. Potential pathway of anti-inflammatory effect by New Zealand honeys. Int. J. Gen. Med. 2014, 7, 149–158. [Google Scholar] [CrossRef]
- El-Hakam, F.E.Z.A.; Laban, G.A.; El-Din, S.B.; El-Hamid, H.A.; Farouk, M.H. Apitherapy combination improvement of blood pressure, cardiovascular protection, and antioxidant and anti-inflammatory responses in dexamethasone model hypertensive rats. Sci. Rep. 2022, 12, 20765. [Google Scholar] [CrossRef]
- Navaei-Alipour, N.; Mastali, M.; Ferns, G.A.; Saberi-Karimian, M.; Ghayour-Mobarhan, M. The effects of honey on pro- and anti-inflammatory cytokines: A narrative review. Phytother. Res. 2021, 35, 3690–3701. [Google Scholar] [CrossRef]
- Matharu, R.K.; Ahmed, J.; Seo, J.; Karu, K.; Golshan, M.A.; Edirisinghe, M.; Ciric, L. Antibacterial properties of honey nanocomposite fibrous meshes. Polymers 2022, 14, 5155. [Google Scholar] [CrossRef]
- Majtan, J.; Bucekova, M.; Kafantaris, I.; Szweda, P.; Hammer, K.; Mossialos, D. Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food. Trends Food Sci. Technol. 2021, 118, 870–886. [Google Scholar] [CrossRef]
- Bucekova, M.; Buriova, M.; Pekarik, L.; Majtan, V.; Majtan, J. Phytochemicals-mediated production of hydrogen peroxide is crucial for high antibacterial activity of honeydew honey. Sci. Rep. 2018, 8, 9061. [Google Scholar] [CrossRef]
- Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Ibrahim, M.; Liaqat, S.; Fatima, S.; Jabeen, S.; Shamim, N.; Othman, N.H. Honey as a potential natural antioxidant medicine: An insight into its molecular mechanisms of action. Oxidative Med. Cell. Longev. 2018, 2018, 8367846. [Google Scholar] [CrossRef]
- Pereira, C.; Barreira, J.C.; Calhelha, R.C.; Lopes, M.; Queiroz, M.J.; Vilas-Boas, M.; Barros, L.; Ferreira, I.C. Is honey able to potentiate the antioxidant and cytotoxic properties of medicinal plants consumed as infusions for hepatoprotective effects? Food Funct. 2015, 6, 1435–1442. [Google Scholar] [CrossRef]
- Biluca, F.C.; da Silva, B.; Caon, T.; Mohr, E.T.B.; Vieira, G.N.; Gonzaga, L.V.; Vitali, L.; Micke, G.; Fett, R.; Dalmarco, E.M.; et al. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res. Int. 2020, 129, 108756. [Google Scholar] [CrossRef]
- Escuredo, O.; Míguez, M.; Fernández-González, M.; Seijo, M.C. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem. 2013, 138, 851–866. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Avila, F.J.; Escudero-Gilete, M.L.; Pajuelo, A.G.; Heredia, F.J.; Hernanz, D.; Terrab, A. Physicochemical properties, colour, chemical composition, and antioxidant activity of Spanish Quercus honeydew honeys. Eur. Food Res. Technol. 2019, 245, 2017–2026. [Google Scholar] [CrossRef]
- Scepankova, H.; Majtan, J.; Estevinho, L.M.; Saraiva, J.A. The high pressure preservation of honey: A comparative study on quality changes during storage. Foods 2024, 13, 989. [Google Scholar] [CrossRef]
- Martinello, M.; Mutinelli, F. Antioxidant activity in bee products: A review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef]
- Lawag, I.L.; Islam, M.K.; Sostaric, T.; Lim, L.Y.; Hammer, K.; Locher, C. Antioxidant activity and phenolic compound identification and quantification in Western Australian honeys. Antioxidants 2023, 12, 189. [Google Scholar] [CrossRef]
- Chua, L.S.; Rahaman, N.L.A.; Adnan, N.A.; Tan, T.T.E. Antioxidant activity of three honey samples in relation with their biochemical components. J. Anal. Methods Chem. 2013, 2013, 313798. [Google Scholar] [CrossRef]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef]
- Zawawi, N.; Chong, P.J.; Tom, N.N.M.; Anuar, N.S.S.; Mohammad, S.M.; Ismail, N.; Jusoh, A.Z. Establishing relationship between vitamins, total phenolic and total flavonoid content and antioxidant activities in various honey types. Molecules 2021, 26, 4399. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Stryjecka, M.; Teter, A.; Skałecki, P.; Domaradzki, P.; Florek, M. Relationships between the content of phenolic compounds and the antioxidant activity of Polish honey varieties as a tool for botanical discrimination. Molecules 2021, 26, 1810. [Google Scholar] [CrossRef]
- Almasaudi, S. The antibacterial activities of honey. Saudi J. Biol. Sci. 2021, 28, 2188–2196. [Google Scholar] [CrossRef]
- Khataybeh, B.; Jaradat, Z.; Ababneh, Q. Anti-bacterial, anti-biofilm and anti-quorum sensing activities of honey: A review. J. Ethnopharmacol. 2023, 317, 116830. [Google Scholar] [CrossRef]
- Cui, T.T.; Wu, X.K.; Mou, T.; Fan, F.H. Water usability as a descriptive parameter of thermodynamic properties and water mobility in food solids. NPJ Sci. Food. 2023, 7, 30. [Google Scholar] [CrossRef]
- Getzke, F.; Wang, L.; Chesneau, G.; Böhringer, N.; Mesny, F.; Denissen, N.; Wesseler, H.; Adisa, P.T.; Marner, M.; Schulze-Lefert, P.; et al. Physiochemical interaction between osmotic stress and a bacterial exometabolite promotes plant disease. Nat. Commun. 2024, 15, 4438. [Google Scholar] [CrossRef]
- Alshammari, J.; Dhowlaghar, N.; Xie, Y.C.; Xu, J.; Tang, J.M.; Sablani, S.; Zhu, M.J. Survival of Salmonella and Enterococcus faecium in high fructose corn syrup and honey at room temperature (22 °C). Food Control 2021, 123, 107765. [Google Scholar] [CrossRef]
- Tsuruda, J.M.; Chakrabarti, P.; Sagili, R.R. Honey bee nutrition. Vet. Clin. N. Am. Food Anim. Pract. 2021, 37, 505–519. [Google Scholar] [CrossRef]
- Kapoor, N.; Yadav, R. Manuka honey: A promising wound dressing material for the chronic nonhealing discharging wounds: A retrospective study. Natl. J. Maxillofac. Surg. 2021, 12, 233–237. [Google Scholar] [CrossRef]
- Zuchelkowski, B.E.; Peñaloza, H.F.; Xiong, Z.; Wang, L.; Cifuentes-Pagano, E.; Rochon, E.; Yang, M.; Gingras, S.; Gladwin, M.T.; Lee, J.S. Increased Neutrophil H2O2 Production and Enhanced Pulmonary Clearance of Klebsiella pneumoniae in G6PD A-Mice. Res. Sq. 2024, rs.3.rs-3931558. [Google Scholar] [CrossRef]
- Dai, X.M.; Li, Y.; Zhang, Y.J.; Zou, Y.Q.; Yuan, S.Y.; Gao, F. pH/H2O2 dual-responsive macrophage-targeted chitosaccharides nanoparticles to combat intracellular bacterial infection. Colloids Surf. B Biointerfaces 2025, 248, 114465. [Google Scholar] [CrossRef]
- Imlay, J.A. The barrier properties of biological membranes dictate how cells experience oxidative stress. Mol. Microbiol. 2025, 123, 454–463. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Wang, Q.; Lu, S.L.; Niu, Y.W. Hydrogen peroxide: A potential wound therapeutic target? Med. Princ. Pract. 2017, 26, 301–308. [Google Scholar] [CrossRef]
- Brudzynski, K. A current perspective on hydrogen peroxide production in honey. A review. Food Chem. 2020, 332, 127229. [Google Scholar] [CrossRef]
- Mieles, J.Y.; Vyas, C.; Aslan, E.; Humphreys, G.; Diver, C.; Bartolo, P. Honey: An advanced antimicrobial and wound healing biomaterial for tissue engineering applications. Pharmaceutics 2022, 14, 1663. [Google Scholar] [CrossRef]
- Ogwu, M.C.; Izah, S.C. Honey as a natural antimicrobial. Antibiotics 2025, 14, 255. [Google Scholar] [CrossRef]
- Khan, S.U.; Anjum, S.I.; Rahman, K.; Ansari, M.J.; Khan, W.U.; Kamal, S.; Khattak, B.; Muhammad, A.; Khan, H.U. Honey: Single food stuff comprises many drugs. Saudi J. Biol. Sci. 2018, 25, 320–325. [Google Scholar] [CrossRef]
- Nolan, V.C.; Harrison, J.; Cox, J.A.G. Dissecting the antimicrobial composition of honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis. J. Tissue. Viability 2016, 25, 98–118. [Google Scholar] [CrossRef]
- Zhu, H.Q.; Du, Y.N.; Lin, X.; Huang, Z.L.; Dong, J.; Qiao, J.T.; Zhang, H.C. Terpenoids identification and authenticity evaluation of longan, litchi and schefflera honey. Food Sci. Hum. Wellness 2025, 14, 9250073. [Google Scholar] [CrossRef]
- Hailu, D.; Belay, A. Melissopalynology and antioxidant properties used to differentiate Schefflera abyssinica and polyfloral honey. PLoS ONE 2020, 15, e0240868. [Google Scholar] [CrossRef]
- Venook, A.P.; Papandreou, C.; Furuse, J.; de Guevara, L.L. The incidence and epidemiology of hepatocellular carcinoma: A global and regional perspective. Oncologist 2010, 15, 5–13. [Google Scholar] [CrossRef]
- Hassan, M.I.; Mabrouk, G.M.; Shehata, H.H.; Aboelhussein, M.M. Antineoplastic effects of bee honey and Nigella sativa on hepatocellular carcinoma cells. Integr. Cancer Ther. 2012, 11, 354–363. [Google Scholar] [CrossRef]
- Al Refaey, H.R.; Newairy, A.S.A.; Wahby, M.M.; Albanese, C.; Elkewedi, M.; Choudhry, M.U.; Sultan, A.S. Manuka honey enhanced sensitivity of HepG2, hepatocellular carcinoma cells, for Doxorubicin and induced apoptosis through inhibition of Wnt/β-catenin and ERK1/2. Biol. Res. 2021, 54, 16. [Google Scholar] [CrossRef]
- Mohamed, N.Z.; Aly, H.F.; El-Mezayen, H.A.M.; El-Salamony, H.E. Effect of co-administration of bee honey and some chemotherapeutic drugs on dissemination of hepatocellular carcinoma in rats. Toxicol. Rep. 2019, 6, 875–888. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef]
- Yang, W.; Shen, M.; Kuang, H.; Liu, X.; Zhang, C.; Tian, Y.; Xu, X. The botanical sources, entomological proteome and antibiotic properties of wild honey. Innov. Food Sci. Emerg. Technol. 2020, 67, 102589. [Google Scholar] [CrossRef]
- Tan, W.; Tian, Y.; Zhang, Q.; Miao, S.; Wu, W.; Miao, X.; Kuang, H.; Yang, W. Antioxidant and antibacterial activity of Apis laboriosa honey against Salmonella enterica serovar Typhimurium. Front. Nutr. 2023, 10, 1181492. [Google Scholar] [CrossRef]
- Anand, S.; Pang, E.; Livanos, G.; Mantri, N. Characterization of physico-chemical properties and antioxidant capacities of bioactive honey produced from Australian Grown Agastache rugosa and its correlation with colour and poly-phenol content. Molecules 2018, 23, 108. [Google Scholar] [CrossRef]
- Bellik, Y.; Selles, S.M.A. In vitro synergistic antioxidant activity of honey-Mentha spicata combination. J. Food Meas. Charact. 2017, 11, 111–118. [Google Scholar] [CrossRef]
- Girma, A.; Seo, W.; She, R.C. Antibacterial activity of varying UMF-graded Manuka honeys. PLoS ONE 2019, 14, e0224495. [Google Scholar] [CrossRef]
- Tabatabaei, M.S.; Ahmed, M. Enzyme-linked immunosorbent assay (ELISA). Methods Mol. Biol. 2022, 2508, 115–134. [Google Scholar] [CrossRef]
- Tian, Y.Y.; Liu, X.Q.; Wang, J.; Zhang, C.; Yang, W.C. Antitumor effects and the potential mechanism of 10-HDA against SU-DHL-2 cells. Pharmaceuticals 2024, 17, 1088. [Google Scholar] [CrossRef]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Di Marco, G.; Gismondi, A.; Panzanella, L.; Canuti, L.; Impei, S.; Leonardi, D.; Canini, A. Botanical influence on phenolic profile and antioxidant level of Italian honeys. J. Food Sci. Technol. 2018, 55, 4042–4050. [Google Scholar] [CrossRef]
- Jaśkiewicz, K.; Szczęsna, T.; Jachuła, J. How phenolic compounds profile and antioxidant activity depend on botanical origin of honey-A case of polish varietal honeys. Molecules 2025, 30, 360. [Google Scholar] [CrossRef]
- Veiko, A.G.; Lapshina, E.A.; Zavodnik, I.B. Comparative analysis of molecular properties and reactions with oxidants for quercetin, catechin, and naringenin. Mol. Cell. Biochem. 2021, 476, 4287–4299. [Google Scholar] [CrossRef]
- Zardak, M.Y.; Keshavarz, F.; Mahyaei, A.; Gholami, M.; Moosavi, F.S.; Abbasloo, E.; Abdollahi, F.; Rezaei, M.H.; Madadizadeh, E.; Soltani, N.; et al. Quercetin as a therapeutic agent activate the Nrf2/Keap1 pathway to alleviate lung ischemia-reperfusion injury. Sci. Rep. 2024, 14, 23074. [Google Scholar] [CrossRef]
- Liu, R.J.; Zhang, X.H.; Liu, H.H.; Huang, Y.Y.; Zhang, Y.; Wu, Y.X.; Nie, J.F. Revealing the key antioxidant compounds and potential action mechanisms of Bauhinina championii honey based on non-targeted metabolomics, mineralogical analysis and physicochemical characterization. Food Chem. 2025, 477, 143456. [Google Scholar] [CrossRef]
- Li, M.H.; Zhao, D.Y.; Meng, J.X.; Pan, T.X.; Li, J.Y.; Guo, J.L.; Huang, H.B.; Wang, N.; Zhang, D.; Wang, C.F.; et al. Bacillus halotolerans attenuates inflammation induced by enterotoxigenic Escherichia coli infection in vivo and in vitro based on its metabolite soyasaponin I regulating the p105-Tpl2-ERK pathway. Food Funct. 2024, 15, 6743–6758. [Google Scholar] [CrossRef]
- Gao, S.Y.; Wang, Q.J.; Ji, Y.B. Effect of solanine on the membrane potential of mitochondria in HepG2 cells and [Ca2+]i in the cells. World J. Gastroenterol. 2006, 12, 3359–3367. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Zhang, B.; Deng, Z. The synergistic and antagonistic antioxidant interactions of dietary phytochemical combinations. Crit. Rev. Food Sci. Nutr. 2022, 62, 5658–5677. [Google Scholar] [CrossRef]
- Tagousop, C.N.; Tamokou, J.D.; Kengne, I.C.; Ngnokam, D.; Voutquenne-Nazabadioko, L. Antimicrobial activities of saponins from Melanthera elliptica and their synergistic effects with antibiotics against pathogenic phenotypes. Chem. Cent. J. 2018, 12, 97. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Benzie, I.F.; Devaki, M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. In Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications; Wiley: Hoboken, NJ, USA, 2018; pp. 77–106. [Google Scholar] [CrossRef]
- Morar, I.I.; Pop, R.M.; Peitzner, E.; Ranga, F.; Orasan, M.S.; Cecan, A.D.; Chera, E.I.; Bonci, T.I.; Usatiuc, L.O.; Ticolea, M.; et al. Phytochemical composition and antioxidant activity of Manuka honey and Ohia Lehua honey. Nutrients 2025, 17, 276. [Google Scholar] [CrossRef]
- Faúndez, X.; Báez, M.E.; Martínez, J.; Zúñiga-López, M.C.; Espinoza, J.; Fuentes, E. Evaluation of the generation of reactive oxygen species and antibacterial activity of honey as a function of its phenolic and mineral composition. Food Chem. 2023, 426, 136561. [Google Scholar] [CrossRef]
- Chanu, N.R.; Gogoi, P.; Barbhuiya, P.A.; Dutta, P.P.; Pathak, M.P.; Sen, S. Natural flavonoids as potential therapeutics in the management of diabetic wound: A review. Curr. Top. Med. Chem. 2023, 23, 690–710. [Google Scholar] [CrossRef] [PubMed]
- Balázs, V.L.; Nagy-Radványi, L.; Filep, R.; Kerekes, E.; Kocsis, B.; Kocsis, M.; Farkas, A. In vitro antibacterial and antibiofilm activity of Hungarian honeys against respiratory tract bacteria. Foods 2021, 10, 1632. [Google Scholar] [CrossRef]
- Farkasovska, J.; Bugarova, V.; Godocikova, J.; Majtan, V.; Majtan, J. The role of hydrogen peroxide in the antibacterial activity of different floral honeys. Eur. Food Res. Technol. 2019, 245, 2739–2744. [Google Scholar] [CrossRef]
- Huang, S.M.; Cheung, C.W.; Chang, C.S.; Tang, C.H.; Liu, J.F.; Lin, Y.H.; Chen, J.H.; Ko, S.H.; Wong, K.L.; Lu, D.Y. Phloroglucinol derivative MCPP induces cell apoptosis in human colon cancer. J. Cell. Biochem. 2011, 112, 643–652. [Google Scholar] [CrossRef]
- Kim, R.K.; Suh, Y.; Yoo, K.C.; Cui, Y.H.; Hwang, E.; Kim, H.J.; Kang, J.S.; Kim, M.J.; Lee, Y.Y.; Lee, S.J. Phloroglucinol suppresses metastatic ability of breast cancer cells by inhibition of epithelial-mesenchymal cell transition. Cancer Sci. 2015, 106, 94–101. [Google Scholar] [CrossRef]
- Castelo, J.; Araujo-Aris, S.; Barriales, D.; Pasco, S.T.; Seoane, I.; Peña-Cearra, A.; Palacios, A.; Simó, C.; Garcia-Cañas, V.; Khamwong, M.; et al. The microbiota metabolite, phloroglucinol, confers long-term protection against inflammation. Gut Microbes 2024, 16, 2438829. [Google Scholar] [CrossRef]
- Zhan, Y.; Liu, R.; Wang, W.; Li, J.; Yang, X.O.; Zhang, Y. Total saponins isolated from Radix et Rhizoma Leonticis suppresses tumor cells growth by regulation of PI3K/Akt/mTOR and p38 MAPK pathways. Environ. Toxicol. Pharmacol. 2016, 41, 39–44. [Google Scholar] [CrossRef]
- Ahmed, S.; Othman, N.H. Honey as a potential natural anticancer agent: A review of its mechanisms. Evid. Based Complement. Altern. Med. 2013, 2013, 829070. [Google Scholar] [CrossRef]
- Eteraf-Oskouei, T.; Najafi, M. Uses of natural honey in cancer: An updated review. Adv. Pharm. Bull. 2022, 12, 248–261. [Google Scholar] [CrossRef]
- Porcza, L.M.; Simms, C.; Chopra, M. Honey and cancer: Current status and future directions. Diseases 2016, 4, 30. [Google Scholar] [CrossRef]
- Ren, J.L.; Yan, G.L.; Yang, L.; Kong, L.; Guan, Y.; Sun, H.; Liu, C.; Liu, L.; Han, Y.; Wang, X.J. Cancer chemoprevention: Signaling pathways and strategic approaches. Signal Transduct. Target. Ther. 2025, 10, 113. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Sulaiman, S.A.; Ab Wahab, M.S. Effects of honey and its mechanisms of action on the development and progression of cancer. Molecules 2014, 19, 2497–2522. [Google Scholar] [CrossRef]
- Ma, S.Y.; Liu, Y.M.; Wang, J. Potential bidirectional regulatory effects of botanical drug metabolites on tumors and cardiovascular diseases based on the PI3K/Akt/mTOR pathway. Front. Pharmacol. 2025, 16, 1467894. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, D.; Zheng, X.; Huang, B.; Xia, X.; Pan, X. Quercetin exerts bidirectional regulation effects on the efficacy of tamoxifen in estrogen receptor-positive breast cancer therapy: An in vitro study. Environ. Toxicol. 2020, 35, 1179–1193. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Klein-Goldberg, A.; Voloshin, T.; Tov, E.Z.; Paz, R.; Somri-Gannam, L.; Volodin, A.; Koren, L.; Lifshitz, L.; Meir, A.; Shabtay-Orbach, A.; et al. Role of the PI3K/AKT signaling pathway in the cellular response to Tumor Treating Fields (TTFields). Cell Death Dis. 2025, 16, 210. [Google Scholar] [CrossRef]
- Azman, A.N.S.S.; Tan, J.J.; Abdullah, M.N.H.; Bahari, H.; Lim, V.; Yong, Y.K. Network pharmacology and molecular docking analysis of active compounds in tualang honey against atherosclerosis. Foods 2023, 12, 1779. [Google Scholar] [CrossRef]
- Lu, L.J.; Wang, W.X.; Sun, P.J.; Yan, S.W.; Chen, H.X.; Liu, X.; Dong, J.J.; Chen, L.H.; Lu, T.L. Differential compounds of licorice before and after honey roasted and anti-arrhythmia mechanism via LC-MS/MS and network pharmacology analysis. J. Liq. Chromatogr. Relat. Technol. 2023, 46, 1–11. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Zhong, R.H.; Guo, X.J.; Li, G.T.; Zhou, J.Y.; Yang, W.J.; Ren, B.T.; Zhu, Y. Jinfeng pills ameliorate premature ovarian insufficiency induced by cyclophosphamide in rats and correlate to modulating IL-17A/IL-6 axis and MEK/ERK signals. J. Ethnopharmacol. 2023, 307, 116242. [Google Scholar] [CrossRef]
- El-kott, A.F.; Kandeel, A.A.; El-Aziz, S.F.A.; Ribea, H.M. Anti-tumor effects of bee honey on PCNA and P53 expression in the rat hepatocarcinogenesis. Int. J. Cancer Res. 2012, 8, 130–139. [Google Scholar] [CrossRef]
- Mabrouk, G.M.; Moselhy, S.S.; Zohny, S.F.; Ali, E.M.; Helal, T.E.; Amin, A.A.; Khalifa, A.A. Inhibition of methylnitrosourea (MNU) induced oxidative stress and carcinogen-esis by orally administered bee honey and Nigella grains in Sprague Dawely rats. J. Exp. Clin. Cancer Res. 2002, 21, 341–346. [Google Scholar] [PubMed]
- Gao, J.F.; Huo, Z.; Song, X.Y.; Shao, Q.Q.; Ren, W.W.; Huang, X.L.; Zhou, S.P.; Tang, X.L. EGFR mediates epithelial-mesenchymal transition through the Akt/GSK-3β/Snail signaling pathway to promote liver cancer proliferation and migration. Oncol. Lett. 2023, 27, 59. [Google Scholar] [CrossRef]
- Chen, J.; Liang, J.; Liu, S.H.; Song, S.N.; Guo, W.X.; Shen, F.Z. Differential regulation of AKT1 contributes to survival and proliferation in hepatocellular carcinoma cells by mediating Notch1 expression. Oncol. Lett. 2018, 15, 6857–6864. [Google Scholar] [CrossRef]
- Shi, D.D.; Tao, J.J.; Man, S.L.; Zhang, N.; Ma, L.; Guo, L.P.; Huang, L.Q.; Gao, W.Y. Structure, function, signaling pathways and clinical therapeutics: The translational potential of STAT3 as a target for cancer therapy. Biochim. Biophys. Acta (BBA) Rev. Cancer 2024, 1879, 189207. [Google Scholar] [CrossRef]
- Hao, H.F.; Bian, Y.; Yang, N.; Ji, X.Z.; Bao, J.; Zhu, K.K. Discovery of anti-tumor small molecule lead compounds targeting the SH3 domain of c-Src protein through virtual screening and biological evaluation. Arch. Biochem. Biophys. 2025, 764, 110286. [Google Scholar] [CrossRef]
Samples | Moisture (%) | Glucose (g/100 g) | Fructose (g/100 g) | Sucrose (g/100 g) | pH | TPC (mgGAE/100 g) | TFC (mgRE/100 g) |
---|---|---|---|---|---|---|---|
SH1 | 22.781 ± 0.244 c | 30.855 ± 1.110 bc | 36.431 ± 1.013 c | 1.909 ± 0.061 c | 3.493 ± 0.015 b | 25.218 ± 0.143 d | 26.898 ± 0.281 d |
SH2 | 23.810 ± 0.172 b | 29.658 ± 0.427 c | 32.916 ± 0.509 d | 1.720 ± 0.051 c | 3.363 ± 0.007 c | 22.625 ± 0.174 e | 24.466 ± 0.562 e |
SH3 | 20.620 ± 0.306 d | 33.466 ± 0.372 ab | 42.351 ± 0.427 a | 2.901 ± 0.200 b | 3.503 ± 0.009 b | 50.519 ± 0.685 a | 32.087 ± 0.162 b |
SH4 | 25.034 ± 0.102 a | 34.997 ± 0.706 a | 41.111 ± 0.226 ab | 1.991 ± 0.097 c | 3.303 ± 0.009 d | 38.688 ± 1.531 bc | 32.087 ± 0.429 b |
SH5 | 22.313 ± 0.137 c | 27.189 ± 1.197 c | 39.777 ± 1.885 bc | 2.431 ± 0.059 b | 3.873 ± 0.009 a | 48.052 ± 0.793 a | 33.384 ± 0.162 a |
SH6 | 25.347 ± 0.250 a | 32.035 ± 0.388 b | 40.326 ± 0.441 b | 4.073 ± 0.230 a | 2.907 ± 0.012 e | 37.481 ± 0.813 c | 28.357 ± 0.281 c |
SH7 | 22.091 ± 0.136 c | 29.103 ± 1.463 c | 36.428 ± 1.989 cd | 1.350 ± 0.268 c | 2.917 ± 0.009 e | 42.848 ± 1.356 b | 28.033 ± 1.327 cd |
No | Name | Formula | Molecular Weight (g/mol) | RT (min) | m/z | Relative Quantitative Value | Polarity Mode | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SH1 | SH2 | SH3 | SH4 | SH5 | SH6 | SH7 | |||||||
1 | Solanine | C45H73NO15 | 867.50084 | 11.029 | 868.50811 | 2.735 × 106 | 5.854 × 106 | 2.655 × 106 | 1.144 × 106 | 1.030 × 106 | 1.047 × 106 | 1.024 × 106 | Positive |
2 | Soyasaponin I | C48H78O18 | 942.52509 | 7.029 | 941.51781 | 4.818 × 105 | 5.088 × 105 | 4.686 × 106 | 4.963 × 105 | 3.209 × 106 | 4.431 × 105 | 4.895 × 105 | Negative |
No | Name | Formula | Molecular Weight (g/mol) | RT (min) | m/z | Relative Quantitative Value | Polarity Mode | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SH1 | SH2 | SH3 | SH4 | SH5 | SH6 | SH7 | |||||||
1 | Phloroglucinol | C6H6O3 | 126.03196 | 0.674 | 127.03923 | 6.223 × 109 | 6.923 × 109 | 6.323 × 109 | 7.156 × 109 | 6.815 × 109 | 6.504 × 109 | 6.908 × 109 | Positive |
2 | Pyrogallol | C6H6O3 | 126.03198 | 4.963 | 127.03925 | 4.413 × 109 | 4.927 × 109 | 4.657 × 109 | 5.204 × 109 | 5.286 × 109 | 4.346 × 109 | 5.483 × 109 | Positive |
3 | 2-Methoxyresorcinol | C7H8O3 | 140.04754 | 5.562 | 141.05477 | 3.667 × 108 | 3.565 × 108 | 2.644 × 108 | 5.260 × 108 | 5.261 × 108 | 5.414 × 108 | 3.133 × 108 | Positive |
4 | o-Cresol | C7H8O | 108.05795 | 5.113 | 109.06522 | 2.422 × 108 | 2.211 × 108 | 2.544 × 108 | 2.667 × 108 | 3.388 × 108 | 2.963 × 108 | 2.947 × 108 | Positive |
5 | Epinephrine | C9H13NO3 | 183.08981 | 5.841 | 184.09709 | 1.019 × 108 | 1.036 × 108 | 5.186 × 108 | 1.848 × 108 | 4.545 × 108 | 1.538 × 108 | 2.471 × 108 | Positive |
6 | Homovanillic acid | C9H10O4 | 182.05809 | 1.399 | 183.06537 | 2.510 × 108 | 2.674 × 108 | 2.439 × 108 | 2.526 × 108 | 2.406 × 108 | 2.166 × 108 | 2.326 × 108 | Positive |
7 | Isoproterenol | C11H17NO3 | 211.12114 | 5.409 | 212.12842 | 1.054 × 108 | 1.027 × 108 | 4.461 × 108 | 1.899 × 108 | 3.098 × 108 | 1.990 × 108 | 3.028 × 108 | Positive |
8 | 4-Butylresorcinol | C10H14O2 | 166.09949 | 5.886 | 165.09221 | 1.154 × 108 | 1.242 × 108 | 1.932 × 108 | 1.319 × 108 | 3.196 × 108 | 1.366 × 108 | 1.122 × 108 | Negative |
9 | Isohomovanillic acid | C9H10O4 | 182.05823 | 0.734 | 183.06554 | 1.354 × 108 | 1.292 × 108 | 1.000 × 108 | 9.865 × 107 | 8.626 × 107 | 7.681 × 107 | 7.497 × 107 | Positive |
10 | Vanillyl alcohol | C8H10O3 | 154.0631 | 5.127 | 153.05582 | 1.054 × 108 | 9.165 × 107 | 9.359 × 107 | 1.150 × 108 | 8.903 × 107 | 6.270 × 107 | 5.799 × 107 | Negative |
11 | Coniferyl alcohol | C10H12O3 | 180.08294 | 5.384 | 181.09022 | 8.871 × 107 | 9.895 × 107 | 8.129 × 107 | 8.962 × 107 | 8.275 × 107 | 7.915 × 107 | 8.248 × 107 | Positive |
12 | Norepinephrine | C8H11NO3 | 169.07415 | 5.715 | 168.0668 | 2.254 × 107 | 2.365 × 107 | 1.190 × 108 | 4.120 × 107 | 1.497 × 108 | 1.153 × 108 | 6.164 × 107 | Negative |
13 | Paracetamol | C8H9NO2 | 151.06354 | 5.469 | 152.07081 | 2.791 × 107 | 3.312 × 107 | 8.364 × 107 | 3.013 × 107 | 2.332 × 108 | 3.930 × 107 | 4.806 × 107 | Positive |
14 | Hydroquinone | C6H6O2 | 110.03692 | 5.43 | 109.02964 | 4.622 × 107 | 3.999 × 107 | 6.705 × 107 | 4.566 × 107 | 1.220 × 108 | 3.691 × 107 | 3.182 × 107 | Negative |
15 | 3-Methoxytyramine | C9H13NO2 | 167.09475 | 5.887 | 166.08748 | 1.071 × 107 | 1.011 × 107 | 1.016 × 108 | 2.205 × 107 | 2.175 × 107 | 6.433 × 107 | 8.361 × 107 | Negative |
16 | Metanephrine | C10H15NO3 | 197.1055 | 5.566 | 196.09821 | 1.417 × 107 | 1.911 × 107 | 5.605 × 107 | 3.287 × 107 | 5.856 × 107 | 4.625 × 107 | 4.229 × 107 | Negative |
17 | Tyrosol | C8H10O2 | 138.06822 | 5.607 | 137.06092 | 2.602 × 107 | 3.210 × 107 | 3.734 × 107 | 4.127 × 107 | 3.726 × 107 | 2.778 × 107 | 3.089 × 107 | Negative |
18 | L-Adrenaline | C9H13NO3 | 183.08975 | 5.609 | 184.09699 | 1.080 × 107 | 1.013 × 107 | 5.898 × 107 | 1.587 × 107 | 3.052 × 107 | 3.194 × 107 | 5.137 × 107 | Positive |
19 | Terbutaline | C12H19NO3 | 225.13669 | 5.106 | 226.14393 | 7.840 × 106 | 5.561 × 106 | 2.662 × 107 | 1.275 × 107 | 1.882 × 107 | 1.446 × 107 | 1.729 × 107 | Positive |
20 | 2,4-Dinitrophenol | C6H4N2O5 | 184.01209 | 5.956 | 183.00481 | 8.349 × 106 | 8.576 × 106 | 1.171 × 107 | 7.434 × 106 | 5.036 × 107 | 5.230 × 106 | 4.898 × 106 | Negative |
21 | Isorhapontigenin | C15H14O4 | 258.08946 | 6.285 | 257.08218 | 8.344 × 106 | 9.100 × 106 | 4.291 × 106 | 3.304 × 106 | 6.511 × 106 | 4.028 × 106 | 9.592 × 105 | Negative |
22 | Epinephrine bitartrate | C13H19NO9 | 333.10563 | 5.016 | 334.1129 | 4.232 × 106 | 3.074 × 106 | 1.264 × 106 | 2.484 × 106 | 2.104 × 106 | 1.537 × 106 | 9.312 × 105 | Positive |
23 | 2,3,4-Trihydroxybenzoic acid | C7H6O5 | 170.02174 | 4.867 | 169.01446 | 3.033 × 107 | 3.680 × 107 | 2.684 × 107 | 7.454 × 107 | 1.400 × 107 | 8.434 × 106 | 8.492 × 106 | Negative |
24 | 4-Methoxycinnamic Acid | C10H10O3 | 178.0631 | 5.586 | 177.05604 | 1.043 × 107 | 2.076 × 107 | 4.066 × 107 | 2.778 × 107 | 3.350 × 107 | 1.823 × 107 | 2.030 × 107 | Negative |
25 | P-Coumaroyl Agmatine | C14H20N4O2 | 276.15771 | 5.551 | 275.15022 | 1.520 × 107 | 2.845 × 107 | 2.085 × 107 | 2.719 × 107 | 2.105 × 107 | 1.878 × 107 | 2.266 × 107 | Negative |
26 | Feruloyl Putrescine | C14H20N2O3 | 264.14758 | 5.389 | 263.14041 | 3.641 × 106 | 4.344 × 106 | 2.128 × 106 | 4.742 × 106 | 1.090 × 106 | 1.961 × 106 | 3.326 × 106 | Negative |
27 | Methyl cinnamate | C10H10O2 | 162.06565 | 5.475 | 163.07256 | 6.174 × 105 | 1.127 × 106 | 6.217 × 105 | 6.326 × 105 | 6.490 × 105 | 6.394 × 105 | 5.806 × 105 | Positive |
28 | Quercetin | C15H10O7 | 302.04295 | 5.874 | 301.03567 | 6.200 × 108 | 5.706 × 108 | 8.050 × 108 | 1.155 × 109 | 2.115 × 108 | 3.015 × 108 | 3.613 × 108 | Negative |
29 | Luteolin | C15H10O6 | 286.048 | 6.079 | 285.04073 | 3.057 × 108 | 3.012 × 108 | 3.358 × 108 | 5.713 × 108 | 8.111 × 107 | 1.087 × 108 | 1.305 × 108 | Negative |
30 | Naringenin | C15H12O5 | 272.06864 | 6.042 | 271.06137 | 4.198 × 107 | 4.899 × 107 | 5.329 × 108 | 7.603 × 107 | 4.169 × 108 | 3.740 × 107 | 8.208 × 107 | Negative |
31 | Rutin | C27H30O16 | 610.1547 | 5.507 | 609.14742 | 1.144 × 108 | 1.402 × 108 | 2.518 × 108 | 3.715 × 108 | 3.352 × 107 | 7.991 × 107 | 3.244 × 107 | Negative |
32 | Apigenin | C15H10O5 | 270.0532 | 6.094 | 315.05145 | 2.279 × 108 | 1.805 × 108 | 1.571 × 108 | 1.230 × 108 | 1.072 × 108 | 7.363 × 107 | 9.890 × 107 | Negative |
33 | Quercetin-3β-D-glucoside | C21H20O12 | 464.09629 | 5.556 | 463.08902 | 7.742 × 107 | 7.681 × 107 | 7.941 × 107 | 1.492 × 108 | 2.627 × 107 | 1.678 × 108 | 1.455 × 108 | Negative |
34 | Chrysin | C15H10O4 | 254.05801 | 6.684 | 253.05073 | 7.896 × 106 | 6.067 × 106 | 2.637 × 108 | 1.848 × 107 | 2.410 × 108 | 4.648 × 106 | 1.261 × 107 | Negative |
35 | Myricetin | C15H10O8 | 318.03798 | 5.68 | 317.0307 | 5.480 × 107 | 4.625 × 107 | 2.184 × 108 | 1.454 × 108 | 1.251 × 107 | 8.715 × 106 | 9.458 × 106 | Negative |
36 | Genistein | C15H10O5 | 270.05296 | 6.759 | 269.04569 | 7.687 × 106 | 6.540 × 106 | 1.148 × 108 | 1.689 × 107 | 1.014 × 108 | 7.427 × 106 | 5.671 × 106 | Negative |
37 | Glycitein | C16H12O5 | 284.06854 | 6.852 | 283.06127 | 1.539 × 106 | 1.068 × 106 | 6.000 × 107 | 3.257 × 106 | 5.368 × 107 | 8.556 × 105 | 2.424 × 106 | Negative |
38 | Kaempferol | C15H10O6 | 286.04777 | 5.774 | 287.05504 | 7.797 × 106 | 9.314 × 106 | 1.303 × 107 | 1.679 × 107 | 9.587 × 106 | 3.452 × 107 | 2.510 × 107 | Positive |
39 | Equol | C15H14O3 | 242.09053 | 4.919 | 241.08325 | 1.268 × 107 | 1.296 × 107 | 1.512 × 107 | 1.721 × 107 | 2.031 × 107 | 9.258 × 106 | 1.560 × 107 | Negative |
40 | Epigallocatechin | C15H14O7 | 306.07613 | 2.263 | 307.08341 | 1.566 × 107 | 1.856 × 107 | 8.956 × 105 | 2.430 × 107 | 5.053 × 106 | 1.497 × 106 | 6.615 × 105 | Positive |
41 | Daidzein | C15H10O4 | 254.05797 | 5.854 | 253.0507 | 2.915 × 106 | 2.347 × 106 | 3.708 × 107 | 1.210 × 106 | 1.993 × 107 | 9.042 × 105 | 9.940 × 105 | Negative |
42 | Quercetin-3-O-beta-glucopyranosyl-6′-acetate | C23H22O13 | 506.10678 | 5.56 | 505.0995 | 1.084 × 106 | 1.083 × 106 | 6.628 × 106 | 1.312 × 106 | 4.737 × 107 | 1.224 × 106 | 1.129 × 106 | Negative |
43 | Isorhamnetin | C16H12O7 | 316.05803 | 6.101 | 317.0653 | 1.301 × 107 | 1.151 × 107 | 8.612 × 106 | 9.060 × 106 | 5.996 × 106 | 4.275 × 106 | 6.463 × 106 | Positive |
44 | Diosmetin | C16H12O6 | 300.06356 | 5.49 | 301.07084 | 1.236 × 107 | 1.337 × 107 | 1.501 × 106 | 5.076 × 106 | 1.275 × 106 | 2.941 × 106 | 1.089 × 106 | Positive |
45 | Flavanone | C15H12O2 | 224.08409 | 6.713 | 223.07681 | 4.440 × 105 | 4.822 × 105 | 2.098 × 107 | 6.869 × 105 | 1.201 × 107 | 4.162 × 105 | 9.074 × 105 | Negative |
46 | Taxifolin | C15H12O7 | 304.05605 | 5.038 | 305.06332 | 4.749 × 106 | 6.574 × 106 | 6.850 × 106 | 7.480 × 106 | 7.081 × 105 | 4.857 × 105 | 5.535 × 105 | Positive |
47 | Poncirin | C28H34O14 | 594.19385 | 5.064 | 595.20113 | 2.307 × 106 | 2.433 × 106 | 1.682 × 107 | 2.873 × 106 | 5.325 × 105 | 5.556 × 105 | 1.260 × 106 | Positive |
48 | Pinocembrin | C15H12O4 | 256.07366 | 6.528 | 257.08094 | 6.677 × 105 | 6.933 × 105 | 1.074 × 107 | 8.733 × 105 | 1.039 × 107 | 5.976 × 105 | 5.864 × 105 | Positive |
49 | Galangin | C15H10O5 | 116.05032 | 6.319 | 117.05763 | 1.031 × 106 | 1.026 × 106 | 5.397 × 106 | 1.909 × 106 | 9.752 × 106 | 3.038 × 106 | 9.401 × 105 | Positive |
50 | Kuromanin | C21H20O11 | 426.12033 | 9.635 | 449.10965 | 2.724 × 106 | 2.242 × 106 | 2.745 × 106 | 2.464 × 106 | 1.876 × 106 | 2.363 × 106 | 2.024 × 106 | Positive |
51 | Tangeritin | C20H20O7 | 372.12089 | 6.841 | 373.12823 | 7.277 × 105 | 8.114 × 105 | 5.987 × 106 | 8.897 × 105 | 6.720 × 105 | 7.501 × 105 | 6.686 × 105 | Positive |
52 | Nobiletin | C21H22O8 | 402.13185 | 6.532 | 403.13926 | 5.947 × 105 | 6.175 × 105 | 2.790 × 106 | 8.281 × 105 | 5.223 × 105 | 6.614 × 105 | 5.223 × 105 | Positive |
TPC | TFC | DPPH | ABTS | FRAP | |
---|---|---|---|---|---|
TPC | 1 | ||||
TFC | 0.849637 | 1 | |||
DPPH | −0.29206 | 0.07948 | 1 | ||
ABTS | −0.09067 | 0.381084 | 0.828684 | 1 | |
FRAP | 0.813372 | 0.587983 | −0.52454 | −0.39716 | 1 |
Samples | E. coli (%) | S. aureus (%) | L. monocytogenes (%) | S. typhimurium (%) | ||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
SH1 | 30 | 30 | 35 | 45 | 30 | 35 | 15 | 20 |
SH2 | 30 | 35 | 35 | 40 | 35 | 40 | 15 | 20 |
SH3 | 35 | 40 | 40 | 40 | 30 | 30 | 20 | 30 |
SH4 | 30 | 30 | 30 | 35 | 25 | 30 | 20 | 25 |
SH5 | 30 | 30 | 30 | 35 | 25 | 30 | 20 | 20 |
SH6 | 40 | 40 | 35 | 40 | 35 | 40 | 20 | 25 |
SH7 | 30 | 40 | 40 | 45 | 25 | 30 | 15 | 25 |
MH (UMF 10+) | 20 | 30 | 15 | 15 | 20 | 25 | 10 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, J.; Wang, Y.; Yang, W. Physicochemical Properties, Antioxidant and Antibacterial Activities and Anti-Hepatocarcinogenic Effect and Potential Mechanism of Schefflera oleifera Honey Against HepG2 Cells. Foods 2025, 14, 2376. https://doi.org/10.3390/foods14132376
Li J, Wang J, Wang Y, Yang W. Physicochemical Properties, Antioxidant and Antibacterial Activities and Anti-Hepatocarcinogenic Effect and Potential Mechanism of Schefflera oleifera Honey Against HepG2 Cells. Foods. 2025; 14(13):2376. https://doi.org/10.3390/foods14132376
Chicago/Turabian StyleLi, Jingjing, Jie Wang, Yicong Wang, and Wenchao Yang. 2025. "Physicochemical Properties, Antioxidant and Antibacterial Activities and Anti-Hepatocarcinogenic Effect and Potential Mechanism of Schefflera oleifera Honey Against HepG2 Cells" Foods 14, no. 13: 2376. https://doi.org/10.3390/foods14132376
APA StyleLi, J., Wang, J., Wang, Y., & Yang, W. (2025). Physicochemical Properties, Antioxidant and Antibacterial Activities and Anti-Hepatocarcinogenic Effect and Potential Mechanism of Schefflera oleifera Honey Against HepG2 Cells. Foods, 14(13), 2376. https://doi.org/10.3390/foods14132376