Nutritional and Organoleptic Characterization of Two Quinoa (Chenopodium quinoa) Cultivars Grown in Quebec, Canada
Abstract
1. Introduction
2. Materials and Methods
2.1. Origin of Quinoa Samples
2.2. Determination of Proximate Composition
2.3. Amino Acid Content by HPLC
2.4. Fatty Acids Content by GC-MS
2.5. Total Phenolic Content and Antioxidant Activity
2.6. Anti-Nutritional Compounds Content
2.7. Sensory Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Total Phenolic Content (TPC) and Total Antioxidant Capacity (TAC)
3.3. Anti-Nutrients (Phytates and Tannins)
3.4. Amino Acids Composition
3.5. Fatty Acid
3.6. Sensory Evaluation and Saponins Content
3.6.1. Hedonic Assessment and Descriptive Vocabulary
- Overall Flavor Appreciation: Mean hedonic scores (on a 9-point scale) for overall flavor were as follows: BRW = 6.23, SQB = 5.78, BQB1 = 5.61, and BQB2 = 5.81. These values fall between the hedonic descriptors “neither pleasant nor unpleasant” (score of 5) and “pleasant” (score of 7). Pairwise comparisons revealed that BRW was rated significantly higher than SQB and BQB1 (p < 0.05) but was not significantly different from BQB2. No significant differences were observed between SQB and BQB1;
- Texture Appreciation: Mean texture scores were BRW = 6.77, SQB = 6.29, BQB1 = 6.24, and BQB2 = 6.01, indicating ratings between “fairly pleasant” (score of 6) and “pleasant” (score of 7). BRW received the highest texture rating and was significantly different from all other samples (p < 0.05). No significant differences were found among SQB, BQB1, and BQB2.
- Descriptive Sensory Attributes: Aromas and flavor profiles of products such as beer [56], Canadian maple products [57], and coffee [58] have been systematically characterized and represented through flavor wheels to support sensory quality assessment across diverse commercial products. Nevertheless, no standardized descriptive lexicon currently exists for the sensory evaluation of pseudocereals, including quinoa. Figure 1 presents the frequency of flavor descriptors associated with each sample. The most frequently selected terms for cooked quinoa were earthy, grassy, legume-like, and starchy. Compared to the Québec samples, BRW was more commonly associated with starchy and legume-like notes and less frequently with nutty notes. In contrast, SQB, BQB1, and BQB2 were more frequently described as earthy. BQB2 was perceived as the least grassy, while both BQB2 and SQB were more often associated with woody notes. Finally, SQB was uniquely characterized by a roasted flavor. These results support previous findings reporting a significant impact of quinoa variety on aroma attributes such as caramel, nutty, buttery, grassy, earthy, and woody [27]. It was also noted in that study that consumers preferred a grassier aroma and a less woody aroma. However, this does not align with the results of the present study since BRW and BQB2 received similar overall appreciation despite BQB2 having less frequent mention of grassy and more of woody aroma. Other flavors more frequently identified in BQB2 compared to BRW, such as earthy and nutty, may have contributed to its favorable rating. Repeated sensory evaluations and expert judges could help in providing descriptors for these new Canadian crops.
3.6.2. Saponins Content and Bitterness Perception
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alandia, G.; Rodriguez, J.P.; Jacobsen, S.E.; Bazile, D.; Condori, B. Global expansion of quinoa and challenges for the Andean region. Glob. Food Secur. 2020, 26, 100429. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database; FAO: Rome, Italy, 1997. [Google Scholar]
- Ain, Q.T.; Siddique, K.; Bawazeer, S.; Ali, I.; Mazhar, M.; Rasool, R.; Mubeen, B.; Ullah, F.; Unar, A.; Jafar, T.H. Adaptive mechanisms in quinoa for coping in stressful environments: An update. PeerJ 2023, 11, e14832. [Google Scholar] [CrossRef]
- Statistics Canada; Government of Canada. Canadian Agriculture at a Glance Innovation and Healthy Living Propel Growth in Certain Other Crops. Innovation and Healthy Living Propel Growth in Certain Other Crops. Available online: https://www150.statcan.gc.ca/n1/pub/96-325-x/2017001/article/54924-eng.htm (accessed on 14 March 2024).
- Iheshiulo, E.M.-A.; Larney, F.J.; Hernandez-Ramirez, G.; St. Luce, M.; Liu, K.; Chau, H.W. Do diversified crop rotations influence soil physical health? A meta-analysis. Soil Tillage Res. 2023, 233, 105781. [Google Scholar] [CrossRef]
- Volsi, B.; Bordin, I.; Higashi, G.E.; Telles, T.S. Economic profitability of crop rotation systems in the Caiuá sandstone area. Ciênc. Rural. 2020, 50, e20190264. [Google Scholar] [CrossRef]
- Martinez, E.A. Chapter 3.4: Quinoa: Nutritional aspects of the rice of the Incas. In State of the Art Report on Quinoa around the World in 2013; Cirad, F., Ed.; FAO: Rome, Italy, 2015. [Google Scholar]
- Khakbazan, M.; Luce, M.S.; Biswas, D.; Bandara, M.; Geddes, C.M.; Liu, K.; Lokuruge, P.; McConkey, B. Economics of cropping sequences diversified with specialty crops in the semi-arid Canadian prairies. Can. J. Plant Sci. 2025, 105, 1–11. [Google Scholar] [CrossRef]
- Mariotti, F.; Gardner, C.D. Dietary Protein and Amino Acids in Vegetarian Diets-A Review. Nutrients 2019, 11, 2661. [Google Scholar] [CrossRef]
- Ng, C.Y.; Wang, M. The functional ingredients of quinoa (Chenopodium quinoa) and physiological effects of consuming quinoa: A review. Food Front. 2021, 2, 329–356. [Google Scholar] [CrossRef]
- De Carvalho, F.G.; Ovídio, P.P.; Padovan, G.J.; Jordão Junior, A.A.; Marchini, J.S.; Navarro, A.M. Metabolic parameters of postmenopausal women after quinoa or corn flakes intake--a prospective and double-blind study. Int. J. Food Sci. Nutr. 2014, 65, 380–385. [Google Scholar] [CrossRef]
- Zevallos, V.F.; Herencia, L.I.; Chang, F.; Donnelly, S.; Ellis, H.J.; Ciclitira, P.J. Gastrointestinal effects of eating quinoa (Chenopodium quinoa Willd.) in celiac patients. Am. J. Gastroenterol. 2014, 109, 270–278. [Google Scholar] [CrossRef]
- Jangra, A.; Kumar, V.; Kumar, S.; Mehra, R.; Kumar, A. Unraveling the Role of Quinoa in Managing Metabolic Disorders: A Comprehensive Review. Curr. Nutr. Rep. 2025, 14, 4. [Google Scholar] [CrossRef]
- Rafik, S.; Rahmani, M.; Rodriguez, J.P.; Andam, S.; Ezzariai, A.; El Gharous, M.; Karboune, S.; Choukr-Allah, R.; Hirich, A. How Does Mechanical Pearling Affect Quinoa Nutrients and Saponin Contents? Plants 2021, 10, 1133. [Google Scholar] [CrossRef]
- Nickel, J.; Spanier, L.P.; Botelho, F.T.; Gularte, M.A.; Helbig, E. Effect of different types of processing on the total phenolic compound content, antioxidant capacity, and saponin content of Chenopodium quinoa Willd grains. Food Chem. 2016, 209, 139–143. [Google Scholar] [CrossRef]
- CXS 333-2019; Codex Alimentarius: Standard for Quinoa. Joint FAO/WHO Food Standards: Rome, Italy, 2019.
- Latimer, G.W., Jr. (Ed.) Official Methods of Analysis of AOAC INTERNATIONAL, 22nd ed.; AOAC INTERNATIONAL: Rockville, MD, USA, 2023. [Google Scholar]
- Yust, M.a.M.; Pedroche, J.; Girón-Calle, J.; Vioque, J.; Millán, F.; Alaiz, M. Determination of tryptophan by high-performance liquid chromatography of alkaline hydrolysates with spectrophotometric detection. Food Chem. 2004, 85, 317–320. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, H. Improving the Analysis of 37 Fatty Acid Methyl Esters; Agilent Technologies: Shanghai, China, 2023. [Google Scholar]
- Czerwonka, M.; Białek, A. Fatty Acid Composition of Pseudocereals and Seeds Used as Functional Food Ingredients. Life 2023, 13, 217. [Google Scholar] [CrossRef]
- Bunzel, M.; Schendel, R.R. Determination of (Total) Phenolics and Antioxidant Capacity in Food and Ingredients. In Food Analysis; Nielsen, S.S., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 455–468. [Google Scholar] [CrossRef]
- Bhinder, S.; Kumari, S.; Singh, B.; Kaur, A.; Singh, N. Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chem. 2021, 346, 128915. [Google Scholar] [CrossRef] [PubMed]
- El-Serafy, R.S.; El-Sheshtawy, A.-N.A.; Abd El-Razek, U.A.; Abd El-Hakim, A.F.; Hasham, M.M.A.; Sami, R.; Khojah, E.; Al-Mushhin, A.A.M. Growth, Yield, Quality, and Phytochemical Behavior of Three Cultivars of Quinoa in Response to Moringa and Azolla Extracts under Organic Farming Conditions. Agronomy 2021, 11, 2186. [Google Scholar] [CrossRef]
- Morillo, A.C.; Manjarres, E.H.; Mora, M.S. Afrosymetric method for quantifying saponins in Chenopodium Quinoa Willd. from Colombia. Braz. J. Biol. 2022, 82, e262716. [Google Scholar] [CrossRef]
- Koziol, M.J. Afrosimetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa Willd). J. Sci. Food Agric. 1991, 54, 211–219. [Google Scholar] [CrossRef]
- ISO 11136:2014; Sensory Analysis—Methodology—General Guidance for Conducting Hedonic Tests with Consumers in a Controlled Area. ISO: Geneva, Switzerland, 2014.
- Wu, G.; Ross, C.; Morris, C.f.; Murphy, K. Lexicon Development, Consumer Acceptance, and Drivers of Liking of Quinoa Varieties. J. Food Sci. 2017, 82, 993–1005. [Google Scholar] [CrossRef]
- Whelan, V.J. Chapter 12—Ranking Test. In Discrimination Testing in Sensory Science; Rogers, L., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 237–265. [Google Scholar] [CrossRef]
- Pathan, S.; Ndunguru, G.; Ayele, A.G. Comparison of the Nutritional Composition of Quinoa (Chenopodium quinoa Willd.) Inflorescences, Green Leaves, and Grains. Crops 2024, 4, 72–81. [Google Scholar] [CrossRef]
- De Bock, P.; Van Bockstaele, F.; Muylle, H.; Quataert, P.; Vermeir, P.; Eeckhout, M.; Cnops, G. Yield and Nutritional Characterization of Thirteen Quinoa (Chenopodium quinoa Willd.) Varieties Grown in North-West Europe-Part I. Plants 2021, 10, 2689. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.; Siddiqui, R.A. Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review. Nutrients 2022, 14, 558. [Google Scholar] [CrossRef] [PubMed]
- Pietrysiak, E.; Zak, A.; Ikuse, M.; Nalbandian, E.; Kloepfer, I.; Hoang, L.; Vincent, M.; Jeganathan, B.; Ganjyal, G.M. Impact of genotypic variation and cultivation conditions on the techno-functional characteristics and chemical composition of 25 new Canadian quinoa cultivars. Food Res. Int. 2024, 195, 114903. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Li, X.; Chen, P.X.; Zhang, B.; Liu, R.; Hernandez, M.; Draves, J.; Marcone, M.F.; Tsao, R. Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Amaranth and Quinoa Seeds Grown in Ontario and Their Overall Contribution to Nutritional Quality. J. Agric. Food Chem. 2016, 64, 1103–1110. [Google Scholar] [CrossRef]
- Granado-Rodríguez, S.; Aparicio, N.; Matías, J.; Pérez-Romero, L.F.; Maestro, I.; Gracés, I.; Pedroche, J.J.; Haros, C.M.; Fernandez-Garcia, N.; Navarro Del Hierro, J.; et al. Studying the Impact of Different Field Environmental Conditions on Seed Quality of Quinoa: The Case of Three Different Years Changing Seed Nutritional Traits in Southern Europe. Front. Plant Sci. 2021, 12, 649132. [Google Scholar] [CrossRef]
- Granado-Rodríguez, S.; Maestro-Gaitán, I.; Matías, J.; Rodríguez, M.J.; Calvo, P.; Hernández, L.E.; Bolaños, L.; Reguera, M. Changes in nutritional quality-related traits of quinoa seeds under different storage conditions. Front. Nutr. 2022, 9, 995250. [Google Scholar] [CrossRef]
- Souri Laki, E.; Rabiei, B.; Jokarfard, V.; Shahbazi Miyangaskari, M.; Marashi, H.; Börner, A. Evaluation of Genotype × Environment Interactions in Quinoa Genotypes (Chenopodium quinoa Willd.). Agriculture 2025, 15, 515. [Google Scholar] [CrossRef]
- Mhada, M.; Metougui, M.L.; El Hazzam, K.; El Kacimi, K.; Yasri, A. Variations of Saponins, Minerals and Total Phenolic Compounds Due to Processing and Cooking of Quinoa (Chenopodium quinoa Willd.) Seeds. Foods 2020, 9, 660. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E.K.; Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010, 119, 770–778. [Google Scholar] [CrossRef]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Moharram, H.; Youssef, M. Methods for Determining the Antioxidant Activity: A Review. Alex. J. Fd. Sci. Technol. 2014, 11, 31–42. [Google Scholar]
- Gómez-Caravaca, A.M.; Iafelice, G.; Verardo, V.; Marconi, E.; Caboni, M.F. Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd). Food Chem. 2014, 157, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. In Dietary Protein Quality Evaluation in Human Nutrition: Report of an FAO Expert Consultation; Auckland, New Zealand, 2013; p. 66. Available online: https://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf (accessed on 14 March 2024).
- Elsohaimy, S.A.; Refaay, T.M.; Zaytoun, M.A.M. Physicochemical and functional properties of quinoa protein isolate. Ann. Agric. Sci. 2015, 60, 297–305. [Google Scholar] [CrossRef]
- Ruales, J.; Nair, B.M. Nutritional quality of the protein in quinoa (Chenopodium quinoa, Willd) seeds. Plant Foods Hum. Nutr. 1992, 42, 1–11. [Google Scholar] [CrossRef]
- Craine, E.B.; Murphy, K.M. Seed Composition and Amino Acid Profiles for Quinoa Grown in Washington State. Front. Nutr. 2020, 7, 126. [Google Scholar] [CrossRef]
- FAO. Dietary protein quality evaluation in human nutrition. Report of an FAQ Expert Consultation. FAO Food Nutr. Pap. 2013, 92, 26369006. [Google Scholar]
- Cui, H.; Li, S.; Roy, D.; Guo, Q.; Ye, A. Modifying quinoa protein for enhanced functional properties and digestibility: A review. Curr. Res. Food Sci. 2023, 7, 100604. [Google Scholar] [CrossRef]
- van Vliet, S.; Burd, N.; van Loon, L. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, M.; Lucas-Gonzales, R.; Ricci, A.; Fontecha, J.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Ind. Crops Prod. 2018, 111, 38–46. [Google Scholar] [CrossRef]
- Gonzalez-Becerra, K.; Barron-Cabrera, E.; Muñoz-Valle, J.F.; Torres-Castillo, N.; Rivera-Valdes, J.J.; Rodriguez-Echevarria, R.; Martinez-Lopez, E. A Balanced Dietary Ratio of n-6:n-3 Polyunsaturated Fatty Acids Exerts an Effect on Total Fatty Acid Profile in RBCs and Inflammatory Markers in Subjects with Obesity. Healthcare 2023, 11, 2333. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, C.; Zhou, J.; Zhang, Z.; Wang, W.; Zhu, Y.; Dong, C.; Ren, G. Influence of the Nutritional Composition of Quinoa (Chenopodium quinoa Willd.) on the Sensory Quality of Cooked Quinoa. Foods 2025, 14, 988. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Morris, C.F.; Murphy, K.M. Evaluation of Texture Differences among Varieties of Cooked Quinoa. J. Food Sci. 2014, 79, S2337–S2345. [Google Scholar] [CrossRef]
- Wu, G.; Morris, C.F.; Murphy, K.M. Quinoa Starch Characteristics and Their Correlations with the Texture Profile Analysis (TPA) of Cooked Quinoa. J. Food Sci. 2017, 82, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- Schmelzle, A. The beer aroma wheel: Updating beer flavour terminology according to sensory standards. BrewingScience 2009, 62, 26–32. [Google Scholar]
- Agriculture and Agri-Food Canada; Centre, ACER. Maple Syrup Flavour Research. Available online: https://agriculture.canada.ca/en/science/story-agricultural-science/scientific-achievements-agriculture/maple-syrup-flavour-research (accessed on 12 May 2025).
- Carvalho, F.M.; Alves, E.A.; Artêncio, M.M.; Cassago, A.L.L.; Pereira, L.L. Development of a flavour wheel for Coffea canephora using rate-all-that-apply. Sci. Rep. 2025, 15, 16643. [Google Scholar] [CrossRef]
- Mora-Ocacion, M.S.; Morillo-Coronado, A.C.; Manjarres-Hernandez, E.H. Extraction and Quantification of Saponins in Quinoa (Chenopodium quinoa Willd.) Genotypes from Colombia. Int. J. Food Sci. 2022, 2022, 7287487. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Aluwi, N.A.; Saunders, S.R.; Ganjyal, G.M. GC-MS Profiling of Triterpenoid Saponins from 28 Quinoa Varieties (Chenopodium quinoa Willd.) Grown in Washington State. J. Agric. Food Chem. 2016, 64, 8583–8591. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Y.; Tao, L.; Zhang, X.; Hao, F.; Zhao, S.; Han, L.; Bai, C. Recent Advances in Separation and Analysis of Saponins in Natural Products. Separations 2022, 9, 163. [Google Scholar] [CrossRef]
- Zhang, H.-X.; Sun, G.; Gu, J.-L.; Du, Z.-Z. New Sweet-Tasting Oleanane-Type Triterpenoid Saponins from “Tugancao” (Derris eriocarpa How). J. Agric. Food Chem. 2017, 65, 2357–2363. [Google Scholar] [CrossRef] [PubMed]
- Kennelly, E.J.; Suttisri, R.; Kinghorn, A.D. Novel Sweet-Tasting Saponins of the Cycloartane, Oleanane, Secodammarane, and Steroidal Types. In Saponins Used in Food and Agriculture; Waller, G.R., Yamasaki, K., Eds.; Springer: Boston, MA, USA, 1996; pp. 13–24. [Google Scholar] [CrossRef]
- Mroczek, A. Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochem. Rev. 2015, 14, 577–605. [Google Scholar] [CrossRef]
- Guo, H.; Wang, S.; Liu, C.; Xu, H.; Bao, Y.; Ren, G.; Yang, X. Key phytochemicals contributing to the bitterness of quinoa. Food Chem. 2024, 449, 139262. [Google Scholar] [CrossRef] [PubMed]
- Song, L.M.; Yu, Y.; Du, L.D.; Ji, X.Y.; Gao, H.; Cai, Y.Q.; Li, C.J.; Xue, P. Does saponin in quinoa really embody the source of its bitterness? Food Chem. 2024, 437 Pt 1, 137872. [Google Scholar] [CrossRef]
- Karolkowski, A.; Belloir, C.; Lucchi, G.; Martin, C.; Bouzidi, E.; Levavasseur, L.; Salles, C.; Briand, L. Activation of bitter taste receptors by saponins and alkaloids identified in faba beans (Vicia faba L. minor). Food Chem. 2023, 426, 136548. [Google Scholar] [CrossRef]
- Guichard, E. Interactions between flavor compounds and food ingredients and their influence on flavor perception. Food Rev. Int. 2002, 18, 49–70. [Google Scholar] [CrossRef]
- Stamenkovic, A.; Ganguly, R.; Aliani, M.; Ravandi, A.; Pierce, G.N. Overcoming the Bitter Taste of Oils Enriched in Fatty Acids to Obtain Their Effects on the Heart in Health and Disease. Nutrients 2019, 11, 1179. [Google Scholar] [CrossRef]
- Stephan, A.; Steinhart, H. Bitter taste of unsaturated free fatty acids in emulsions: Contribution to the off-flavour of soybean lecithins. Eur. Food Res. Technol. 2000, 212, 17–25. [Google Scholar] [CrossRef]
- Mattes, R.D. Effects of linoleic acid on sweet, sour, salty, and bitter taste thresholds and intensity ratings of adults. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G1243–G1248. [Google Scholar] [CrossRef]
(a) | ||||||||
# | Crops | Food Code 1 | Quantity | Energy (kcal) | Proteins (g) | Carbs (g) | TDF (g) | Fat (g) |
1 | Mustard seeds | 192 | Per 100 g | 508 | 26.08 | 28.09 | 12.2 | 36.24 |
2 | Lentils, raw (pink) | 4869 | 358 | 23.91 | 63.10 | 10.8 | 2.17 | |
3 | Canary seeds | N/A | 383 | 21 | 60 | 6.5 | 6.5 | |
4 | Sunflower seeds | 2526 | 585 | 20.78 | 20.00 | 8.6 | 51.46 | |
5 | Rapeseeds 2 | N/A | 642 | 18.6 | 5.4 | 8.5 | 44.1 | |
6 | Flaxseeds | 4528 | 534 | 18.29 | 28.88 | 27.3 | 42.16 | |
7 | Whole-wheat flour | 4500 | 369 | 14.64 | 68.51 | 8.9 | 3.24 | |
8 | Quinoa, seeds | 4495 | 368 | 14.12 | 64.16 | 6.9 | 6.07 | |
9 | Soybean, edamame | 6217 | 110 | 10.25 | 8.58 | 4.8 | 4.73 | |
(b) | ||||||||
# | Crops | Food Code 1 | Portion Size 4 | Energy (kcal) | Proteins (g) | Carbs (g) | TDF (g) | Fat (g) |
1 | Lentils, cooked (pink) | 5918 | 175 mL/179 g | 190 | 13.67 | 32.41 | 5.9 | 1.19 |
2 | Soybean, Edamame | 6218 | 125 mL | 100 | 8.91 | 8.14 | 4.3 | 4.26 |
3 | Canary seeds 3 | N/A | 45 mL/30 g | 115 | 6.3 | 18 | 1.95 | 1.95 |
4 | Sunflower seeds | 2527 | 60 mL/32 g | 189 | 6.27 | 7.81 | 3.6 | 16.17 |
5 | Quinoa, cooked | 5917 | 125 mL | 117 | 4.30 | 20.82 | 2.7 | 1.88 |
6 | Whole-wheat bread | 4500 | 1 slice | 90 | 3.74 | 15.97 | 2.2 | 1.06 |
7 | Flaxseeds (linseed) | 4528 | 15 mL/7 g | 38 | 1.30 | 2.05 | 1.9 | 2.99 |
8 | Mustard seeds | 192 | 5 mL/3 g | 17 | 0.88 | 0.95 | 0.4 | 1.22 |
9 | Rapeseed (canola oil) | 421 | 15 mL/14 g | 126 | 0.00 | 0.00 | 0.0 | 14.19 |
Parameters (Mean ± SD) | Quinoa Grains | |||||
---|---|---|---|---|---|---|
BRW | SQNB | SQB | BQNB | BQB1 | BQB2 | |
Moisture (n = 3), % | 7.77 ± 0.02 e | 11.48 ± 0.09 b | 12.32 ± 0.10 a | 10.80 ± 0.08 c | 10.61 ± 0.08 c | 9.69 ± 0.16 d |
Ash (n = 3), g/100 g dw | 2.05 ± 0.01 e | 2.80 ± 0.04 a | 2.70 ± 0.02 b | 2.65 ± 0.02 b | 2.47 ± 0.04 c | 2.29 ± 0.04 d |
Protein (n = 6), g/100 g dw | 13.53 ± 0.31 c | 15.99 ± 0.34 a | 14.33 ± 0.20 b | 14.74 ± 0.57 b | 14.96 ± 0.34 b | 14.40 ± 0.55 b |
Lipid (n = 6), g/100 g dw | 6.60 ± 0.20 d | 7.08 ± 0.23 b | 7.42 ± 0.08 a | 7.15 ± 0.12 abc | 7.16 ± 0.19 abc | 7.08 ± 0.11 bc |
Total dietary fiber (n = 2), g/100 g dw | 10.82 ± 0.81 | 14.18 ± 0.72 | 13.89 ± 1.09 | 11.92 ± 0.30 | 12.74 ± 0.78 | 11.58 ± 0.60 |
Carbohydrate, g/100 g dw | 59.23 | 48.47 | 49.34 | 52.74 | 52.06 | 54.96 |
TPC (n = 3), mg GAE/100 g dw | 75.92 ± 2.55 b | 73.45 ± 1.73 b | 74.48 ± 2.92 bc | 69.95 ± 2.69 c | 88.60 ± 0.82 a | 93.43 ± 1.52 a |
TAC (n = 3), % inhibition | 48.87 ± 2.00 c | 64.39 ± 0.73 a | 45.42 ± 1.25 cd | 53.27 ± 0.21 b | 45.28 ± 1.56 cd | 44.29 ± 1.63 d |
TSC (n = 3), g/100 g dw | 2.44 ± 0.04 c | 2.15 ± 0.38 c | 1.95 ± 0.09 c | 6.59 ± 0.69 a | 4.67 ± 0.43 b | 3.73 ± 0.25 b |
Phytates (n = 3), g/100 g dw | 0.26 ± 0.03 | 0.31 ± 0.10 | 0.30 ± 0.07 | 0.28 ± 0.08 | * 0.17 ± 0.02 | 0.20 ± 0.02 |
Tannins (n = 2), g/100 g dw | 0.22 | 0.29 | 0.24 | 0.23 | 0.22 | 0.20 |
EAA mg/g Protein | Quinoa Grains | FAO Reference Pattern * | AAS | ||||
---|---|---|---|---|---|---|---|
BRW | SQNB | BQNB | BRW | SQNB | BQNB | ||
Histidine | 27.98 ± 0.46 | 29.94 ± 0.19 | 25.24 ± 0.15 | 16 | 1.750 | 1.869 | 1.575 |
Isoleucine | 37.58 ± 1.17 | 37.25 ± 1.74 | 33.96 ± 1.12 | 30 | 1.253 | 1.240 | 1.133 |
Leucine | 63.18 ± 2.01 | 63.65 ± 2.16 | 57.56 ± 1.47 | 61 | 1.036 | 1.044 | 0.944 |
Lysine | 61.04 ± 2.96 | 59.20 ± 3.00 | 45.44 ± 1.04 | 48 | 1.271 | 1.233 | 0.946 |
Methionine | 24.31 ± 1.04 | 25.86 ± 0.63 | 18.52 ± 1.04 | 23 | 1.057 | 1.126 | 0.804 |
Phe + Tyr | 70.67 ± 2.15 | 73.83 ± 2.56 | 64.82 ± 1.47 | 41 | 1.724 | 1.800 | 1.580 |
Threonine | 35.28 ± 0.60 | 36.69 ± 0.94 | 32.83 ± 0.85 | 25 | 1.412 | 1.468 | 1.312 |
Tryptophan | 8.10 ± 2.52 | 8.76 ± 0.54 | 7.93 ± 0.53 | 6.6 | 1.227 | 1.136 | 1.197 |
Valine | 40.19 ± 1.00 | 40.26 ± 1.45 | 36.57 ± 0.92 | 40 | 1.005 | 1.008 | 0.915 |
PDCAAS | 0.784 | 0.786 | 0.627 |
Parameters | Quinoa Grains | |||||
---|---|---|---|---|---|---|
BRW | SQNB | SQB | BQNB | BQB1 | BQB2 | |
Palmitic acid (C16:0) | 11.52 ± 0.09 d | 13.61 ± 0.01 a | 11.00 ± 0.04 e | 11.91 ± 0.02 b | 11.65 ± 0.03 c | 11.46 ± 0.03 d |
Stearic acid (C18:0) | nd | 1.18 ± 0.01 a | 0.70 ± 0.01 c | 0.74 ± 0.01 b | 0.66 ± 0.01 d | 0.688 ± 0.005 c |
Oleic acid (C18:1n9c) | 27.88 ± 0.18 a | 20.86 ± 0.04 c | 21.44 ± 0.08 b | 19.52 ± 0.06 d | 19.16 ± 0.01 e | 19.52 ± 0.08 d |
Linoleic acid (C18:2n6c) | 48.47 ± 0.31 e | 53.94 ± 0.05 d | 54.80 ± 0.14 c | 56.82 ± 0.09 b | 57.36 ± 0.03 a | 56.93 ± 0.09 b |
Trans-linoleic acid (C18:2n6t) | nd | 1.284 ± 0.002 a | 1.10 ± 0.01 c | 1.13 ± 0.01 b | 1.14 ± 0.01 b | 1.101 ± 0.005 c |
α-linolenic acid (C18:3n3) | 9.93 ± 0.07 a | 5.92 ± 0.01 e | 7.24 ± 0.01 b | 7.08 ± 0.02 c | 7.09 ± 0.01 c | 6.69 ± 0.01 d |
Arachidic acid (C20:0) | nd | nd | 0.39 ± 0.01 | nd | nd | nd |
Eicosenoic acid (C20:1n9) | 1.46 ± 0.01 b | 1.464 ± 0.004 b | 1.49 ± 0.01 a | 1.34 ± 0.01 d | 1.405 ± 0.003 c | 1.39 ± 0.01 c |
Behenic acid (C22:0) | nd | nd | 0.51 ± 0.01 | nd | nd | 0.45 ± 0.01 |
Erucic acid (C22:1n9) | 1.122 ± 0.004 c | 1.74 ± 0.03 a | 1.47 ± 0.03 b | 1.47 ± 0.03 b | 1.53 ± 0.01 b | 1.50 ± 0.03 b |
SFA | 11.52 ± 0.09 d | 14.79 ± 0.01 a | 12.46 ± 0.26 bc | 12.65 ± 0.02 b | 12.31 ± 0.03 c | 12.60 ± 0.05 bc |
MUFA | 30.09 ± 0.46 a | 24.06 ± 0.06 b | 24.40 ± 0.04 b | 22.33 ± 0.09 c | 22.10 ± 0.01 c | 22.41 ± 0.11 c |
PUFA | 58.40 ± 0.37 e | 61.14 ± 0.05 d | 63.14 ± 0.15 c | 65.02 ± 0.11 b | 65.59 ± 0.03 a | 64.71 ± 0.09 b |
PUFA/SFA ratio | 5.07 ± 0.01 b | 4.13 ± 0.00 c | 5.07 ± 0.10 b | 5.14 ± 0.02 b | 5.33 ± 0.01 a | 5.14 ± 0.01 b |
n-6 | 48.47 ± 0.31 e | 55.23 ± 0.05 d | 55.89 ± 0.15 c | 57.94 ± 0.09 b | 58.50 ± 0.02 a | 58.03 ± 0.09 b |
n-3 | 9.93 ± 0.07 a | 5.92 ± 0.01 e | 7.24 ± 0.01 b | 7.08 ± 0.02 c | 7.09 ± 0.01 c | 6.69 ± 0.01 d |
n-6/n-3 ratio | 4.88 ± 0.01 f | 9.33 ± 0.01 a | 7.72 ± 0.02 e | 8.19 ± 0.02 d | 8.25 ± 0.01 c | 8.68 ± 0.02 b |
AI | 0.130 ± 0.001 d | 0.160 ± 0.000 a | 0.126 ± 0.000 e | 0.136 ± 0.000 b | 0.133 ± 0.000 c | 0.132 ± 0.000 cd |
TI | 0.166 ± 0.001 e | 0.257 ± 0.000 a | 0.189 ± 0.001 d | 0.206 ± 0.001 b | 0.200 ± 0.001 c | 0.201 ± 0.000 c |
H/H | 7.492 ± 0.014 b | 5.931 ± 0.004 f | 7.592 ± 0.007 a | 7.006 ± 0.016 e | 7.178 ± 0.024 d | 7.255 ± 0.008 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, A.H.; Turcot, S.; Graveline, N.; Pelletier, M.; Plourde, H.; Villeneuve, S.; Germain, I. Nutritional and Organoleptic Characterization of Two Quinoa (Chenopodium quinoa) Cultivars Grown in Quebec, Canada. Foods 2025, 14, 2394. https://doi.org/10.3390/foods14132394
Huang AH, Turcot S, Graveline N, Pelletier M, Plourde H, Villeneuve S, Germain I. Nutritional and Organoleptic Characterization of Two Quinoa (Chenopodium quinoa) Cultivars Grown in Quebec, Canada. Foods. 2025; 14(13):2394. https://doi.org/10.3390/foods14132394
Chicago/Turabian StyleHuang, Aria Haiying, Sophie Turcot, Nancy Graveline, Marylène Pelletier, Hugues Plourde, Sébastien Villeneuve, and Isabelle Germain. 2025. "Nutritional and Organoleptic Characterization of Two Quinoa (Chenopodium quinoa) Cultivars Grown in Quebec, Canada" Foods 14, no. 13: 2394. https://doi.org/10.3390/foods14132394
APA StyleHuang, A. H., Turcot, S., Graveline, N., Pelletier, M., Plourde, H., Villeneuve, S., & Germain, I. (2025). Nutritional and Organoleptic Characterization of Two Quinoa (Chenopodium quinoa) Cultivars Grown in Quebec, Canada. Foods, 14(13), 2394. https://doi.org/10.3390/foods14132394