Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (278)

Search Parameters:
Keywords = long-read assembler

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2509 KB  
Article
Complete Genome Sequence of Pithoascus kurdistanensis CBS 149789, an Endophytic Fungus Isolated from Papaver bracteatum
by Sima Mohammadi, Jeff Gauthier, Guillaume Quang Henri Nguyen, Antony T. Vincent, Bahman Bahramnejad and Roger C. Levesque
J. Fungi 2025, 11(12), 861; https://doi.org/10.3390/jof11120861 - 5 Dec 2025
Viewed by 480
Abstract
Endophytic fungi are increasingly recognized as pivotal contributors to plant secondary metabolism, often synthesizing bioactive compounds like those produced by their hosts. We report the first complete genome sequence for Pithoascus kurdistanensis, a novel endophyte isolated from Papaver bracteatum that produces morphinan [...] Read more.
Endophytic fungi are increasingly recognized as pivotal contributors to plant secondary metabolism, often synthesizing bioactive compounds like those produced by their hosts. We report the first complete genome sequence for Pithoascus kurdistanensis, a novel endophyte isolated from Papaver bracteatum that produces morphinan alkaloids independently from its host plant. High-quality genomic DNA from P. kurdistanensis was subjected to a hybrid sequencing strategy using both Oxford Nanopore long-read and Illumina short-read platforms, yielding a 34.0 Mbp assembly composed of nine chromosomal contigs and four additional minor contigs. This assembly was 97.3% complete as determined by BUSCO and revealed that 6.37% of the genome consists of repetitive elements. A total of 8292 protein-coding genes, including 63 candidate genes potentially involved in isoquinoline alkaloid biosynthesis, have been identified. Phylogenetic analysis based on conserved single-copy orthologs positioned P. kurdistanensis within a basal lineage of the Microascaceae. Overall, these results provide foundational insight into the genetic potential of P. kurdistanensis as a novel microbial source of morphinan alkaloids, while emphasizing the need for continued functional studies to resolve the underlying biosynthetic pathways. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

17 pages, 8142 KB  
Article
Comparative Analysis of Araceae Mitochondrial Genomes: Implications for Adaptation to Ecological Transitions in Plants
by Yuxiao Chen, Shuai Gao, Jieqiong Wang, Xin Cheng, Yue Chen, Veeranjaneyulu Chinta and Shenglong Kan
Genes 2025, 16(10), 1241; https://doi.org/10.3390/genes16101241 - 21 Oct 2025
Viewed by 707
Abstract
Background/Objectives: Plant mitogenomes display remarkable variation in size, structure, and gene content, yet their evolutionary causes remain unclear. Araceae, the most significant family within Alismatales, encompasses both aquatic and terrestrial lineages, providing an excellent system for studying how ecological shifts influence mitogenome [...] Read more.
Background/Objectives: Plant mitogenomes display remarkable variation in size, structure, and gene content, yet their evolutionary causes remain unclear. Araceae, the most significant family within Alismatales, encompasses both aquatic and terrestrial lineages, providing an excellent system for studying how ecological shifts influence mitogenome evolution. Methods: We assembled and annotated four new mitogenomes using both short- and long-read sequencing, including three aquatic taxa (Pistia stratiotes L., Spirodela intermedia W. Koch, Wolffia australiana (Benth.) Hartog & Plas) and one terrestrial species (Amorphophallus konjac K. Koch). Along with five previously published mitogenomes, we performed comparative analyses across nine Araceae species. Results: These mitogenome sizes varied from ~178 kb to ~877 kb, consisting of one to 19 circular molecules, with aquatic species generally having smaller and simpler structures. Plastid-derived sequences (MTPTs) contributed 1.2–10.6% of genome content, peaking in Zantedeschia aethiopica (L.) Spreng. Despite significant structural heterogeneity, all species maintained core respiratory genes under strong purifying selection, while ribosomal protein-coding genes showed lineage-specific loss. RNA editing ranged from 363 to 772 sites per mitogenome, with the number of sites independent of mitogenome size. Conclusions: Overall, this study uncovers the dynamic evolutionary patterns of Araceae mitogenomes and offers a framework for understanding how habitat shifts between aquatic and terrestrial environments influence mitogenome diversity in plants. Full article
(This article belongs to the Special Issue Molecular Adaptation and Evolutionary Genetics in Plants)
Show Figures

Figure 1

14 pages, 2090 KB  
Technical Note
A Strategy for Single-Run Sequencing of the Water Buffalo Genome: (II) Fast One-Step Assembly of Highly Continuous Chromosome Sequences
by Elvira Toscano, Leandra Sepe, Federica Di Maggio, Marcella Nunziato, Angelo Boccia, Elena Cimmino, Arcangelo Scialla, Francesco Salvatore and Giovanni Paolella
Animals 2025, 15(20), 3014; https://doi.org/10.3390/ani15203014 - 17 Oct 2025
Cited by 1 | Viewed by 503
Abstract
Genome sequencing has possibly been the greatest step in the development of advanced tools for animal genetic improvement: knowledge of gene sequences and use of haplotype markers for productivity traits can provide important improvements in yield production and optimisation of reproductive program. Next-generation [...] Read more.
Genome sequencing has possibly been the greatest step in the development of advanced tools for animal genetic improvement: knowledge of gene sequences and use of haplotype markers for productivity traits can provide important improvements in yield production and optimisation of reproductive program. Next-generation and, more recently, third-generation sequencing techniques enormously increased the ability to produce sequences from single individuals and increased the interest in exome or whole-genome sequencing as an alternative to SNP chips in breeding programs as these techniques allowed for the capture of a wider range of variations, including characterisation of rare variants, structural variations, and copy number changes. Here, we present a procedure, based on fast de novo assembly and a scaffolding step, to quickly build an almost complete genome starting from long reads obtained in a single sequencing run. The procedure, applied to sequences from five water buffaloes, was able to independently build, for each individual, an almost complete high-quality genome with highly continuous chromosome sequences; in most cases, over 90% of the length of the reference chromosome was covered by less than ten long contigs. Unlike other pipelines based on slower assemblers or which require many sequencing data, in 1–2 days, the proposed procedure can go from a single run to continuous genome assembly, supporting fast analysis of large chromosome structures, potentially useful for improving animal breeding and productivity. Full article
Show Figures

Figure 1

18 pages, 1701 KB  
Article
ISApl4, a New IS1595 Family Insertion Sequence Forming a Novel Pseudo-Compound Transposon That Confers Antimicrobial Multidrug Resistance in Actinobacillus pleuropneumoniae
by Janine T. Bossé, Yanwen Li, Marc Stegger, Liza Miriam Cohen, Øystein Angen, Søren Overballe-Petersen, Dennis Hanke, Stefan Schwarz, Paul R. Langford and Henrike Krüger-Haker
Antibiotics 2025, 14(10), 1021; https://doi.org/10.3390/antibiotics14101021 - 14 Oct 2025
Viewed by 680
Abstract
Background/Objectives: Actinobacillus pleuropneumoniae is an important respiratory tract pathogen of swine worldwide. Insertion sequences (ISs) play a major role in the transfer of antimicrobial resistance (AMR) among various porcine respiratory tract pathogens. In this study, three A. pleuropneumoniae genomes were investigated for the [...] Read more.
Background/Objectives: Actinobacillus pleuropneumoniae is an important respiratory tract pathogen of swine worldwide. Insertion sequences (ISs) play a major role in the transfer of antimicrobial resistance (AMR) among various porcine respiratory tract pathogens. In this study, three A. pleuropneumoniae genomes were investigated for the presence of a novel IS. Methods: Analysis of the draft genomes of three A. pleuropneumoniae serovar 8 isolates (AP_1, AP_120, AP_123) suggested the presence of a novel IS. A closed whole-genome sequence was generated for strain AP_123 by hybrid assembly of Oxford Nanopore MinION long-reads and Illumina MiSeq short-reads, followed by sequence analysis using standard online tools. Transfer was tested by natural transformation. Antimicrobial susceptibility testing was conducted by broth microdilution following Clinical and Laboratory Standards Institute standards. Results: A novel IS, designated ISApl4, was detected in all three genomes. ISApl4 is 712 bp in size and has a transposase gene (tnp) of 654 bp. Moreover, it has perfect terminal 14-bp inverted repeats and produces 8-bp direct repeats at its integration site. This IS was found in 39 copies in the AP_123 genome, two of which formed the 5,765-bp pseudo-compound transposon Tn7560. This transposon carries four AMR genes: sul2 (sulfonamide resistance), strA-strB (streptomycin resistance), and tet(Y) (tetracycline resistance). RT-PCR confirmed tnp gene expression and horizontal transfer of Tn7560 into A. pleuropneumoniae MIDG2331. Conclusions: This study identified the novel ISApl4 in porcine A. pleuropneumoniae and its association with the novel pseudo-compound transposon Tn7560, which proved to be an active element capable of disseminating multidrug resistance amongst A. pleuropneumoniae. Full article
(This article belongs to the Special Issue Antibiotic Therapy in Respiratory Tract Infections (RTIs))
Show Figures

Figure 1

14 pages, 1301 KB  
Article
Deciphering Escherichia coli ESBL/pAmpC Plasmids Through High-Throughput Third-Generation Sequencing and Hybrid Assembly
by Andrea Laconi, Enea Ovedani, Roberta Tolosi, Ilias Apostolakos and Alessandra Piccirillo
Pathogens 2025, 14(10), 1039; https://doi.org/10.3390/pathogens14101039 - 13 Oct 2025
Viewed by 637
Abstract
Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC (pAmpC) β-lactamases represent a threat for public health. Their dissemination is often mediated by mobile genetic elements (MGEs), but plasmid identification and characterization could be hindered by sequencing limitations. Hybrid assembly may overcome these barriers. Eight ESBL/pAmpC-producing [...] Read more.
Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC (pAmpC) β-lactamases represent a threat for public health. Their dissemination is often mediated by mobile genetic elements (MGEs), but plasmid identification and characterization could be hindered by sequencing limitations. Hybrid assembly may overcome these barriers. Eight ESBL/pAmpC-producing E. coli isolates from broilers were sequenced using Illumina (short-read) and Oxford Nanopore MinION (long-read). Assemblies were generated individually and using a hybrid approach. Plasmids were typed, annotated, and screened for antimicrobial resistance genes (ARGs), MGEs, and virulence factors. Short-read assemblies were highly fragmented, while long reads improved contiguity but showed typing errors. Hybrid assemblies produced the most accurate and complete plasmids, including more circularized plasmids. Long and hybrid assemblies detected IS26 associated with ESBL genes and additional virulence genes not identified by short reads. ARG profiles were consistent across methods, but structural resolution and contextualization of resistance loci were superior in hybrid assembly. Hybrid assembly integrates the strengths of short- and long-read sequencing, enabling accurate plasmid reconstruction and improved detection of resistance-associated MGEs. This approach may enhance genomic surveillance of ESBL/pAmpC plasmids and support strategies to mitigate antimicrobial resistance. Full article
Show Figures

Figure 1

17 pages, 2807 KB  
Article
Genome-Wide Inference of Essential Genes in Dirofilaria immitis Using Machine Learning
by Túlio L. Campos, Pasi K. Korhonen, Neil D. Young, Sunita B. Sumanam, Whitney Bullard, John M. Harrington, Jiangning Song, Bill C. H. Chang, Richard J. Marhöfer, Paul M. Selzer and Robin B. Gasser
Int. J. Mol. Sci. 2025, 26(20), 9923; https://doi.org/10.3390/ijms26209923 - 12 Oct 2025
Cited by 1 | Viewed by 714
Abstract
The filarioid nematode Dirofilaria immitis is the causative agent of heartworm disease, a major parasitic infection of canids, felids and occasionally humans. Current prevention relies on macrocyclic lactone-based chemoprophylaxis, but the emergence of drug resistance highlights the need for new intervention strategies. Here, [...] Read more.
The filarioid nematode Dirofilaria immitis is the causative agent of heartworm disease, a major parasitic infection of canids, felids and occasionally humans. Current prevention relies on macrocyclic lactone-based chemoprophylaxis, but the emergence of drug resistance highlights the need for new intervention strategies. Here, we applied a machine learning (ML)-based framework to predict and prioritise essential genes in D. immitis in silico, using genomic, transcriptomic and functional datasets from the model organisms Caenorhabditis elegans and Drosophila melanogaster. With a curated set of 26 predictive features, we trained and evaluated multiple ML models and, using a defined threshold, we predicted 406 ‘high-priority’ essential genes. These genes showed strong transcriptional activity across developmental stages and were inferred to be enriched in pathways related to ribosome biogenesis, translation, RNA processing and signalling, underscoring their potential as anthelmintic targets. Transcriptomic analyses suggested that these genes are associated with key reproductive and neural tissues, while chromosomal mapping revealed a relatively even genomic distribution, in contrast to patterns observed in C. elegans and Dr. melanogaster. In addition, initial evidence suggested structural variation in the X chromosome compared with a recently published D. immitis assembly, indicating the importance of integrating long-read sequencing with high-throughput chromosome conformation capture (Hi-C) mapping. Overall, this study reinforces the potential of ML-guided approaches for essential gene discovery in parasitic nematodes and provides a foundation for downstream validation and therapeutic target development. Full article
Show Figures

Figure 1

9 pages, 2849 KB  
Article
Genome Characterisation of Esocid Herpesvirus 1 (EsHV-1)
by Mikael Leijon, Petter Tibblin, Tobias Lilja, Fereshteh Banihashem and Björn David Persson
Viruses 2025, 17(10), 1361; https://doi.org/10.3390/v17101361 - 11 Oct 2025
Viewed by 536
Abstract
The alloherpesvirus esocid herpesvirus 1 (EsHV-1) causes epidermal hyperplasia on the skin and fins of northern pike (Esox lucius). For the first time, we present a near-complete genome sequence of EsHV-1, directly obtained from a pike skin sample. The 223,553 bp [...] Read more.
The alloherpesvirus esocid herpesvirus 1 (EsHV-1) causes epidermal hyperplasia on the skin and fins of northern pike (Esox lucius). For the first time, we present a near-complete genome sequence of EsHV-1, directly obtained from a pike skin sample. The 223,553 bp sequence of the genome has a GC-content of 56.47% and is organised into a long, unique segment (148,159 bp) and a short, unique segment (45,925 bp). The short segment is flanked by inverted repeat sequences (IRSs) of 14,733/6 bp, with the IRS length difference attributed to a codon deletion. The genome is predicted to contain 144 open reading frames, including eight duplicated within the IRSs. The leftmost third of the genome contains genes of unknown function, but many of which exhibit extensive inter-gene homology, suggesting gene duplication. Six paralogous groups were identified, each containing two to thirteen gene members. Homologues of all twelve alloherpesvirus core genes are present. The ATPase subunit of the terminase and the DNA polymerase is composed of three and two exons, respectively. However, an alternate splicing pattern is found, for which, speculatively, a role is suggested in the terminase assembly at the capsid portal. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

19 pages, 2448 KB  
Article
Transcriptomic and Metabolomic Insights into Benzylisoquinoline Alkaloid Biosynthesis in Goldthread (Coptis trifolia)
by Yoo-Shin Koh, Fanchao Zhu, Yoojeong Hwang and Mi-Jeong Yoo
Int. J. Mol. Sci. 2025, 26(19), 9704; https://doi.org/10.3390/ijms26199704 - 5 Oct 2025
Viewed by 743
Abstract
Coptis trifolia (threeleaf goldthread) offers a valuable comparative system for investigating the evolution and regulation of benzylisoquinoline alkaloid (BIA) synthesis. In this study, we analyzed the leaf and root transcriptomes of C. trifolia using both long-read and short-read RNA-Sequencing. We assembled 41,926 unigenes [...] Read more.
Coptis trifolia (threeleaf goldthread) offers a valuable comparative system for investigating the evolution and regulation of benzylisoquinoline alkaloid (BIA) synthesis. In this study, we analyzed the leaf and root transcriptomes of C. trifolia using both long-read and short-read RNA-Sequencing. We assembled 41,926 unigenes (≥500 bp) and identified 37 genes related to BIA biosynthesis, including two transcription factors, bHLH1 and WRKY1. The number of BIA genes identified in C. trifolia was comparable to that in other Coptis species. Transcriptome analysis revealed that most of these genes were more highly expressed in roots than leaves. Consistent with previous studies, C. trifolia contained a single (S)-stylopine synthase (SPS) gene homolog, potentially multifunctional for (S)-canadine synthase (CAS), (S)-cheilanthifoline synthase (CFS), and SPS. Transcriptome and untargeted metabolomic data indicated greater variation in root samples than leaf samples, although slightly more differentially expressed transcripts and metabolites were observed in leaves. Targeted metabolite profiling showed higher BIA accumulation in roots, with epiberberine being the most abundant, followed by coptisine, berberine, and columbamine. These results provide essential genomic resources for comparative analysis of the BIA pathway across Ranunculaceae, targeted gene function studies for metabolic bioengineering, and conservation strategies for C. trifolia, a member of an early-diverging clade within the genus with limited genetic resources. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 2612 KB  
Article
Harnessing Genomics of Diaporthe amygdali for Improved Control of Peach Twig Canker and Shoot Blight (TCSB)
by Silvia Turco, Federico Brugneti, Antonella Cardacino and Angelo Mazzaglia
Plants 2025, 14(19), 2960; https://doi.org/10.3390/plants14192960 - 24 Sep 2025
Viewed by 668
Abstract
In recent years, symptoms of Twig Cankers and Shoot Blight (TCSB) have re-emerged in several Italian peach orchards, particularly within key production areas of the Emilia-Romagna region. The fungal pathogen Diaporthe amygdali is recognized as the primary causal agent of TCSB, leading to [...] Read more.
In recent years, symptoms of Twig Cankers and Shoot Blight (TCSB) have re-emerged in several Italian peach orchards, particularly within key production areas of the Emilia-Romagna region. The fungal pathogen Diaporthe amygdali is recognized as the primary causal agent of TCSB, leading to the rapid desiccation of shoots, flowers, leaves, and branches, often accompanied by resin exudation from cankers that appear in late winter or early spring. Given Italy’s position as the second-largest peach producer in Europe, ensuring sustainable yields and high fruit quality necessitates a deeper understanding of D. amygdali biology and the development of effective diagnostic and management tools. This study employed a hybrid whole-genome sequencing strategy, combining Illumina short-read and PacBio long-read technologies, to generate the first high-quality genome assembly of D. amygdali isolated from peach. The genome analysis revealed candidate virulence genes and other factors involved in pathogenicity, deepening our understanding of the infection strategies employed by D. amygdali. These findings may support the potential development of sustainable, effective strategies against TCSB, ultimately supporting resilient peach production in Italy and beyond. Full article
(This article belongs to the Special Issue Advances in Plant–Fungal Pathogen Interaction—2nd Edition)
Show Figures

Figure 1

20 pages, 4342 KB  
Article
Evaluation of Long-Read RNA Sequencing Procedures for Novel Isoform Identification and Quantification in Human Whole Blood
by Hikari Okada, Alessandro Nasti, Yoshio Sakai, Yumie Takeshita, Sadahiro Iwabuchi, Ho Yagi, Tomomi Hashiba, Noboru Takata, Taka-Aki Sato, Takeshi Urabe, Seiji Nakamura, Toshinari Takamura, Taro Yamashita, Takuro Tamura, Kenichi Matsubara and Shuichi Kaneko
Genes 2025, 16(9), 1075; https://doi.org/10.3390/genes16091075 - 12 Sep 2025
Viewed by 1205
Abstract
Background/Objectives: Blood flows through the body and reaches all tissues, contributing to homeostasis and physiological functions. Providing information and understanding on how the transcriptome of whole blood behaves in response to physiological or pathological stimuli is critical. Methods: We collected blood from four [...] Read more.
Background/Objectives: Blood flows through the body and reaches all tissues, contributing to homeostasis and physiological functions. Providing information and understanding on how the transcriptome of whole blood behaves in response to physiological or pathological stimuli is critical. Methods: We collected blood from four healthy individuals and performed long-read RNA sequencing (lrRNA-seq) for the precise identification and expression quantification of RNA variants. Moreover, we compared two genome references: the Genome Reference Consortium Human Build 38 (GRCh38) and the Telomere-to-Telomere (T2T) assembly of the CHM13 cell line (T2T-CHM13). Results: With GRCh38, we could identify an average of about 46,000 genes, 1.3-fold more genes than T2T-CHM13. Similarly, we identified about 185,000 isoforms with GRCh38 and 140,000 with T2T-CHM13, finding similar differences for full splice match (FSM) and incomplete splice match (ISM) transcript isoforms. There were about 90,000 novel isoforms for GRCh38 and 70,000 for T2T-CHM13, 47% and 50% of the total number of identified isoforms, respectively. Differences in isoform numbers between GRCh38 and T2T-CHM13 were identified for the subcategories “Genic Genomic”, “Intergenic”, and “Genic Intron”. Using GRCh38, we generally identified a higher number of non-coding isoforms, as well as a higher number of isoforms aligning within intron and intergenic regions. Nonetheless, GRCh38 might incur false positive results, and T2T-CHM13 is likely more accurate for genome sequences in the repetitive regions. Conclusions: LrRNA-seq is a valid method for the identification of novel isoforms in blood, and this study is a first step toward the creation of a comprehensive database of the structure and expression of transcript isoforms for optimized predictive medicine. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

15 pages, 3123 KB  
Article
Canine Parvovirus and Vaccine-Origin Feline Panleukopenia Virus in Wastewater, Arizona, USA: July 2022–June 2023
by Jacqueline Vargas, Brenda Bermudez-Rivera, Izabella Block, Gray Shaffer, Lesley Estrada, Tegan Dadd, Tanner Dickerson, Courtney Curtis, Craig Woods, Erin M. Driver, Rolf U. Halden, Arvind Varsani, Matthew Scotch and Temitope O. C. Faleye
Microorganisms 2025, 13(9), 2124; https://doi.org/10.3390/microorganisms13092124 - 11 Sep 2025
Viewed by 1234
Abstract
Canine parvovirus (CPV) is a virus of veterinary health significance and a member of the Parvoviridae family. Despite its clinical significance and global distribution, surveillance is often limited to cases serious enough to result in veterinary visit and/or hospitalization, thereby limiting our understanding [...] Read more.
Canine parvovirus (CPV) is a virus of veterinary health significance and a member of the Parvoviridae family. Despite its clinical significance and global distribution, surveillance is often limited to cases serious enough to result in veterinary visit and/or hospitalization, thereby limiting our understanding of its evolution and diversity. In this study, we coupled wastewater surveillance (WWS), long-range polymerase chain reaction (PCR) and long-read sequencing and demonstrate the utility of this approach for community-level monitoring of parvovirus diversity. We screened archived viral concentrates from wastewater (WW) collected monthly from July 2022 to June 2023 as part of a previous virus surveillance study from a population of ~500,000 people in Maricopa County, Arizona, USA. Using long-range PCR, the coding-complete sequences (~4.5 kb) were amplified as single contigs and sequenced on a long-read sequencer (MinION). Reads were trimmed, assembled, and contigs subjected to a bioinformatics workflow that includes phylogenetics, immuno-informatics and protein structure modelling. The ~4.5 kb amplicons were amplified from all the samples and sequenced. Twelve contigs (length: 4555 nt to 4675 nt: GC%: 35% to 36%) were assembled from 86,858 trimmed and size-selected reads (length 4400 nt–4900 nt) and all typed as parvoviruses. Overall, there were 11 CPV variants (2a, 2b and 2c) and 1 feline panleukopenia virus (FPV) variant. The FPV was 100% similar in the VP2 genomic region to the 1964 Johnson snow leopard strain present in the Felocell vaccine, suggesting recent shedding post-vaccination. For the CPVs, our analysis showed multiple amino acid substitutions in the VP2 and NS1 proteins, suggestive of host immune pressure and viral adaptation, respectively. The CPV variants clustered predominantly with North and South American variants, suggesting transboundary viral movement and multiple CPV-2c transmission chains seem evident. To the best of our knowledge, we here document the first detection of vaccine-origin FPV in WW. We show the presence of CPV-2a, 2b and 2c in the population sampled and provide evidence that suggests transmission of CPVs across the Americas. Our results also show that WWS coupled with long-range PCR and long-read sequencing is a feasible population-level complement to clinical case surveillance that also facilitates detection of vaccine-origin virus variants. The model we demonstrate here for tracking parvoviruses can also be easily extended to other DNA viruses of human and veterinary health significance. Full article
(This article belongs to the Special Issue Surveillance of Pathogens in the Environment)
Show Figures

Figure 1

18 pages, 6003 KB  
Article
A Graph Contrastive Learning Method for Enhancing Genome Recovery in Complex Microbial Communities
by Guo Wei and Yan Liu
Entropy 2025, 27(9), 921; https://doi.org/10.3390/e27090921 - 31 Aug 2025
Cited by 1 | Viewed by 1086
Abstract
Accurate genome binning is essential for resolving microbial community structure and functional potential from metagenomic data. However, existing approaches—primarily reliant on tetranucleotide frequency (TNF) and abundance profiles—often perform sub-optimally in the face of complex community compositions, low-abundance taxa, and long-read sequencing datasets. To [...] Read more.
Accurate genome binning is essential for resolving microbial community structure and functional potential from metagenomic data. However, existing approaches—primarily reliant on tetranucleotide frequency (TNF) and abundance profiles—often perform sub-optimally in the face of complex community compositions, low-abundance taxa, and long-read sequencing datasets. To address these limitations, we present MBGCCA, a novel metagenomic binning framework that synergistically integrates graph neural networks (GNNs), contrastive learning, and information-theoretic regularization to enhance binning accuracy, robustness, and biological coherence. MBGCCA operates in two stages: (1) multimodal information integration, where TNF and abundance profiles are fused via a deep neural network trained using a multi-view contrastive loss, and (2) self-supervised graph representation learning, which leverages assembly graph topology to refine contig embeddings. The contrastive learning objective follows the InfoMax principle by maximizing mutual information across augmented views and modalities, encouraging the model to extract globally consistent and high-information representations. By aligning perturbed graph views while preserving topological structure, MBGCCA effectively captures both global genomic characteristics and local contig relationships. Comprehensive evaluations using both synthetic and real-world datasets—including wastewater and soil microbiomes—demonstrate that MBGCCA consistently outperforms state-of-the-art binning methods, particularly in challenging scenarios marked by sparse data and high community complexity. These results highlight the value of entropy-aware, topology-preserving learning for advancing metagenomic genome reconstruction. Full article
(This article belongs to the Special Issue Network-Based Machine Learning Approaches in Bioinformatics)
Show Figures

Figure 1

19 pages, 3792 KB  
Article
Biological and Genomic Insights into Fusarium acuminatum Causing Needle Blight in Pinus tabuliformis
by Linin Song, Yuying Xu, Tianjin Liu, He Wang, Xinyue Wang, Changxiao Fu, Xiaoling Xie, Yakubu Saddeeq Abubakar, Abah Felix, Ruixian Yang, Xinhong Jing, Guodong Lu, Jiandong Bao and Wenyu Ye
J. Fungi 2025, 11(9), 636; https://doi.org/10.3390/jof11090636 - 29 Aug 2025
Viewed by 1280
Abstract
Chinese pine, Pinus tabuliformis, is one of the most important garden plants in northern China, and the planting of this species is of great significance for the improvement of the ecological environment. In this study, different fungi were isolated and purified from [...] Read more.
Chinese pine, Pinus tabuliformis, is one of the most important garden plants in northern China, and the planting of this species is of great significance for the improvement of the ecological environment. In this study, different fungi were isolated and purified from diseased Pinus tabuliformis samples collected in Xi’an city, Shaanxi Province. Of these fungal isolates, only one (isolate AP-3) was pathogenic to the healthy host plant. The pathogenic isolate was identified as Fusarium acuminatum by morphological characteristics and ITS and TEF-1α sequence analyses. The optimal growth conditions for this isolate were further analyzed as follows: Optimal temperature of 25 °C, pH of 11, soluble starch and sodium nitrate as the most preferred carbon and nitrogen sources, respectively. By combining Oxford Nanopore Technologies (ONT) long-read sequencing with Illumina short-read sequencing technologies, we obtained a 41.50 Mb genome assembly for AP-3, with 47.97% GC content and 3.04% repeats. This consisted of 14 contigs with an N50 of 4.64 Mb and a maximum length of 6.45 Mb. The BUSCO completeness of the genome assembly was 98.94% at the fungal level and 97.83% at the Ascomycota level. The genome assembly contained 13,408 protein-coding genes, including 421 carbohydrate-active enzymes (CAZys), 120 cytochrome P450 enzymes (CYPs), 3185 pathogen-host interaction (PHI) genes, and 694 candidate secreted proteins. To our knowledge, this is the first report of F. acuminatum causing needle blight of P. tabuliformis. This study not only uncovered the pathogen responsible for needle blight of P. tabuliformis, but also provided a systematic analysis of its biological characteristics. These findings provide an important theoretical basis for disease control in P. tabuliformis and pave the way for further research into the fungal pathogenicity mechanisms and management strategies. Full article
Show Figures

Figure 1

17 pages, 2619 KB  
Article
Analysis of the Entire Mitogenome of the Threatened Freshwater Stingray Potamotrygon leopoldi (Myliobatiformes: Potamotrygonidae) and Comprehensive Phylogenetic Assessment in the Xingu River, Brazilian Amazon
by Sávio L. M. Guerreiro, Amanda F. Vidal, Caio S. Silva, Giovanna C. Cavalcante, Leandro Magalhães, Daniel H. F. Gomes, Júlio César da Silva Filho, Jorge E. S. de Souza, Éder Pires, Guilherme Oliveira, Debora Sayumi Doami Melo, André Luiz Alves de Sá, Igor Hamoy, Ândrea Ribeiro-dos-Santos and Sidney E. B. Santos
Int. J. Mol. Sci. 2025, 26(17), 8252; https://doi.org/10.3390/ijms26178252 - 26 Aug 2025
Viewed by 1342
Abstract
The present study characterizes the complete mitochondrial genome of Potamotrygon leopoldi, commonly referred to as the “white blotched stingray”, a member of the Potamotrygonidae family that are a group of stingrays that live exclusively in freshwater environments. Potamotrygon leopoldi, endemic to [...] Read more.
The present study characterizes the complete mitochondrial genome of Potamotrygon leopoldi, commonly referred to as the “white blotched stingray”, a member of the Potamotrygonidae family that are a group of stingrays that live exclusively in freshwater environments. Potamotrygon leopoldi, endemic to the Xingu River in the Amazon region, are exploited by commercial fisheries for food and commonly exploited by the ornamental industry, and this has a significant impact on the populations. Here, newly assembled PacBio long-read sequencing assesses the complete mitogenome of P. leopoldi and performs a comparative investigation into the evolutionary connections to other extant taxa of elasmobranchs. The mitogenome has 17,504 bp, containing 13 protein-coding, 22 tRNA, and 2 rRNA genes. The mitogenome comprises A: 32.32%, T: 24.41%, C: 12.84%, and G: 30.42%, with an AT content of 56.73%. The values of AT and GC skewness were 0.13 and −0.40, respectively. Our phylogenetic analyses with mitogenome sequences of 40 elasmobranch species support the monophyly for the Potamotrygonidae family and indicate a close relationship to the Dasyatidae family and a sister relationship with Potamotrygon orbignyi and Potamotrygon falkneri. We also detected various amino acid sites in positive selection exclusively in P. leopoldi. This extensive comparative mitogenomic investigation offers novel and significant insights into the evolutionary lineage of neotropical freshwater stingrays and their closely related taxa. It is an indispensable resource for facilitating ongoing and prospective investigations into the molecular evolution of elasmobranchs. Full article
Show Figures

Figure 1

20 pages, 4054 KB  
Article
Genomic Insights into the Molecular Basis of Broad Host Adaptability of the Entomopathogenic Fungus Conidiobolus coronatus (Entomophthoromycotina)
by Fan Bai, Tian Yang, Lvhao Zhang, Jiaqi Yang, Xinyu Chen and Xiang Zhou
J. Fungi 2025, 11(8), 600; https://doi.org/10.3390/jof11080600 - 19 Aug 2025
Viewed by 1074
Abstract
Conidiobolus coronatus (Entomophthorales), a fungal pathogen with a broad insect host range, is a promising candidate for biocontrol applications. We sequenced a C. coronatus strain isolated from a Rhopalomyia sp. cadaver using PacBio long-read sequencing to elucidate the molecular basis of its wide [...] Read more.
Conidiobolus coronatus (Entomophthorales), a fungal pathogen with a broad insect host range, is a promising candidate for biocontrol applications. We sequenced a C. coronatus strain isolated from a Rhopalomyia sp. cadaver using PacBio long-read sequencing to elucidate the molecular basis of its wide host adaptability. The newly assembled 44.21 Mb genome exhibits high completeness (BUSCO score: 93.45%) and encodes 11,128 protein-coding genes, with 23.1% predicted to mediate pathogen–host interactions. Comparative genomics with the aphid-obligate pathogen C. obscurus revealed significant expansions in gene families associated with host adaptation mechanisms, including host recognition, transcriptional regulation, degradation of host components, detoxification, and immune evasion. Functional annotation highlighted enrichment in cellular component organization and energy metabolism. Pfam annotation identified one hundred twenty-five seven-transmembrane receptors (putative GPCRs), sixty-seven fungus-specific transcription factors, three hundred sixty-one peptidases (one hundred ninety-eight serine proteases and one hundred three metalloproteases), one hundred twenty-seven cytochrome P450 monooxygenases (P450s), thirty-five cysteine-rich secretory proteins, and fifty-five tyrosinases. Additionally, four hundred thirty carbohydrate-active enzymes (CAZymes) across six major modules were characterized. Untargeted metabolomics detected 22 highly expressed terpenoids, consistent with terpenoid biosynthesis gene clusters in the genome. Collectively, these expansions underpin the broad host range of C. coronatus by enabling cross-host signal decoding and gene expression reprogramming, breaching diverse host physicochemical barriers, and expanding its chemical ecological niche. This study provides genomic insights into broad host adaptability in entomopathogenic fungi, facilitating further understanding of pathogen–host interactions. Full article
(This article belongs to the Special Issue New Perspectives on Insect-Associated Fungi)
Show Figures

Figure 1

Back to TopTop