Direct Analysis of Solid-Phase Carbohydrate Polymers by Infrared Multiphoton Dissociation Reaction Combined with Synchrotron Radiation Infrared Microscopy and Electrospray Ionization Mass Spectrometry
Abstract
1. Introduction
Carbohydrate Polymers | Analytical Techniques | Ref. |
---|---|---|
Amylose | NIR, Raman, CE, AFM SEC, MALLS, 1H NMR | [40] [41] |
Amylopectin | SEC, MALLS, DSC SEM, XRD, FT-IR, 1H NMR, HPAEC-PAD, DSC, RVA | [42] [43] |
Glycogen | MALDI-MSI, N-glycosidase hydrolysis | [45] |
Cellulose | 1H NMR, PAS TG | [46] [47] |
Chitin | FT-IR, XRD, SEM XRD, FT-IR, UV-Vis, MS, 13C NMR | [48] [49] |
Heparin | LC-MS, SAX ATR-FTIR | [50] [51] |
Hyaluronic acid | HPLC-SEC Nanopore sensor | [52] [53] |
Glucomannan | TLC, FT-IR, 13C NMR | [54] |
N-Glycan | CE, MALDI-MS, ESI-MS | [55] |
- Conventional methods for biopolymer analysis include multistep procedures. The use of an IR laser can reduce the time required to determine rigid polymer structures (simplicity).
- Conventional methods often use external organic solvents and extremely high temperatures to dissolve the rigid structure of polymers. However, IR lasers can perform direct analysis without any external treatments (simplicity and negative emissions).
- The degradation process is completed within several microseconds because the laser macropulse is bunched with several hundreds or thousands of picosecond pulses (rapidity).
- The IR laser can dissociate specific chemical bonds by tuning the resonant wavelengths in the target molecules (selectivity).
- This effect is not caused by simple heating. Although general heating provides thermal energy to the entire compound, the excitation energy is deposited only on the corresponding chemical bonds.
2. Features of Method
- (1)
- Tunable wavelength
- (2)
- Pulse structure
- (3)
- High laser energies
3. Analysis of Chitin
4. Analysis of Cellulose
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FEL | Free-electron laser |
IRMPD | Infrared multiphoton dissociation |
SR-IRM | Synchrotron radiation infrared microscopy |
ESI-MS | Electrospray ionization mass spectrometry |
SR | Synchrotron radiation |
VE | Vibrational excitation |
EB | Electron beam |
RF | Radiofrequency |
HPLC | High-performance liquid chromatography |
CE | Capillary electrophoresis |
NIR | Near-infrared |
AFM | Atomic force microscopy |
SEC | Size exclusion chromatography |
MALLS | Multiple-angle laser light scattering |
NMR | Nuclear magnetic resonance |
DSC | Differential scanning calorimetry |
HPAEC-PAD | High-performance anion exchange chromatography with pulsed amperometry detection |
MALDI-MSI | Matrix-assisted laser desorption/ionization–mass spectrometry imaging |
PAS | Photoacoustic spectroscopy |
TG | Thermogravimetry |
XRD | X-ray diffraction |
SEM | Scanning electron microscopy |
SAX | Strong anion exchange |
MS | Mass spectrometry |
ATR | Attenuated total reflectance |
LC-MS | Liquid chromatography mass spectrometry |
TLC | Thin-layer chromatography |
References
- Yu, H.; Chen, X. Carbohydrate post-glycosylational modifications. Org. Biomol. Chem. 2007, 5, 865–872. [Google Scholar] [CrossRef]
- Su, L.; Hendrikse, S.I.S.; Meijer, E.W. Supramolecular glycopolymers: How carbohydrates matter in structure, dynamics, and function. Curr. Opin. Chem. Biol. 2022, 69, 102171. [Google Scholar] [CrossRef]
- Wisnovsky, S.; Bertozzi, C.R. Reading the glyco-code: New approaches to studying protein-carbohydrate interactions. Curr. Opin. Struct. Biol. 2022, 75, 102395. [Google Scholar] [CrossRef] [PubMed]
- Voiniciuc, C.; Pauly, M.; Usadel, B. Monitoring Polysaccharide Dynamics in the Plant Cell Wall. Plant Physiol. 2018, 176, 2590–2600. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, A.P.; Randhawa, G.S.; Dhugga, K.S. Plant cell wall matrix polysaccharide biosynthesis. Mol. Plant. 2009, 2, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Bayer, I.S. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020, 25, 2649. [Google Scholar] [CrossRef]
- El Masri, R.; Crétinon, Y.; Gout, E.; Vivès, R.R. HS and Inflammation: A Potential Playground for the Sulfs? Front. Immunol. 2020, 11, 570. [Google Scholar] [CrossRef]
- Muthukrishnan, S.; Mun, S.; Noh, M.Y.; Geisbrecht, E.R.; Arakane, Y. Insect Cuticular Chitin Contributes to Form and Function. Curr. Pharm. Des. 2020, 26, 3530–3545. [Google Scholar] [CrossRef]
- Qiu, S.; Zhou, S.; Tan, Y.; Feng, J.; Bai, Y.; He, J.; Cao, H.; Che, Q.; Guo, J.; Su, Z. Biodegradation and Prospect of Polysaccharide from Crustaceans. Mar. Drugs 2022, 20, 310. [Google Scholar] [CrossRef]
- Koirala, P.; Bhandari, Y.; Khadka, A.; Kumar, S.R.; Nirmal, N.P. Nanochitosan from crustacean and mollusk byproduct: Extraction, characterization, and applications in the food industry. Int. J. Biol. Macromol. 2024, 262, 130008. [Google Scholar] [CrossRef]
- Wear, M.P.; Jacobs, E.; Wang, S.; McConnell, S.A.; Bowen, A.; Strother, C.; Cordero, R.J.B.; Crawford, C.J.; Casadevall, A. Cryptococcus neoformans capsule regrowth experiments reveal dynamics of enlargement and architecture. J. Biol. Chem. 2022, 298, 101769. [Google Scholar] [CrossRef]
- Gow, N.A.R.; Latge, J.P.; Munro, C.A. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol. Spectr. 2017, 5, 28513415. [Google Scholar] [CrossRef] [PubMed]
- Roth, C.; Weizenmann, N.; Bexten, N.; Saenger, W.; Zimmermann, W.; Maier, T.; Sträter, N. Amylose recognition and ring-size determination of amylomaltase. Sci. Adv. 2017, 3, e1601386. [Google Scholar] [CrossRef] [PubMed]
- Myers, A.M.; Morell, M.K.; James, M.G.; Ball, S.G. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol. 2000, 122, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Brust, H.; Orzechowski, S.; Fettke, J. Starch and Glycogen Analyses: Methods and Techniques. Biomolecules 2020, 10, 1020. [Google Scholar] [CrossRef]
- Aditya, T.; Allain, J.P.; Jaramillo, C.; Restrepo, A.M. Surface Modification of Bacterial Cellulose for Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 610. [Google Scholar] [CrossRef]
- Agarwal, U.P. Analysis of Cellulose and Lignocellulose Materials by Raman Spectroscopy: A Review of the Current Status. Molecules 2019, 24, 1659. [Google Scholar] [CrossRef]
- Chen, W.; Cao, P.; Liu, Y.; Yu, A.; Wang, D.; Chen, L.; Sundarraj, R.; Yuchi, Z.; Gong, Y.; Merzendorfer, H.; et al. Structural basis for directional chitin biosynthesis. Nature 2022, 610, 402–408. [Google Scholar] [CrossRef]
- Anand, S.; Azimi, B.; Lucena, M.; Ricci, C.; Candito, M.; Zavagna, L.; Astolfi, L.; Coltelli, M.B.; Lazzeri, A.; Berrettini, S.; et al. Chitin nanofibrils modulate mechanical response in tympanic membrane replacements. Carbohydr. Polym. 2023, 310, 120732. [Google Scholar] [CrossRef]
- Rubinson, K.A.; Chen, Y.; Cress, B.F.; Zhang, F.; Linhardt, R.J. Heparin’s solution structure determined by small-angle neutron scattering. Biopolymers 2016, 105, 905–913. [Google Scholar] [CrossRef]
- Qiao, M.; Lin, L.; Xia, K.; Li, J.; Zhang, X.; Linhardt, R.J. Recent advances in biotechnology for heparin and heparan sulfate analysis. Talanta 2020, 219, 121270. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, S.; Wang, J.; Chen, Y.; Li, H.; Li, J.P.; Kan, Y.; Zhang, T. Methods for determining the structure and physicochemical properties of hyaluronic acid and its derivatives: A review. Int. J. Biol. Macromol. 2024, 282, 137603. [Google Scholar] [CrossRef]
- Marcotti, S.; Maki, K.; Reilly, G.C.; Lacroix, D.; Adachi, T. Hyaluronic acid selective anchoring to the cytoskeleton: An atomic force microscopy study. PLoS ONE 2018, 13, e0206056. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, X.; Zhang, Q.; Zhang, D.; Xie, X.; Zhou, H.; Wu, Z.; Liu, R.; Pang, J. Review of Konjac Glucomannan Structure, Properties, Gelation Mechanism, and Application in Medical Biology. Polymers 2023, 15, 1852. [Google Scholar] [CrossRef]
- Li, H.; Fu, A.; Hui, H.; Jia, F.; Wang, H.; Zhao, T.; Wei, J.; Zhang, P.; Lang, W.; Li, K.; et al. Structure characterization and preliminary immune activity of a glucomannan purified from Allii Tuberosi Semen. Carbohydr. Res. 2025, 549, 109375. [Google Scholar] [CrossRef]
- Du, B.; Meenu, M.; Liu, H.; Xu, B. A Concise Review on the Molecular Structure and Function Relationship of β-Glucan. Int. J. Mol. Sci. 2019, 20, 4032. [Google Scholar] [CrossRef] [PubMed]
- Pourtalebi Jahromi, L.; Rothammer, M.; Fuhrmann, G. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications. Adv. Drug Deliv. Rev. 2023, 200, 115028. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, Y.; Leng, F.; Wang, S.; Wang, F.; Zhuang, Y.; Liu, X.; Wang, X.; Ma, X. Establishment and Application of a Method for Rapid Determination of Total Sugar Content Based on Colorimetric Microplate. Sugar Tech. 2017, 19, 424–431. [Google Scholar] [CrossRef]
- Roe, J.H. The determination of sugar in blood and spinal fluid with anthrone reagent. J. Biol. Chem. 1955, 212, 335–343. [Google Scholar] [CrossRef]
- Omondi, S.; Kosgei, J.; Agumba, S.; Polo, B.; Yalla, N.; Moshi, V.; Abong’o, B.; Ombok, M.; McDermott, D.P.; Entwistle, J.; et al. Natural sugar feeding rates of Anopheles mosquitoes collected by different methods in western Kenya. Sci. Rep. 2022, 12, 20596. [Google Scholar] [CrossRef]
- Clarke, A.J.; Cox, P.M.; Shepherd, A.M. The chemical composition of the egg shells of the potato cyst-nematode, Heterodera rostochiensis Woll. Biochem. J. 1967, 104, 1056–1060. [Google Scholar] [CrossRef]
- Bowness, J.M. Application of the carbazole reaction to the estimation of glucuronic acid and glucose in some acidic polysaccharides and in urine. Biochem. J. 1957, 67, 295–300. [Google Scholar] [CrossRef]
- Felz, S.; Vermeulen, P.; van Loosdrecht, M.C.M.; Lin, Y.M. Chemical characterization methods for the analysis of structural extracellular polymeric substances. Water Res. 2019, 157, 201–208. [Google Scholar] [CrossRef]
- Wang, H.C.; Lee, A.R. Recent developments in blood glucose sensors. J. Food Drug Anal. 2015, 23, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Mao, W.; Wang, X.; Zhang, M.; Liu, S. The Fluorescent Detection of Glucose and Lactic Acid Based on Fluorescent Iron Nanoclusters. Sensors 2024, 24, 3447. [Google Scholar] [CrossRef] [PubMed]
- Hase, S.; Hara, S.; Matsushima, Y. Tagging of sugars with a fluorescent compound, 2-aminopyridine. J. Biochem. 1979, 85, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Rothenberg, B.E.; Hayes, B.K.; Toomre, D.; Manzi, A.E.; Varki, A. Biotinylated diaminopyridine: An approach to tagging oligosaccharides and exploring their biology. Proc. Natl. Acad. Sci. USA 1993, 90, 11939–11943. [Google Scholar] [CrossRef]
- Volpi, N.; Maccari, F.; Linhardt, R.J. Capillary electrophoresis of complex natural polysaccharides. Electrophoresis 2008, 29, 3095–3106. [Google Scholar] [CrossRef]
- Szigeti, M.; Meszaros-Matwiejuk, A.; Molnar-Gabor, D.; Guttman, A. Rapid capillary gel electrophoresis analysis of human milk oligosaccharides for food additive manufacturing in-process control. Anal. Bioanal. Chem. 2021, 413, 1595–1603. [Google Scholar] [CrossRef]
- Wang, Y.; Ou, X.; Al-Maqtari, Q.A.; He, H.-J.; Othman, N. Evaluation of amylose content: Structural and functional properties, analytical techniques, and future prospects. Food Chem. X 2024, 24, 101830. [Google Scholar] [CrossRef]
- Ward, R.M.; Gao, Q.; Bruyn, H.; Gilbert, R.G.; Fitzgerald, M.A. Improved Methods for the Structural Analysis of the Amylose-Rich Fraction from Rice Flour. Biomacromolecules 2006, 7, 866–876. [Google Scholar] [CrossRef]
- Mua, J.P.; Jackson, D.S. Relationships between Functional Attributes and Molecular Structures of Amylose and Amylopectin Fractions from Corn Starch. J. Agric. Food Chem. 1997, 45, 3848–3854. [Google Scholar] [CrossRef]
- Jia, X.; Xu, J.; Cui, Y.; Ben, D.; Wu, C.; Zhang, J.; Sun, M.; Liu, S.; Zhu, T.; Liu, J.; et al. Effect of Modification by β-Amylase and α-Glucosidase on the Structural and Physicochemical Properties of Maize Starch. Foods 2024, 13, 3763. [Google Scholar] [CrossRef]
- Wang, B.; Xu, J.; Guo, D.; Long, C.; Zhang, Z.; Cheng, Y.; Huang, H.; Wen, P.; He, H.; He, X. Research on the Relationship between the Amylopectin Structure and the Physicochemical Properties of Starch Extracted from Glutinous Rice. Foods 2023, 12, 460. [Google Scholar] [CrossRef]
- Conroy, L.R.; Clarke, H.A.; Allison, D.B.; Valenca, S.S.; Sun, Q.; Hawkinson, T.R.; Young, L.E.A.; Ferreira, J.E.; Hammonds, A.V.; Dunne, J.B.; et al. Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis. Nat. Commun. 2023, 14, 2759. [Google Scholar] [CrossRef]
- Csóka, L.; Csoka, W.; Tirronen, E.; Nikolskaya, E.; Hiltunen, Y.; Ohtani, B. Integrated analysis of cellulose structure and properties using solid-state low-field H-NMR and photoacoustic spectroscopy. Sci. Rep. 2025, 15, 2195. [Google Scholar] [CrossRef] [PubMed]
- Díez, D.; Urueña, A.; Piñero, R.; Barrio, A.; Tamminen, T. Determination of Hemicellulose, Cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model (TGA-PKM Method). Processes 2020, 8, 1048. [Google Scholar] [CrossRef]
- Triunfo, M.; Tafi, E.; Guarnieri, A.; Salvia, R.; Scieuzo, C.; Hahn, T.; Zibek, S.; Gagliardini, A.; Panariello, L.; Coltelli, M.B.; et al. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci. Rep. 2022, 12, 6613. [Google Scholar] [CrossRef] [PubMed]
- Kumirska, J.; Czerwicka, M.; Kaczyński, Z.; Bychowska, A.; Brzozowski, K.; Thöming, J.; Stepnowski, P. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan. Mar. Drugs 2010, 8, 1567–1636. [Google Scholar] [CrossRef]
- Mourier, P.; Anger, P.; Martinez, C.; Herman, F.; Viskov, C. Quantitative compositional analysis of heparin using exhaustive heparinase digestion and strong anion exchange chromatography. Anal. Chem. Res. 2015, 3, 46–53. [Google Scholar] [CrossRef]
- Devlin, A.J.; Mycroft-West, C.J.; Turnbull, J.E.; Andrade de Lima, M.; Guerrini, M.; Yates, E.A.; Skidmore, M.A. Analysis of Heparin Samples by Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy in the Solid State. ACS Cent. Sci. 2023, 9, 381–392. [Google Scholar] [CrossRef]
- Suárez-Hernández, L.A.; Camacho-Ruíz, R.M.; Arriola-Guevara, E.; Padilla-Camberos, E.; Kirchmayr, M.R.; Corona-González, R.I.; Guatemala-Morales, G.M. Validation of an Analytical Method for the Simultaneous Determination of Hyaluronic Acid Concentration and Molecular Weight by Size-Exclusion Chromatography. Molecules 2021, 26, 5360. [Google Scholar] [CrossRef] [PubMed]
- Rivas, F.; Zahid, O.K.; Reesink, H.L.; Peal, B.T.; Nixon, A.J.; DeAngelis, P.L.; Skardal, A.; Rahbar, E.; Hall, A.R. Label-free analysis of physiological hyaluronan size distribution with a solid-state nanopore sensor. Nat. Commun. 2018, 9, 1037. [Google Scholar] [CrossRef] [PubMed]
- Ishrud, O.; Zahid, M.; Ahmad, V.U.; Pan, Y. Isolation and Structure Analysis of a Glucomannan from the Seeds of Libyan Dates. J. Agric. Food Chem. 2001, 49, 3772–3774. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Crihfield, C.L.; Gattu, S.; Veltri, L.M.; Holland, L.A. Capillary Electrophoresis Separations of Glycans. Chem. Rev. 2018, 118, 7867–7885. [Google Scholar] [CrossRef]
- Tang, Z.; Huang, G. Extraction, structure, and activity of polysaccharide from Radix astragali. Biomed. Pharmacother. 2022, 150, 113015. [Google Scholar] [CrossRef]
- Karnaouri, A.; Chorozian, K.; Zouraris, D.; Karantonis, A.; Topakas, E.; Rova, U.; Christakopoulos, P. Lytic polysaccharide monooxygenases as powerful tools in enzymatically assisted preparation of nano-scaled cellulose from lignocellulose: A review. Bioresour. Technol. 2022, 345, 126491. [Google Scholar] [CrossRef]
- Kawasaki, T.; Nagase, A.; Hayakawa, K.; Teshima, F.; Tanaka, K.; Zen, H.; Shishikura, F.; Sei, N.; Sakai, T.; Hayakawa, Y. Infrared Free-Electron Laser: A Versatile Molecular Cutter for Analyzing Solid-State Biomacromolecules. ACS Omega 2025, 10, 13860–13867. [Google Scholar] [CrossRef]
- Kawasaki, T.; Sakai, T.; Zen, H.; Sumitomo, Y.; Nogami, K.; Hayakawa, K.; Yaji, T.; Ohta, T.; Tsukiyama, K.; Hayakawa, Y. Cellulose Degradation by Infrared Free Electron Laser. Energy Fuels 2020, 34, 9064–9068. [Google Scholar] [CrossRef]
- Kawasaki, T.; Zen, H.; Sakai, T.; Sumitomo, Y.; Nogami, K.; Hayakawa, K.; Yaji, T.; Ohta, T.; Nagata, T.; Hayakawa, Y. Degradation of Lignin by Infrared Free Electron Laser. Polymers 2022, 14, 2401. [Google Scholar] [CrossRef]
- Helburn, R.; Nolan, K. Characterizing biological macromolecules with attenuated total reflectance-Fourier transform infrared spectroscopy provides hands-on spectroscopy experiences for undergraduates. Biochem. Mol. Biol. Educ. 2022, 50, 381–392. [Google Scholar] [CrossRef]
- Johnson, J.B.; Walsh, K.B.; Naiker, M.; Ameer, K. The Use of Infrared Spectroscopy for the Quantification of Bioactive Compounds in Food: A Review. Molecules 2023, 28, 3215. [Google Scholar] [CrossRef]
- Soulby, A.J.; Heal, J.W.; Barrow, M.P.; Roemer, R.A.; O’Connor, P.B. Does deamidation cause protein unfolding? A top-down tandem mass spectrometry study. Protein Sci. 2015, 24, 850–860. [Google Scholar] [CrossRef]
- Smith, S.I.; Guziec, F.S., Jr.; Guziec, L.; Brodbelt, J.S. Interactions of sulfur-containing acridine ligands with DNA by ESI-MS. Analyst 2009, 134, 2058–2066. [Google Scholar] [CrossRef] [PubMed]
- Theisen, A.; Wootton, C.A.; Haris, A.; Morgan, T.E.; Lam, Y.P.Y.; Barrow, M.P.; O’Connor, P.B. Enhancing Biomolecule Analysis and 2DMS Experiments by Implementation of (Activated Ion) 193 nm UVPD on a FT-ICR Mass Spectrometer. Anal. Chem. 2022, 94, 15631–15638. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.J.; Eyler, J.R.; Oomens, J.; Moore, D.T.; van der Meer, A.F.G.; von Helden, G.; Meijer, G.; Hendrickson, C.L.; Marshall, A.G.; Blakney, G.T. Free electron laser-Fourier transform ion cyclotron resonance mass spectrometry facility for obtaining infrared multiphoton dissociation spectra of gaseous ions. Rev. Sci. Instrum. 2005, 76, 023103. [Google Scholar] [CrossRef]
- Zavalin, A.; Hachey, D.L.; Sundaramoorthy, M.; Banerjee, S.; Morgan, S.; Feldman, L.; Tolk, N.; Piston, D.W. Kinetics of a collagen-like polypeptide fragmentation after mid-IR free-electron laser ablation. Biophys. J. 2008, 95, 1371–1381. [Google Scholar] [CrossRef]
- O’Shea, P.G.; Freund, H.P. Free-electron lasers. Status and applications. Science 2001, 292, 1853–1858. [Google Scholar] [CrossRef]
- Glotin, F.; Chaput, R.; Jaroszynski, D.; Prazeres, R.; Ortega, J.-M. Infrared subpicosecond laser pulses with a free-electron laser. Phys. Rev. Lett. 1993, 71, 2587. [Google Scholar] [CrossRef]
- Zen, H.; Suphakul, S.; Kii, T.; Masuda, K.; Ohgaki, H. Present status and perspectives of long wavelength free electron lasers at Kyoto University. Phys. Procedia 2016, 84, 47–53. [Google Scholar] [CrossRef]
- Zen, H.; Hajima, R.; Ohgaki, H. Full characterization of superradiant pulses generated from a free-electron laser oscillator. Sci. Rep. 2023, 13, 6350. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, Y.; Sato, I.; Hayakawa, K.; Tanaka, T. First lasing of LEBRA FEL at Nihon University at a wavelength of 1.5 μm. Nucl. Instrum. Methods Phys. Res. A 2002, 483, 29–33. [Google Scholar] [CrossRef]
- Nakao, K.; Hayakawa, K.; Hayakawa, Y.; Inagaki, M.; Nogami, K.; Sakai, T.; Tanaka, T.; Zen, H. Pulse Structure Measurement of Near-Infrared FEL in Burst-Mode Operation of LEBRA Linac. In Proceedings of the FEL2012: Proceedings of the 34th International Free-Electron Laser Conference, Nara, Japan, 26–31 August 2012; p. 472. Available online: https://accelconf.web.cern.ch/FEL2012/papers/wepd46.pdf (accessed on 8 August 2025).
- Sakai, T.; Hayakawa, K.; Tanaka, T.; Hayakawa, Y.; Nogami, K.; Sei, N. Evaluation of Bunch Length by Measuring Coherent Synchrotron Radiation with a Narrow-Band Detector at LEBRA. Condens. Matter 2020, 5, 34. [Google Scholar] [CrossRef]
- Kawasaki, T.; Zen, H.; Ozaki, K.; Yamada, H.; Wakamatsu, K.; Ito, S. Application of mid-infrared free-electron laser for structural analysis of biological materials. J. Synchrotron Rad. 2021, 28, 28–35. [Google Scholar] [CrossRef]
- Kakoulli, I.; Prikhodko, S.V.; Fischer, C.; Cilluffo, M.; Uribe, M.; Bechtel, H.A.; Fakra, S.C.; Marcus, M.A. Distribution and Chemical Speciation of Arsenic in Ancient Human Hair Using Synchrotron Radiation. Anal. Chem. 2013, 86, 521–526. [Google Scholar] [CrossRef]
- Ling, S.; Qi, Z.; Knight, D.P.; Huang, Y.; Huang, L.; Zhou, H.; Shao, Z.; Chen, X. Insight into the Structure of Single Antheraea pernyi Silkworm Fibers Using Synchrotron FTIR Microspectroscopy. Biomacromolecules 2013, 14, 1885–1892. [Google Scholar] [CrossRef]
- Kawasaki, T.; Man, V.H.; Sugimoto, Y.; Sugiyama, N.; Yamamoto, H.; Tsukiyama, K.; Wang, J.; Derreumaux, P.; Nguyen, P.H. Infrared Laser-Induced Amyloid Fibril Dissociation: A Joint Experimental/Theoretical Study on the GNNQQNY Peptide. J. Phys. Chem. B 2020, 124, 6266–6277. [Google Scholar] [CrossRef]
- Kawasaki, T.; Sato, A.; Tominaga, Y.; Suzuki, Y.; Oyama, T.; Tadokoro, M.; Tsukiyama, K.; Nokihara, K.; Zen, H. Photo-Modification of Melanin by a Mid-infrared Free-electron Laser. Photochem. Photobiol. 2019, 95, 946–950. [Google Scholar] [CrossRef]
- Liu, S.; Sun, J.; Yu, L.; Zhang, C.; Bi, J.; Zhu, F.; Qu, M.; Jiang, C.; Yang, Q. Extraction and characterization of chitin from the beetle Holotrichia parallela Motschulsky. Molecules 2012, 17, 4604–4611. [Google Scholar] [CrossRef]
- Zainol Abidin, N.A.; Kormin, F.; Zainol Abidin, N.A.; Mohamed Anuar, N.A.F.; Abu Bakar, M.F. The Potential of Insects as Alternative Sources of Chitin: An Overview on the Chemical Method of Extraction from Various Sources. Int. J. Mol. Sci. 2020, 21, 4978. [Google Scholar] [CrossRef]
- Kimura, S.; Nakamura, E.; Nishi, T.; Sakurai, Y.; Hayashi, K.; Yamazaki, J.; Katoh, M. Infrared and terahertz spectromicroscopy beam line BL6B(IR) at UVSOR-II. Infrared Phys. Technol. 2006, 49, 147–151. [Google Scholar] [CrossRef]
- Devi, A.; Bajar, S.; Kour, H.; Kothari, R.; Pant, D.; Singh, A. Lignocellulosic Biomass Valorization for Bioethanol Production: A Circular Bioeconomy Approach. Bioenergy Res. 2022, 15, 1820–1841. [Google Scholar] [CrossRef]
- Zhan, Y.; Wang, M.; Ma, T.; Li, Z. Enhancing the potential production of bioethanol with bamboo by γ-valerolactone/water pretreatment. RSC Adv. 2022, 12, 16942–16954. [Google Scholar] [CrossRef]
- Zhong, C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front. Bioeng. Biotechnol. 2020, 8, 605374. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial application of cellulose nano-composites—A review. Biotechnol. Rep. 2019, 21, e00316. [Google Scholar] [CrossRef] [PubMed]
- Domin, D.; Man, V.H.; Van-Oanh, N.-T.; Wang, J.; Kawasaki, T.; Derreumaux, P.; Nguyen, P.H. Breaking down cellulose fibrils with a mid-infrared laser. Cellulose 2018, 25, 5553–5568. [Google Scholar] [CrossRef]
- Šaravanja, A.; Pušić, T.; Dekanić, T. Microplastics in Wastewater by Washing Polyester Fabrics. Materials 2022, 15, 2683. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Mateo, C.; van der Meer, Y.; Seide, G. Analysis of the polyester clothing value chain to identify key intervention points for sustainability. Environ. Sci. Eur. 2021, 33, 2. [Google Scholar] [CrossRef]
- Xue, Y.; Lofland, S.; Hu, X. Thermal Conductivity of Protein-Based Materials: A Review. Polymers 2019, 11, 456. [Google Scholar] [CrossRef]
- Wu, R.; Ma, L.; Liu, X.Y. From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics. Adv. Sci. 2022, 9, e2103981. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Sałdan, A.; Król, M.; Woźniakiewicz, M.; Kościelniak, P. Application of Capillary Electromigration Methods in the Analysis of Textile Dyes—Review. Molecules 2022, 27, 2767. [Google Scholar] [CrossRef] [PubMed]
- Cochran, K.H.; Barry, J.A.; Muddiman, D.C.; Hinks, D. Direct Analysis of Textile Fabrics and Dyes Using Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2013, 85, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Pelch, K.E.; McKnight, T.; Reade, A. 70 analyte PFAS test method highlights need for expanded testing of PFAS in drinking water. Sci. Total Environ. 2023, 876, 162978. [Google Scholar] [CrossRef] [PubMed]
- Wolf, N.; Müller, L.; Enge, S.; Ungethüm, T.; Simat, T.J. Analysis of PFAS and further VOC from fluoropolymer-coated cookware by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Food Addit. Contam. Part A 2024, 41, 1663–1678. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawasaki, T.; Zen, H.; Nogami, K.; Hayakawa, K.; Sakai, T.; Hayakawa, Y. Direct Analysis of Solid-Phase Carbohydrate Polymers by Infrared Multiphoton Dissociation Reaction Combined with Synchrotron Radiation Infrared Microscopy and Electrospray Ionization Mass Spectrometry. Polymers 2025, 17, 2273. https://doi.org/10.3390/polym17172273
Kawasaki T, Zen H, Nogami K, Hayakawa K, Sakai T, Hayakawa Y. Direct Analysis of Solid-Phase Carbohydrate Polymers by Infrared Multiphoton Dissociation Reaction Combined with Synchrotron Radiation Infrared Microscopy and Electrospray Ionization Mass Spectrometry. Polymers. 2025; 17(17):2273. https://doi.org/10.3390/polym17172273
Chicago/Turabian StyleKawasaki, Takayasu, Heishun Zen, Kyoko Nogami, Ken Hayakawa, Takeshi Sakai, and Yasushi Hayakawa. 2025. "Direct Analysis of Solid-Phase Carbohydrate Polymers by Infrared Multiphoton Dissociation Reaction Combined with Synchrotron Radiation Infrared Microscopy and Electrospray Ionization Mass Spectrometry" Polymers 17, no. 17: 2273. https://doi.org/10.3390/polym17172273
APA StyleKawasaki, T., Zen, H., Nogami, K., Hayakawa, K., Sakai, T., & Hayakawa, Y. (2025). Direct Analysis of Solid-Phase Carbohydrate Polymers by Infrared Multiphoton Dissociation Reaction Combined with Synchrotron Radiation Infrared Microscopy and Electrospray Ionization Mass Spectrometry. Polymers, 17(17), 2273. https://doi.org/10.3390/polym17172273