polymers-logo

Journal Browser

Journal Browser

Bio-Based and Biodegradable Polymers: Synthesis, Characterization and Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: closed (31 January 2025) | Viewed by 10982

Special Issue Editor


E-Mail Website
Guest Editor
Department of Polymer Science and Engineering & Program in Environmental and Polymer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon22212, Republic of Korea
Interests: sustainable polymers; bio-based polymers; plastic recycling; chemical recycling; bio-degradable polymers; polymer synthesis; polymeric binders
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We encounter, see, wear, use, and interact with plastics every day. The durability, versatile properties, cost-effectiveness, and light weight of plastics have made them ubiquitous in our daily lives. However, this presence raises sustainability concerns as most commodity plastics are derived from fossil-fuel resources and are essentially non-degradable.

Utilization of biomass for plastic production is one of the key solutions for reducing the reliance of fossil-fuel resources. Biomass is a renewable resource that can obtained from plants and animals, containing stored chemical energy from the sun that is produced by plants through photosynthesis. It is possible to obtain bio-based compounds with unique chemical functionality through selective conversions. These compounds can be transformed into novel polymers with the aim of replacing those derived from fossil carbon sources. Despite significant efforts to create bio-based polymers identical to their petroleum-based counterparts, a persistent goal is to synthesize sustainable bio-based polymers that can either replace traditional polymers or offer superior performances.

Another significant effort to address plastic-related environmental concerns the development of bio-degradable polymers. A variety of degradable polymers such as poly(lactic acid) (PLA) have been developed as green alternatives; however, limitations of practical durability, degradability, and scalability have limited their viability. Therefore, overcoming the durability–degradability trade-off, improving synthetic efficiency, and controlling the degradability under specific conditions are the major targets in the field. 

Finally, in this Special Issue, the developments of bio-based polymers, bio-degradable polymers, and related polymer investigations are of interest.

Dr. Hee Joong Kim
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainable polymers
  • biopolymers
  • bio-composites
  • green chemistry
  • bio-degradable polymers
  • bio-mass conversion

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 12271 KiB  
Article
Unraveling of Poly(lactic acid) (PLA)/Natural Wax/Titanium Dioxide Nanoparticle Composites for Disposable Plastic Applications
by Jacqueline Guadalupe Bocarando-Chacón, Iván Alziri Estrada-Moreno, Imelda Olivas-Armendáriz, Alejandro Vega-Rios and Mónica Elvira Mendoza-Duarte
Polymers 2025, 17(5), 685; https://doi.org/10.3390/polym17050685 - 4 Mar 2025
Viewed by 763
Abstract
The present research is a comprehensive study that developed poly(lactic acid) PLA/natural wax (Wx)/non-functionalized titanium dioxide nanoparticles (TiO2-NF) and PLA/Wx/titanium dioxide nanoparticles functionalized with triethoxysilane (TiO2-F) composites by melt blending. This research systematically investigated their hydrolytic degradation, antibacterial properties, [...] Read more.
The present research is a comprehensive study that developed poly(lactic acid) PLA/natural wax (Wx)/non-functionalized titanium dioxide nanoparticles (TiO2-NF) and PLA/Wx/titanium dioxide nanoparticles functionalized with triethoxysilane (TiO2-F) composites by melt blending. This research systematically investigated their hydrolytic degradation, antibacterial properties, oxygen permeability, and optical transparency. The TiO2-NF or TiO2-F (0.1, 0.5, or 1 wt%) were added to a PLA/Wx (85:15) blend using a Brabender internal mixer at 180 °C. Hydrolytic degradation was carried out in distilled water at 50 °C and an initial pH of 6.2 for 9 months. Changes in weight, morphology, and the rheological behavior of the blends were evaluated at different times during the hydrolytic degradation of the PLA/Wx/TiO2-NF and PLA/Wx/TiO2-F composites. The antibacterial properties of PLA/Wx, PLA/Wx/TiO2-0.1-NF, and PLA/Wx/TiO2-0.1-F were assessed by testing them against both E. coli (Gram-negative) and S. aureus (Gram-positive) bacteria. Their oxygen permeability and optical transparency are comparable to those of LDPE films. These composites, produced by melt blending, show potential for application as disposable plastics, which could significantly impact the fields of materials science and polymer engineering. Full article
Show Figures

Graphical abstract

17 pages, 3763 KiB  
Article
Bio-Based and Solvent-Free Epoxy Vitrimers Based on Dynamic Imine Bonds with High Mechanical Performance
by Lei Chen, Na Ning, Gang Zhou, Yan Li, Shicheng Feng, Zhengyan Guo and Yi Wei
Polymers 2025, 17(5), 571; https://doi.org/10.3390/polym17050571 - 21 Feb 2025
Viewed by 695
Abstract
Conventional epoxy thermosets, with irreversible crosslinking networks, cannot be reprocessed and recycled. Furthermore, the utilization of petroleum-based materials accelerates the depletion of non-renewable resources. The introduction of dynamic covalent bonds and the use of bio-based materials for thermosets can effectively address the above [...] Read more.
Conventional epoxy thermosets, with irreversible crosslinking networks, cannot be reprocessed and recycled. Furthermore, the utilization of petroleum-based materials accelerates the depletion of non-renewable resources. The introduction of dynamic covalent bonds and the use of bio-based materials for thermosets can effectively address the above issues. Herein, a series of bio-based epoxy vitrimers with dynamic covalent imine bonds were synthesized via a simple solvent-free, one-pot method using vanillin-derived aldehyde monomers, 4,4-diaminodiphenylsulfone (DDS) and bisphenol F diglycidyl ether (BFDGE) as raw materials. The effect of crosslinking density, crosslinking structure and imine bond content on the resulting bio-based vitrimers was studied, demonstrating their excellent thermal properties, UV shielding and solvent resistance, as well as outstanding mechanical properties compared to those of the previously reported vitrimers. In particular, the cured neat resin of vitrimer had a maximum tensile strength of 109 MPa and Young’s modulus of 6257 MPa, which are higher than those of previously reported imine-based vitrimers. The dynamic imine bonds endow these vitrimers with good reprocessability upon heating (over 70% recovery) and degradation under acidic conditions, enabling recycling by physical routes and gentle degradation by chemical routes. This study demonstrates a simple and effective process to prepare high-performance bio-based and recycled epoxy thermosets. Full article
Show Figures

Figure 1

13 pages, 4612 KiB  
Article
Balancing Conductivity and Morphology in Aniline-Tuned Biopolymer–Starch Composites
by Mohammed E. Ali Mohsin and Suleiman Mousa
Polymers 2025, 17(4), 497; https://doi.org/10.3390/polym17040497 - 14 Feb 2025
Viewed by 450
Abstract
This work investigates the optimization of aniline content in polyaniline (PANI)/sago starch blends prepared via in situ oxidative polymerization under ultrasonic irradiation. Building upon our previous optimizations of pH and sonication time, this study focuses on the effect of aniline concentration (5–65 wt%) [...] Read more.
This work investigates the optimization of aniline content in polyaniline (PANI)/sago starch blends prepared via in situ oxidative polymerization under ultrasonic irradiation. Building upon our previous optimizations of pH and sonication time, this study focuses on the effect of aniline concentration (5–65 wt%) on electrical conductivity, morphological dispersion, and thermal stability. Various characterization techniques, including field emission scanning electron microscopy (FE-SEM), ultraviolet–visible (UV–Vis) spectroscopy, Fourier transform infrared (FT–IR) spectroscopy, and thermogravimetric analysis (TGA), confirm that a well-connected, conductive network forms at about 35 wt% aniline. Electrical conductivity measurements reveal a pronounced rise from ~1.6 × 10−8 to ~2.2 × 10−3 S/cm between 5 wt% and 35 wt% aniline. Conductivity stabilizes above this threshold due to PANI agglomeration. Morphological assessments confirm a shift from smooth, uniform blends at low aniline to rougher, void-filled surfaces when aniline exceeds 50 wt%. TGA shows improved thermal stability with increasing aniline content. These findings highlight an optimum aniline loading of ~35 wt% to achieve synergy between conductivity and structural integrity in biopolymer-based PANI/sago starch composites, offering a pathway to sustainable, high-performance biopolymer-based conductors for applications in sensors, flexible electronics, and electromagnetic shielding. Full article
Show Figures

Figure 1

21 pages, 3893 KiB  
Article
Probing the Physicochemical, Nanomorphological, and Antimicrobial Attributes of Sustainable Silk Fibroin/Copaiba Oleoresin-Loaded PVA Films for Food Packaging Applications
by Daniel S. Santos, Robert S. Matos, Erveton P. Pinto, Samuel B. Santos, Henrique D. da Fonseca Filho, Rodrigo Prioli, Irlon M. Ferreira and Tiago M. Souza
Polymers 2025, 17(3), 375; https://doi.org/10.3390/polym17030375 - 30 Jan 2025
Viewed by 850
Abstract
We explore the development of biodegradable poly(vinyl alcohol) (PVA) films loaded with silk fibroin (SF) functionalized with copaiba oleoresin (SFCO) for potential use in active food packaging. The films were characterized, showing significant improvements in both their physicochemical and nanomorphological properties. Films containing [...] Read more.
We explore the development of biodegradable poly(vinyl alcohol) (PVA) films loaded with silk fibroin (SF) functionalized with copaiba oleoresin (SFCO) for potential use in active food packaging. The films were characterized, showing significant improvements in both their physicochemical and nanomorphological properties. Films containing 10% SFCO exhibited superior mechanical strength, with a Young modulus of 145 MPa and an elongation at break of 385%, compared to the control film with 42 MPa and 314%, respectively. The films also demonstrated barrier properties, with water vapor transmission rates (WVTRs) as low as 25.95 g/h·m2. Antimicrobial activity against Staphylococcus aureus and Escherichia coli was significantly improved, showing inhibition zones of up to 10 ± 1 mm and a minimum inhibitory concentration (MIC) of 100 µg∙mL−1. Three-dimensional nanomorphological analysis via atomic force microscopy (AFM) showed increased roughness in films with higher SFCO content, with root mean square (RMS) roughness values ranging from 2.70 nm to 11.5 nm. These results highlight the potential of SFCO-loaded PVA films as robust, eco-friendly alternatives to conventional packaging materials. They provide improved mechanical and antimicrobial properties, essential for extending the shelf life of perishable foods and advancing sustainability in the packaging industry. Full article
Show Figures

Figure 1

18 pages, 5103 KiB  
Article
Biodegradable Thermoplastic Materials with Application in the Manufacture of Bags Without Synthetic Polymers
by Denisa Nicoleta Airinei, Cristina Modrogan, Oanamari Daniela Orbuleț, Annette Madelene Dǎncilǎ, Magdalena Boşomoiu and Cristian Matei
Polymers 2025, 17(3), 356; https://doi.org/10.3390/polym17030356 - 28 Jan 2025
Cited by 2 | Viewed by 1301
Abstract
Non-degradable plastic bags are a major contributor to marine and soil pollution. They represent a significant percentage of the generated solid waste and can last for hundreds of years in the environment. The aim of the present study was to find alternatives to [...] Read more.
Non-degradable plastic bags are a major contributor to marine and soil pollution. They represent a significant percentage of the generated solid waste and can last for hundreds of years in the environment. The aim of the present study was to find alternatives to conventional non-degradable plastic bags by obtaining biodegradable and compostable bags starting from simple materials like starch, poly(lactic acid) (PLA), and glycerol. Increasing the strength and hardness of the polymer was achieved by adding a mineral (talcum). The preliminary studies indicated that two compositions are suitable for advanced testing to produce the initial granular material. These materials were tested for the determination of melt flow index (MFI), Fourier Transform Infrared Spectroscopy (FTIR), and the polymers response to heating (thermogravimetric analysis, TGA and differential scanning calorimetry, DSC). The polymer biodegradability was evaluated by burial in two types of soil. The obtained results were compared with the same set of experiments performed on conventional polyethylene bags. After three months in the soil, only the materials synthesized in this study show signs of accentuated degradation while polyethylene bags are still intact. The surface morphology was explored by scanning electron microscopy (SEM). The results indicated that the biodegradable thermoplastic material meets the requirements of the European standard EN13432/2002 regarding compostable and biodegradable packaging. Full article
Show Figures

Figure 1

20 pages, 9455 KiB  
Article
Formulation, E-Beam Crosslinking, and Comprehensive Characterisation of Lavender Oil-Enriched Hydrogels
by Maria Demeter, Ion Călina, Anca Scărișoreanu, Monica R. Nemțanu, Mirela Brașoveanu, Marin Micutz and Marius Dumitru
Polymers 2024, 16(22), 3150; https://doi.org/10.3390/polym16223150 - 12 Nov 2024
Cited by 1 | Viewed by 1094
Abstract
This study focused on the formulation, electron beam (e-beam) crosslinking, and characterisation of hydrogels enriched with lavender oil (LO) to enhance their structural and functional properties for biomedical applications. Stable hydrogels were synthesised using water-soluble polymers and suitable ratios of Tween 80 and [...] Read more.
This study focused on the formulation, electron beam (e-beam) crosslinking, and characterisation of hydrogels enriched with lavender oil (LO) to enhance their structural and functional properties for biomedical applications. Stable hydrogels were synthesised using water-soluble polymers and suitable ratios of Tween 80 and Isopropyl alcohol (IPA) as surfactant and co-surfactant, respectively, via e-beam irradiation at doses up to 70 kGy. The most effective crosslinking was achieved with a radiation dose of 30 kGy, depending on the concentrations of surfactants and LO. LO-enriched hydrogels exhibited enhanced superabsorbent swelling (7700% to 18,000%) and faster equilibrium rates than the control hydrogel. Structural analysis revealed a flexible spongiform porous architecture with larger mesh sizes (156 nm to 246 nm) and adequate elastic moduli (130 to 308 Pa). Degradation tests aligned with swelling data, demonstrating a degradation rate of 12% after 35 days, indicating an appropriate balance of stability and degradation. These findings suggest that e-beam technology, in conjunction with LO and surfactant addition, can effectively tailor hydrogel properties for biomedical applications, making them promising candidates for further research in wound care, drug delivery systems, and other biological applications. Full article
Show Figures

Figure 1

17 pages, 3232 KiB  
Article
Evaluation of Blended Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Properties Containing Various 3HHx Monomers
by Nara Shin, Su Hyun Kim, Jinok Oh, Suwon Kim, Yeda Lee, Yuni Shin, Suhye Choi, Shashi Kant Bhatia, Jong-Min Jeon, Jeong-Jun Yoon, Jeong Chan Joo and Yung-Hun Yang
Polymers 2024, 16(21), 3077; https://doi.org/10.3390/polym16213077 - 31 Oct 2024
Cited by 1 | Viewed by 1014
Abstract
Polyhydroxyalkanoate (PHA), specifically poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx), PHBHHx) with physical properties governed by the 3-hydroxyhexanoate (3HHx) mole fraction, is a promising bioplastic. Although engineered strains used to produce P(3HB-co-3HHx) with various 3HHx mole contents and fermentation techniques have been [...] Read more.
Polyhydroxyalkanoate (PHA), specifically poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx), PHBHHx) with physical properties governed by the 3-hydroxyhexanoate (3HHx) mole fraction, is a promising bioplastic. Although engineered strains used to produce P(3HB-co-3HHx) with various 3HHx mole contents and fermentation techniques have been studied, mass production with specific 3HHx fractions and monomers depends on the batch, supply of substrates, and strains, resulting in the time-consuming development of strains and complex culture conditions for P(3HB-co-3HHx). To overcome these limitations, we blended poly(3-hydroxybutyrate) [(P(3HB), produced from C. necator H16] and P(3HB-co-20 mol%3HHx) [from C. necator 2668/pCB81] to prepare films with various 3HHx contents. We evaluated the molecular weight and physical, thermal, and mechanical properties of these films and confirmed the influence of the 3HHx monomer content on the mechanical and thermal properties as well as degradability of the blended P(3HB-co-3HHx) films containing various 3HHx mole fractions, similar to that of original microbial-based P(3HB-co-3HHx). Moreover, the degradation rate analyzed via Microbulbifer sp. was >76% at all blending ratios within 2 days, whereas a weaker effect of the 3HHx mole fraction of the blended polymer on degradation was observed. P(3HB-co-3HHx) could be produced via simple blending using abundantly produced P(3HB) and P(3HB-co-20 mol%HHx), and the resulting copolymer is applicable as a biodegradable plastic. Full article
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
Hydrogen Bond Donors in the Catalytic Pocket: The Case of the Ring-Opening Polymerization of Cyclic Esters Catalyzed by an Amino-Propoxide Aluminum Complex
by Salvatore Impemba, Antonella Viceconte, Irene Tozio, Shoaib Anwar, Gabriele Manca and Stefano Milione
Polymers 2024, 16(21), 3047; https://doi.org/10.3390/polym16213047 - 30 Oct 2024
Viewed by 863
Abstract
A new aluminum complex (NSO)AlMe2 featuring a hydrogen bond donor on the ligand backbone has been synthesized via the reaction of AlMe3 with 1-((2-(isopropylamino)phenyl)thio)propan-2-ol (NSO-H) and spectroscopically characterized. In the complex, the aluminum atom is in a distorted tetrahedral coordination sphere [...] Read more.
A new aluminum complex (NSO)AlMe2 featuring a hydrogen bond donor on the ligand backbone has been synthesized via the reaction of AlMe3 with 1-((2-(isopropylamino)phenyl)thio)propan-2-ol (NSO-H) and spectroscopically characterized. In the complex, the aluminum atom is in a distorted tetrahedral coordination sphere determined by the anionic oxygen and neutral nitrogen atoms of the ligand and by the two carbon atoms of the alkyl groups. After proper activation, the complex (NSO)AlMe2 was able to promote the ring-opening polymerization of L-, rac-lactide, ε-caprolactone and rac-β-butyrolactone. The polymerization of rac-lactide was faster than that of L-lactide: in a toluene solution at 80 °C, the high monomer conversion of 100 equivalents was achieved in 1.5 h, reaching a turnover frequency of 63 molLA·molAl–1·h–1. The experimental molecular weights of the obtained polymers were close to those calculated, assuming the growth of one polymer chain for one added alcohol equivalent and the polydispersity indexes were monomodal and narrow. The kinetic investigation of the polymerization led to the determination of the apparent propagation constants and the Gibbs free energies of activation for the reaction; the terminal groups of the polymers were also identified. The complex (NSO)AlMe2 was active in harsh conditions such as at a very low concentration or in the melt using technical-grade rac-lactide. A relatively high level of activity was observed in the ring-opening polymerization of ε-caprolactone and rac-β-butyrolactone. DFT calculations were performed and revealed the central role of the NH function of the coordinated ligand. Acting as a hydrogen bond donor, it docks the monomer in the proximity of the metal center and activates it toward the nucleophilic attack of the growing polymer chain. Full article
Show Figures

Graphical abstract

15 pages, 5158 KiB  
Article
Development of Poly(lactic acid)-Based Biocomposites with Silver Nanoparticles and Investigation of Their Characteristics
by Kristine V. Aleksanyan, Regina S. Smykovskaya, Nadezhda A. Samoilova, Viktor A. Novikov, Aleksander M. Shakhov, Arseny V. Aybush, Olga P. Kuznetsova, Sergey M. Lomakin and Yana V. Ryzhmanova
Polymers 2024, 16(19), 2758; https://doi.org/10.3390/polym16192758 - 29 Sep 2024
Cited by 2 | Viewed by 1260
Abstract
Nowadays, the demand for food packaging that maintains the safety and quality of products has become one of the leading challenges. It can be solved by developing functional materials based on biodegradable polymers, such as poly(lactic acid) (PLA). In order to develop PLA-based [...] Read more.
Nowadays, the demand for food packaging that maintains the safety and quality of products has become one of the leading challenges. It can be solved by developing functional materials based on biodegradable polymers, such as poly(lactic acid) (PLA). In order to develop PLA-based functional materials with antibacterial activity, silver nanoparticles (AgNPs) were introduced. In the present study, AgNPs stabilized by a copolymer of ethylene and maleic acid were used. Under the joint action of shear deformations and high temperature, the biocomposites of PLA with poly(ethylene glycol) and AgNPs were produced. Their mechanical and thermal characteristics, water absorption, and structure were investigated using modern methods (DSC, FTIR, Raman spectroscopy, SEM). The effect of AgNP concentration on the characteristics of PLA-based biocomposites was detected. Based on the results of antibacterial activity tests (against Gram-positive and Gram-negative bacteria, along with yeast) it is assumed that these systems have potential as materials for extending the storage of food products. At the same time, PLA–PEG biocomposites with AgNPs possess biodegradability. Full article
Show Figures

Figure 1

Review

Jump to: Research

38 pages, 12608 KiB  
Review
Extraction of Natural-Based Raw Materials Towards the Production of Sustainable Man-Made Organic Fibres
by Ana Catarina Vale, Liliana Leite, Vânia Pais, João Bessa, Fernando Cunha and Raul Fangueiro
Polymers 2024, 16(24), 3602; https://doi.org/10.3390/polym16243602 - 23 Dec 2024
Cited by 2 | Viewed by 2018
Abstract
Bioresources have been gaining popularity due to their abundance, renewability, and recyclability. Nevertheless, given their diverse composition and complex hierarchical structures, these bio-based sources must be carefully processed to effectively extract valuable raw polymeric materials suitable for producing man-made organic fibres. This review [...] Read more.
Bioresources have been gaining popularity due to their abundance, renewability, and recyclability. Nevertheless, given their diverse composition and complex hierarchical structures, these bio-based sources must be carefully processed to effectively extract valuable raw polymeric materials suitable for producing man-made organic fibres. This review will first highlight the most relevant bio-based sources, with a particular focus on promising unconventional biomass sources (terrestrial vegetables, aquatic vegetables, fungi, and insects), as well as agroforestry and industrial biowaste (food, paper/wood, and textile). For each source, typical applications and the biopolymers usually extracted will also be outlined. Furthermore, acknowledging the challenging lignocellulosic structure and composition of these sources, an overview of conventional and emerging pre-treatments and extraction methods, namely physical, chemical, physicochemical, and biological methodologies, will also be presented. Additionally, this review aims to explore the applications of the compounds obtained in the production of man-made organic fibres (MMOFs). A brief description of their evolution and their distinct properties will be described, as well as the most prominent commercial MMOFs currently available. Ultimately, this review concludes with future perspectives concerning the pursuit of greener and sustainable polymeric sources, as well as effective extraction processes. The potential and main challenges of implementing these sources in the production of alternative man-made organic fibres for diverse applications will also be highlighted. Full article
Show Figures

Figure 1

Back to TopTop