polymers-logo

Journal Browser

Journal Browser

Environmentally Friendly Textiles, Fibers and Their Composites

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: 30 June 2026 | Viewed by 14597

Special Issue Editors


E-Mail Website
Guest Editor
Department of Textile Chemistry and Ecology, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
Interests: textile finishing; impact of treatment on the effects and the quality of textiles; application of ultrasound; microwave and UV energy in the pre treatment and finishing; environmentally friendly multifunctional protective treatment; preparing an organic-inorganic composite materials of different properties in order to obtain protective materials and filters; antimicrobial and flame retardant finishing; hospital protective textiles; thermal and physical–chemical characterization of materials

E-Mail Website
Guest Editor
Department of Textile Chemistry and Ecology, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
Interests: interface phenomena on textile (electrokinetic potential, surface charge, surface free energy, adsorption, wetting, wicking, contact angle); textile for medical application; cellulose cationization; wastewater treatment; enzymes in textile finishing; polyester hydrolysis; optical brigthening and fluorescence; UV protection

E-Mail Website
Guest Editor
Department of Textile Design and Management, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
Interests: composite fabrics, anisotropic properties of woven fabrics and fabric deformations; analysis and optimization of textile production processes, aiming to reduce costs, enhance production efficiency, improve product quality; R&D in woven technology and products; technical fabrics for thermal protection and hospital protective textiles

Special Issue Information

Dear Colleagues,

Textile fibers, as crucial polymer materials, play a significant role across various areas of human activity. They serve as an inexhaustible source that aids in development and research in fields such as textiles, technical, biotechnical, biomedicine, medicine, and the natural sciences, as well as interdisciplinary scientific fields. Depending on their use, there are diverse requirements for the structural, morphological, mechanical, physicochemical, chemical, multifunctional, and safety-related properties of fibers, textiles, and composite materials. The contemporary focus on sustainable development and a circular economy is imperative. This involves measures to reduce energy consumption and minimize waste production, considering the waste from one industry as valuable raw materials for another. Furthermore, it promotes the use of biodegradable materials and safer chemicals, resulting in a reduction in the environmental impact from harmful effluents.

We invite and encourage you to submit your manuscripts containing original research or review articles featuring new and valuable findings related to the development of modified, sustainable, multifunctional fibers and textiles, composites, or smart textiles for the Special Issue of the journal Polymers entitled "Environmentally Friendly Textiles, Fibers, and their Composites," for which we serve as guest editors.

Prof. Dr. Sandra Flinčec Grgac
Prof. Dr. Anita Tarbuk
Dr. Snježana Brnada
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • new materials
  • composite
  • eco-friendly fibers
  • surface modification
  • textile finishing, dyeing and printing
  • sustainable materials
  • smart textile and clothing
  • characterization
  • environmental impact assessment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 3685 KB  
Article
Effect of MDI on the Mechanical Properties of Fibers in Poly(lactic acid)/Poly(butylene succinate) Blends During Melt Spinning
by Ye-dam Jeong, Hyun Je Cho, Min Jae Seo and Jongwon Kim
Polymers 2026, 18(1), 73; https://doi.org/10.3390/polym18010073 - 26 Dec 2025
Viewed by 217
Abstract
In this study, the properties of poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blends were analyzed according to the PBS content during the manufacture of the blend. However, the inherent immiscibility between PLA and PBS often leads to phase separation and limited mechanical performance, particularly [...] Read more.
In this study, the properties of poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blends were analyzed according to the PBS content during the manufacture of the blend. However, the inherent immiscibility between PLA and PBS often leads to phase separation and limited mechanical performance, particularly in melt-spun fiber applications, which restrict their practical use. To increase the miscibility of the PLA/PBS blend, methylene diphenyl diisocyanate (MDI) was added up to 0.8 wt.%, and the characteristics were analyzed via thermogravimetric analysis, differential scanning calorimetry, viscosity measurements, dynamic mechanical analysis, and Fourier-transform infrared spectroscopy. As the PBS content in the blend increased, the thermal stability, viscosity, elastic properties, and glass transition temperature decreased. In contrast, as the MDI content in the PLA/PBS blend increased, the thermal stability, viscosity, elastic properties, and glass transition temperature increased. The results revealed that the miscibility of the PLA/PBS blend increased as the MDI content in the blend increased. Additionally, the tensile strength and elongation of the PLA/PBS blend fibers manufactured through melt spinning were analyzed. While the tensile strength decreased as the PBS content increased, the tensile strength and elongation considerably improved as the MDI content in the blend increased. Specifically, the tensile strength of the PLA/PBS blend fibers increased from 2.55 to 2.99 gf/de, corresponding to an improvement of approximately 17%, while the elongation at break increased from 22.48% to 41.64%, representing an enhancement of approximately 85% with increasing MDI content. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

21 pages, 7007 KB  
Article
Analysis of Woven Fabric Mechanical Properties in the Context of Sustainable Clothing Development Process
by Maja Mahnić Naglić, Slavenka Petrak and Antoneta Tomljenović
Polymers 2025, 17(15), 2013; https://doi.org/10.3390/polym17152013 - 23 Jul 2025
Viewed by 1439
Abstract
This paper presents research in the field of computer-aided 3D clothing design, focusing on an investigation of three methods for determining the mechanical properties of woven fabrics and their impact on 3D clothing simulations in the context of sustainable apparel development. Five mechanical [...] Read more.
This paper presents research in the field of computer-aided 3D clothing design, focusing on an investigation of three methods for determining the mechanical properties of woven fabrics and their impact on 3D clothing simulations in the context of sustainable apparel development. Five mechanical parameters were analyzed: tensile elongation in the warp and weft directions, shear stiffness, bending stiffness, specific weight, and fabric thickness. These parameters were integrated into the CLO3D CAD software v.2025.0.408, using data obtained via the KES-FB system, the Fabric Kit protocol, and the AI-based tool, SEDDI Textura 2024. Simulations of women’s blouse and trousers were evaluated using dynamic tests and validated by real prototypes measured with the ARAMIS optical 3D system. Results show average differences between digital and real prototype deformation data up to 6% with an 8% standard deviation, confirming the high accuracy of 3D simulations based on the determined mechanical parameters of the real fabric sample. Notably, the AI-based method demonstrated excellent simulation results compared with real garments, highlighting its potential for accessible, sustainable, and scalable fabric digitization. Presented research is entirely in line with the current trends of digitization and sustainability in the textile industry. It contributes to the advancement of efficient digital prototyping workflows and emphasizes the importance of reliable mechanical characterization for predictive garment modeling. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

13 pages, 1612 KB  
Article
Ozone-Mediated Washing Process of Reference Stain Textile Monitors
by Tanja Pušić, Vanja Šantak, Tihana Dekanić and Mirjana Čurlin
Polymers 2025, 17(14), 1906; https://doi.org/10.3390/polym17141906 - 10 Jul 2025
Cited by 2 | Viewed by 809
Abstract
The complex chemical composition of certain color stains on textiles requires an optimal proportion of thermal and chemical action in the Sinner cycle of the washing process. In this study, both factors were analyzed by varying the composition of the liquid detergent, bleach, [...] Read more.
The complex chemical composition of certain color stains on textiles requires an optimal proportion of thermal and chemical action in the Sinner cycle of the washing process. In this study, both factors were analyzed by varying the composition of the liquid detergent, bleach, and ozone at temperatures of 30 °C, 40 °C, 60 °C, 75 °C, and 90 °C. Standard cotton fabrics stained with tea, red wine, and blood/milk/ink were selected as monitors, which were evaluated before and after the washing process by spectral parameters. The data sets and their interrelationships were evaluated by a cluster analysis (CA) and ANOVA. An unstained standard cotton fabric was selected as a reference for qualification of the sanitation effect. The stain removal effects showed a selective influence of ozone in the washing processes under the investigated conditions, including the synergy of standard materials—stain monitors and different Sinner cycle factors. The most effective sanitation was achieved in processes using formulations with higher concentrations of liquid detergent (D) and bleaching agents (BA) across all tested temperatures. A lower ozone concentration in combination with lower concentrations of detergents and bleaching agents in washing processes at 30 °C and 40 °C also contributed positively to the effect on sanitation. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

15 pages, 2170 KB  
Article
Life Cycle Assessment of Flax Fiber Technical Embroidery-Reinforced Composite
by Andrzej Marcinkowski, Agata Poniecka and Marcin Barburski
Polymers 2025, 17(13), 1888; https://doi.org/10.3390/polym17131888 - 7 Jul 2025
Cited by 1 | Viewed by 1314
Abstract
The aim of this study is to compare the environmental impact of composites reinforced with flax fiber technical embroidery and traditional woven fabric in order to provide conclusions supporting composite manufacturer management in making technology selection decisions. The research objectives are to identify [...] Read more.
The aim of this study is to compare the environmental impact of composites reinforced with flax fiber technical embroidery and traditional woven fabric in order to provide conclusions supporting composite manufacturer management in making technology selection decisions. The research objectives are to identify the key stages in the life cycle of composites, from raw material acquisition to end-of-life; determine the environmental impact of each stage, with a particular focus on processes with the largest contribution to overall result; compare the environmental impact of embroidery-reinforced composites with traditional woven fabric-reinforced composites; propose strategies to minimize the negative environmental impact of composites, including modifying the component set and optimizing the production process. The method involves experimental research including the production of technical embroidery-based composites with varying stitch lengths and woven fabric-reinforced composites. The tensile strength of the composites was evaluated. Subsequently, life cycle assessment was conducted for each material according to the relevant ISO standards. The results presented in this paper provide a comprehensive assessment of the environmental performance of technical embroidery-reinforced composites and identify directions for future research in this field. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

30 pages, 3841 KB  
Article
Eco-Friendly Octylsilane-Modified Amino-Functional Silicone Coatings for a Durable Hybrid Organic–Inorganic Water-Repellent Textile Finish
by Mariam Hadhri, Claudio Colleoni, Agnese D’Agostino, Mohamed Erhaim, Raphael Palucci Rosa, Giuseppe Rosace and Valentina Trovato
Polymers 2025, 17(11), 1578; https://doi.org/10.3390/polym17111578 - 5 Jun 2025
Viewed by 3481
Abstract
The widespread phase-out of long-chain per- and poly-fluoroalkyl substances (PFASs) has created an urgent need for durable, fluorine-free water-repellent finishes that match the performance of legacy chemistries while minimising environmental impact. Here, the performance of an eco-friendly hybrid organic–inorganic treatment obtained by the [...] Read more.
The widespread phase-out of long-chain per- and poly-fluoroalkyl substances (PFASs) has created an urgent need for durable, fluorine-free water-repellent finishes that match the performance of legacy chemistries while minimising environmental impact. Here, the performance of an eco-friendly hybrid organic–inorganic treatment obtained by the in situ hydrolysis–condensation of triethoxy(octyl)silane (OS) in an amino-terminated polydimethylsiloxane (APT-PDMS) aqueous dispersion was investigated. The sol was applied to plain-weave cotton and polyester by a pad-dry-cure process and benchmarked against a commercial fluorinated finish. Morphology and chemistry were characterised by SEM–EDS, ATR-FTIR, and Raman spectroscopy; wettability was assessed by static contact angle, ISO 4920 spray ratings, and AATCC 193 water/alcohol repellence; and durability, handle, and breathability were evaluated through repeated laundering, bending stiffness, and water-vapour transmission rate measurements. The silica/PDMS coating formed a uniform, strongly adherent nanostructured layer conferring static contact angles of 130° on cotton and 145° on polyester. After five ISO 105-C10 wash cycles, the treated fabrics still displayed a spray rating of 5/5 and AATCC 193 grade 7, outperforming or equalling the fluorinated control, while causing ≤5% loss of water-vapour permeability and only a marginal increase in bending stiffness. These results demonstrate that the proposed one-step, water-borne sol–gel process affords a sustainable, industrially scalable route to high-performance, durable, water-repellent finishes for both natural and synthetic textiles, offering a viable alternative to PFAS-based chemistry for outdoor apparel and technical applications. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Graphical abstract

11 pages, 1479 KB  
Article
Cashmere Blended with Calcium Alginate Fibers: Eco-Friendly Improvement of Flame Retardancy and Maintenance of Hygroscopicity
by Yujie Cai, Zewen Li, Bin Wang, Chao Xu, Xing Tian and Fengyu Quan
Polymers 2025, 17(11), 1497; https://doi.org/10.3390/polym17111497 - 28 May 2025
Cited by 1 | Viewed by 1038
Abstract
As a natural fiber, cashmere is favored for its softness, finesse, and warmth. However, its poor flame-retardant properties seriously affect the safety of cashmere. Current flame-retardant treatments for cashmere tend to lead to heavy metal pollution and significantly reduce wearer comfort. In this [...] Read more.
As a natural fiber, cashmere is favored for its softness, finesse, and warmth. However, its poor flame-retardant properties seriously affect the safety of cashmere. Current flame-retardant treatments for cashmere tend to lead to heavy metal pollution and significantly reduce wearer comfort. In this work, natural and environmentally friendly calcium alginate fibers were blended with cashmere to obtain blended fibers. The blended fibers exhibited good hygroscopicity and softness. The incorporation of calcium alginate fibers enhanced the flame retardancy of the blends, and the LOI of the blended fibers reached 40.2 without smoldering. It was due to a stable CaO protective layer formed by Ca2+ during combustion and the dense carbon layer with the decomposition intermediates of cashmere, which exerted a flame-retardant effect in the condensed phase. This study provided an eco-friendly approach to producing high-quality flame-retardant cashmere products. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

19 pages, 58206 KB  
Article
Aging and Modified Washing Process for Polyester Fabrics—Environmental Impact
by Ana Šaravanja, Tanja Pušić, Julija Volmajer Valh and Tihana Dekanić
Polymers 2024, 16(23), 3238; https://doi.org/10.3390/polym16233238 - 22 Nov 2024
Cited by 1 | Viewed by 2686
Abstract
Aging and washing factors have a direct influence on changing the properties of textile products, e.g., causing a release of textile fragments in the washing process. In this study, polyester fabrics were exposed to artificial aging under controlled conditions. Using a modified washing [...] Read more.
Aging and washing factors have a direct influence on changing the properties of textile products, e.g., causing a release of textile fragments in the washing process. In this study, polyester fabrics were exposed to artificial aging under controlled conditions. Using a modified washing process, polyester fabrics were subjected to 10 washing cycles before and after the aging process. To monitor the influence of aging and the modified washing process on the polyester fabrics, the physical, structural and morphological properties of the fabrics and the composition of the collected wastewater were analyzed. The results indicate a slight degradation and increased defragmentation of the polyester fabric due to the processes used. Aging caused the phenomenon of “annealing”, photo-oxidative degradation, and the local thickening of the individual fibers. Aging and washing processes influence the change in tensile strength properties. An analysis of zeta potential and BET results confirmed that the aging process results in surface modifications that depend on the time of exposure. The physico-chemical characterization and microscopic analysis of the wastewater revealed various fragments and short, detached fibrils. The results confirmed that both aging and washing significantly affect the properties of polyester fabrics and the composition of the wastewater resulting from the washing process. The relevance of this research to environmental matters is emphasized through the parameters chosen, which reveal the influence of aging on polyester fabric characteristics and the contamination detected in wash wastewater. In conclusion, several avenues for future research have been identified, including lowering washing temperatures, choosing more appropriate detergents, and adjusting standard washing protocols. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

14 pages, 4140 KB  
Article
Quantitative Analysis of the Impact of Finishing and Washing Processes on the Roughness of Polyester Fabric
by Ana Kalazić, Snježana Brnada, Tea Bušac and Tanja Pušić
Polymers 2024, 16(15), 2199; https://doi.org/10.3390/polym16152199 - 2 Aug 2024
Cited by 2 | Viewed by 2077
Abstract
The roughness of woven fabric surface has so far been mainly investigated as a key characteristic of comfort in contact with the skin. The analysis of roughness can be extended to various contexts and applications, becoming an important tool for understanding how textile [...] Read more.
The roughness of woven fabric surface has so far been mainly investigated as a key characteristic of comfort in contact with the skin. The analysis of roughness can be extended to various contexts and applications, becoming an important tool for understanding how textile materials react in interaction with different finishing agents, as well as for gaining insight into the durability and effectiveness of treatments. This research presents a comprehensive study on the impact of alkaline hydrolysis and chitosan coating on the roughness of polyester woven fabric, utilizing both novel and adapted methods. The study employed contact and optical methods to analyze fabric and fiber surface characteristics, highlighting the significance of roughness profile parameters in understanding material changes post-treatment. The investigation revealed that mechanical action, alkaline medium, washing temperature, and detergent residues contribute to fabric erosion and modification during washing, with chitosan coatings creating pronounced surface irregularities. Comparative analysis showed significant fabric roughness changes post-washing, while fiber roughness changes were treatment specific. Despite initial increases in fiber roughness due to treatments, their durability decreased after washing. These findings emphasize the importance of roughness analysis in optimizing textile finishing processes and washing cycles, impacting both comfort and treatment efficacy. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

Review

Jump to: Research

22 pages, 1424 KB  
Review
Advances in CO2 Laser Treatment of Cotton-Based Textiles: Processing Science and Functional Applications
by Andris Skromulis, Lyubomir Lazov, Inga Lasenko, Svetlana Sokolova, Sandra Vasilevska and Jaymin Vrajlal Sanchaniya
Polymers 2026, 18(2), 193; https://doi.org/10.3390/polym18020193 (registering DOI) - 10 Jan 2026
Abstract
CO2 laser processing has emerged as an efficient dry-finishing technique capable of inducing controlled chemical and morphological transformations in cotton and denim textiles. The strong mid-infrared absorption of cellulose enables localised photothermal heating, leading to selective dye decomposition, surface oxidation, and micro-scale [...] Read more.
CO2 laser processing has emerged as an efficient dry-finishing technique capable of inducing controlled chemical and morphological transformations in cotton and denim textiles. The strong mid-infrared absorption of cellulose enables localised photothermal heating, leading to selective dye decomposition, surface oxidation, and micro-scale ablation while largely preserving the bulk fabric structure. These laser-driven mechanisms modify colour, surface chemistry, and topography in a predictable, parameter-dependent manner. Low-fluence conditions predominantly produce uniform fading through fragmentation and oxidation of indigo dye; in comparison, moderate thermal loads promote the formation of carbonyl and carboxyl groups that increase surface energy and enhance wettability. Higher fluence regimes generate micro-textured regions with increased roughness and anchoring capacity, enabling improved adhesion of dyes, coatings, and nanoparticles. Compared with conventional wet processes, CO2 laser treatment eliminates chemical effluents, strongly reduces water consumption and supports digitally controlled, Industry 4.0-compatible manufacturing workflows. Despite its advantages, challenges remain in standardising processing parameters, quantifying oxidation depth, modelling thermal behaviour, and assessing the long-term stability of functionalised surfaces under real usage conditions. In this review, we consolidate current knowledge on the mechanistic pathways, processing windows, and functional potential of CO2 laser-modified cotton substrates. By integrating findings from recent studies and identifying critical research gaps, the review supports the development of predictable, scalable, and sustainable laser-based cotton textile processing technologies. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

Back to TopTop