Biodegradable Polymers: Properties, Applications, and Environmental Impact
Abstract
1. Introduction
- ISO 17088:2021 [ISO 17088:2021; Plastics—Organic recycling—Specifications for compostable plastics. International Organization for Standardization: Geneva, Switzerland, 2021.];
- EN 13432:2000 [EN 13432:2000; Packaging—Requirements for packaging recoverable through composting and biodegradation—Test scheme and evaluation criteria for the final acceptance of packaging. European Committee for Standardization: Brussels, Belgium, 2000.], EN 14995:2006 [EN 14995:2006; Plastics—Evaluation of compostability—Test scheme and specifications. European Committee for Standardization: Brussels, Belgium, 2006.];
- ASTM D6400-12 [ASTM D6400 12; Standard Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities. ASTM International: West Conshohocken, PA, USA, 2012.].
- ASTM D6866-12 [ASTM D6866 12; Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis. ASTM International: West Conshohocken, PA, USA, 2012.];
- ASTM D7026-04 [ASTM D7026 04; Standard Guide for Sampling and Reporting of Results for Determination of Biobased Content of Materials via Carbon Isotope Analysis. ASTM International: West Conshohocken, PA, USA, 2004.].
1.1. Current Trends and Challenges in the Field of Biodegradable Polymers
- Introducing functional groups into biodegradable polymers to promote photodegradation;
- Creating composites of conventional polymers with natural biodegradable additives that initiate breakdown;
- Synthesizing new biodegradable plastics using existing synthetic industrial products.
- Introducing agro-industrial waste products (e.g., beet pulp, oat husks, buckwheat hulls, corn mash) as additives into synthetic polymers.
- Creating composite materials based on synthetic and natural biodegradable polymers (e.g., starch, cellulose, polylactic acid).
- Reducing the volume of waste destined for incineration;
- Lowering the amount of ash requiring landfill disposal;
- Enabling the use of seawater for MSW separation, thereby conserving freshwater resources.
1.2. Relevance
1.3. Methodology
2. Classifications of Biopolymers and Biodegradation Mechanisms
2.1. Classifications of Biopolymers
- Edible or cellulose-based packaging from biomass of terrestrial or marine origin (proteins, fats, polysaccharides);
- Polyesters synthesized from renewable and petroleum-based sources with properties similar to conventional plastics;
- Polyhydroxyalkanoates (PHAs) and similar biopolymers obtained from microbial fermentation.
- Conventional plastics derived from fossil resources but modified to be biodegradable, such as PBAT;
- Non-biodegradable or partially biodegradable plastics, including bio-based polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and technically advanced biodegradable plastics such as polytrimethylene terephthalate (PTT) and thermoplastic polyester elastomers;
- Plastics that are both bio-based and biodegradable, for example, PLA (polylactic acid) and PHAs (polyhydroxyalkanoates).
2.2. Degradation Types and Mechanisms
- Bacterial degradation;
- Chemical degradation;
- Photodegradation due to sunlight;
- Thermal degradation;
- Mechanical degradation.
- Heteroatoms;
- Biodegradable bonds (R = CH2; R = CH–R1; R–CH2–OH; R–CH(OH)–R; R–CO–H; R–CO–R1, etc.);
- Carbon chain fragments with fewer than five CH2 groups;
- Bulky substituents;
- Natural fillers that support microbial metabolism: starch, cellulose, lactose, magnesium, and urea.
- Biodegradable polymers—natural polymers such as cellulose, starch, agro-industrial waste, beet pulp, natural rubber, polyhydroxybutyrate (PHB), polybutyrolactone, polylactic acid (PLA), etc.;
- Polymers subject to biodeterioration—such as aliphatic polyesters and polyamides;
- Materials susceptible to bioerosion—typically blends or copolymers of synthetic polymers with natural polymers from Group 1 (e.g., polyethylene with starch).
2.3. Types of Biomaterials for Creating Biodegradable Coatings
- 1.
- Natural Polymers:Several notable examples of natural polymers include the following:
- Starch is biodegradable, thus reducing environmental pollution. Starch-based coatings can slow the release of fertilizers, allowing plants to absorb nutrients gradually, minimizing leaching into groundwater and reducing application frequency. Starch films also exhibit good mechanical strength and flexibility, making them suitable for encapsulation purposes [81].
- Gelatin is biocompatible and biodegradable. Due to its high water content, gelatin has low mechanical strength. To enhance its elasticity, additives such as other polymers or organic/inorganic compounds are commonly used [82].
- Collagen supports structural processes, cell growth, proliferation, and migration. It is biocompatible, biodegradable in tissue environments, and non-cytotoxic, making it an ideal material for rapid tissue scaffold formation [85].
- 2.
- Chitosan: Chitosan protects plants from pathogens due to its antibacterial properties, improving plant health. Chitosan is considered semi-synthetic; it is a naturally occurring biopolymer obtained by chemically modifying chitin, a structural polysaccharide present in the exoskeletons of marine crustaceans, certain insects, and the cell walls of fungi. This transformation is typically achieved through a deacetylation process, wherein acetyl groups are removed from chitin to yield chitosan, which imparts distinct physicochemical and biological properties [86,87,88]. It is highly biocompatible and safe for agricultural use, and it enables the controlled release of fertilizers [89]. Chitosan is biodegradable, non-toxic, and exhibits antimicrobial properties [90,91,92].
- 3.
- Synthetic Polymers:Below are a couple of notable examples of synthetic polymers:
- Polyethylene glycol (PEG) has tunable permeability based on temperature and humidity, enabling controlled nutrient release. Due to its hydrophilicity, PEG coatings help retain soil moisture and enhance plant nutrient uptake [93].
- Lactate-based polymers, derived from lactic acid, degrade rapidly in nature and break down into harmless byproducts like CO2 and water. These coatings can shield fertilizers from harsh environmental conditions until they are needed by plants [94].
3. Prominent Biodegradable Polymers
3.1. Polylactic Acid or Polylactide (PLA)
3.2. Polyhydroxyalkanoates (PHAs)
3.3. Other Noteworthy Biodegradable Polymers
4. Applications in Various Sectors
4.1. Medicine, Tissue Engineering, and Scaffolding
4.2. Edible Packaging and Films
4.3. Agricultural Waste as Feedstock for Bioplastic Production
4.4. Role of Biopolymers in Construction
5. Starch-Based Bioplastics and Their Production Methods
5.1. Starch-Based Bioplastics
5.2. Production Methods
6. Recycling and Disposal
6.1. Recycling Options
- Mechanical Recycling: This involves the physical processing of waste and is considered a primary approach for plastic recovery due to its relatively low cost, simple technology, and lower environmental impact compared to chemical recycling [475,476]. Though well established for conventional plastics, its application to biodegradable plastics requires caution. Most polymers in this category, including PLA, PHAs, and polyglycolic acid (PGA), are aliphatic polyesters and therefore thermally sensitive [111]. For example, PLA is primarily recycled through mechanical or chemical means or via industrial composting [477]. PLA and PGA are highly susceptible to thermal degradation, leading to discoloration and deterioration in their mechanical properties. This issue is exacerbated by their high hygroscopicity, where absorbed water promotes hydrolytic chain scission at elevated temperatures, thus accelerating thermal degradation. The precise drying of these materials before mechanical recycling is essential. Furthermore, effective drying may be complicated by contaminants such as paper, which can retain moisture [478]. The mechanical recycling process involves several stages, including waste collection, screening, manual and/or automated sorting, grinding, washing, drying, compounding/extrusion, and pelletizing. These stages may occur in varying sequences depending on the size, shape, and composition of the plastic waste [479].
- Chemical Recycling: Also known as tertiary recycling, this is an emerging route that transforms waste into useful chemicals such as monomers and/or oligomers that can be reintroduced into the polymer value chain and reused for polymerization [481]. Although not yet prominent for biodegradable plastics, chemical recycling and solvolysis show economic and environmental promise. For example, recovering lactic acid from PLA waste via hydrolytic degradation may require less energy than producing it through biomass fermentation [111,482]. The tertiary recycling of biopolymers focuses particularly on aliphatic polyesters that can be depolymerized in a controlled manner, with the primary aim of conserving raw resources rather than merely reducing waste accumulation. Techniques include dry heat depolymerization (e.g., pyrolysis) and solvolysis methods (e.g., hydrolysis, alcoholysis) [483].
6.2. Criteria for Compostability
- ASTM D6400 [ASTM D6400 12; Standard Specification for Labeling of Plastics Designed to be Aerobi-cally Composted in Municipal or Industrial Facilities. ASTM International: West Con-shohocken, PA, USA, 2012] (applicable to compostable plastics) or D6868 (designed for compostable packaging);
- European standard CEN EN 14995:2006 [EN 14995:2006; Plastics—Evaluation of compostability—Test scheme and specifications. European Committee for Standardization (CEN): Brussels, Belgium, 2006.], which applies to compostable plastics, or EN 13432:2000 [EN 13432:2000; Packaging—Requirements for packaging recoverable through composting and biodegradation—Test scheme and evaluation criteria for the final acceptance of packaging. European Committee for Standardization: Brussels, Belgium, 2000.], which covers compostable packaging;
- ISO 17088:2021 [ISO 17088:2021; Plastics—Organic recycling—Specifications for compostable plas-tics. International Organization for Standardization: Geneva, Switzerland, 2021].
- Disintegrate rapidly during composting;
- Biodegrade quickly under composting conditions;
- Not diminish the quality or utility of the resulting compost, which must be able to support plant life;
- Contain only minimal amounts of regulated heavy metals or other toxic substances.
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, C.; Liao, Y.; Zou, Z.; Chen, Y.; Jin, M.; Zhu, J.; Hussain Abdalkarim, S.Y.; Zhou, Y.; Yu, H.Y. Novel Strategy to Interpret the Degradation Behaviors and Mechanisms of Bio- and Non-Degradable Plastics. J. Clean. Prod. 2022, 355, 131757. [Google Scholar] [CrossRef]
- Ciuffi, B.; Fratini, E.; Rosi, L. Plastic Pretreatment: The Key for Efficient Enzymatic and Biodegradation Processes. Polym. Degrad. Stab. 2024, 222, 110698. [Google Scholar] [CrossRef]
- Sasimowski, E.; Majewski, Ł.; Grochowicz, M. Study on the Biodegradation of Poly(Butylene Succinate)/Wheat Bran Biocomposites. Materials 2023, 16, 6843. [Google Scholar] [CrossRef] [PubMed]
- La Fuente, C.I.A.; Maniglia, B.C.; Tadini, C.C. Biodegradable Polymers: A Review about Biodegradation and Its Implications and Applications. Packag. Technol. Sci. 2023, 36, 81–95. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Xue, R.; Dai, Y.; Yue, T.; Zhao, J. Biodegradation of Typical Plastics and Its Mechanisms. Kexue Tongbao/Chinese Sci. Bull. 2021, 66, 2573–2589. [Google Scholar] [CrossRef]
- Shi, C.; Quinn, E.C.; Diment, W.T.; Chen, E.Y.X. Recyclable and (Bio)Degradable Polyesters in a Circular Plastics Economy. Chem. Rev. 2024, 124, 4393–4478. [Google Scholar] [CrossRef]
- Gupta, V.; Biswas, D.; Roy, S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. Materials 2022, 15, 5899. [Google Scholar] [CrossRef]
- Mukherjee, C.; Varghese, D.; Krishna, J.S.; Boominathan, T.; Rakeshkumar, R.; Dineshkumar, S.; Brahmananda Rao, C.V.S.; Sivaramakrishna, A. Recent Advances in Biodegradable Polymers–Properties, Applications and Future Prospects. Eur. Polym. J. 2023, 192, 112068. [Google Scholar] [CrossRef]
- Iwata, T. Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angew. Chem. Int. Ed. 2015, 54, 3210–3215. [Google Scholar] [CrossRef]
- Beltrán-Sanahuja, A.; Benito-Kaesbach, A.; Sánchez-García, N.; Sanz-Lázaro, C. Degradation of Conventional and Biobased Plastics in Soil under Contrasting Environmental Conditions. Sci. Total Environ. 2021, 787, 147678. [Google Scholar] [CrossRef]
- Panou, A.; Karabagias, I.K. Biodegradable Packaging Materials for Foods Preservation: Sources, Advantages, Limitations, and Future Perspectives. Coatings 2023, 13, 1176. [Google Scholar] [CrossRef]
- Pareta, R.; Edirisinghe, M.J. A Novel Method for the Preparation of Starch Films and Coatings. Carbohydr. Polym. 2006, 63, 425–431. [Google Scholar] [CrossRef]
- Mazhar, H.; Shehzad, F.; Hong, S.-G.; Al-Harthi, M.A. Thermal Degradation Kinetics Analysis of Ethylene-Propylene Copolymer and EP-1-Hexene Terpolymer. Polymers 2022, 14, 634. [Google Scholar] [CrossRef] [PubMed]
- Fredi, G.; Dorigato, A. Recycling of bioplastic waste: A review. Adv. Ind. Eng. Polym. Res. 2021, 4, 159–177. [Google Scholar] [CrossRef]
- Niaounakis, M. Biopolymers: Processing and Products; William Andrew: Norwich, NY, USA, 2015; pp. 1–77. [Google Scholar] [CrossRef]
- Niaounakis, M. Biopolymers Reuse, Recycling, and Disposal; Plastics Design Library (PDL); William Andrew: Norwich, NY, USA, 2013; Chapter 10; p. 432. [Google Scholar]
- Li, Z.; Shen, Y.; Li, Z. Ring-Opening Polymerization of Lactones to Prepare Closed-Loop Recyclable Polyesters. Macromolecules 2024, 57, 1919–1940. [Google Scholar] [CrossRef]
- Kim, S.; Chung, H. Biodegradable polymers: From synthesis methods to applications of lignin-graft-polyester. Green Chem. 2024, 26, 10774–10803. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J., Jr.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The Path Forward for Biofuels and Biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef]
- Poliakoff, M.; Licence, P. Sustainable Technology: Green Chemistry. Nature 2007, 450, 810–812. [Google Scholar] [CrossRef]
- Biermann, U.; Friedt, W.; Lang, S.; Lühs, W.; Machmüller, G.; Metzger, J.O.; Klaas, M.R.; Schäfer, H.J.; Schneider, M.P. New Syntheses with Oils and Fats as Renewable Raw Materials for the Chemical Industry. Angew. Chem. Int. Ed. 2000, 39, 2206–2224. [Google Scholar] [CrossRef]
- Jenck, J.F.; Agterberg, F.; Droescher, M.J. Products and Processes for a Sustainable Chemical Industry: A Review of Achievements and Prospects. Green Chem. 2004, 6, 544–556. [Google Scholar] [CrossRef]
- Li, J.; Stayshich, R.M.; Meyer, T.Y. Exploiting Sequence to Control the Hydrolysis Behavior of Biodegradable PLGA Copolymers. J. Am. Chem. Soc. 2011, 133, 6910–6913. [Google Scholar] [CrossRef]
- Cooke, T.F. Biodegradability of Polymers and Fibres—A Review of the Literature. J. Polym. Eng. 1990, 9, 171–211. [Google Scholar] [CrossRef]
- Corden, T.J.; Jones, I.A.; Rudd, C.D.; Christian, P.; Downes, S.; McDougall, K.E. Physical and Biocompatibility Properties of Poly-ε-Caprolactone Produced Using In Situ Polymerisation: A Novel Manufacturing Technique for Long-Fibre Composite Materials. Biomaterials 2000, 21, 713–724. [Google Scholar] [CrossRef]
- Agrawal, C.M.; Haas, K.F.; Leopold, D.A.; Clark, H.G. Evaluation of Poly(L-lactic Acid) as a Material for Intravascular Polymeric Stents. Biomaterials 1992, 13, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Bu, Y.; Ma, J.; Bei, J.; Wang, S. Surface Modification of Aliphatic Polyester to Enhance Biocompatibility. Front. Bioeng. Biotechnol. 2019, 7, 98. [Google Scholar] [CrossRef] [PubMed]
- Kirsh, I.; Bannikova, O.; Beznaeva, O.; Tveritnikova, I.; Romanova, V.; Zagrebina, D.; Frolova, Y.; Myalenko, D. Research of the Influence of Ultrasonic Treatment on the Melts of Polymeric Compositions for the Creation of Packaging Materials with Antimicrobial Properties and Biodegradability. Polymers 2020, 2, 275. [Google Scholar] [CrossRef]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chemie Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef]
- Mamin, E.A.; Pantyukhov, P.V.; Olkhov, A.A. Oxo-Additives for Polyolefin Degradation: Kinetics and Mechanism. Macromol 2023, 3, 477–506. [Google Scholar] [CrossRef]
- Papež, N.; Pisarenko, T.; Ščasnovič, E.; Sobola, D.; Ţălu, Ş.; Dallaev, R.; Částková, K.; Sedlák, P. A Brief Introduction and Current State of Polyvinylidene Fluoride as an Energy Harvester. Coatings 2022, 12, 1429. [Google Scholar] [CrossRef]
- Delacuvellerie, A.; Benali, S.; Cyriaque, V.; Moins, S.; Raquez, J.M.; Gobert, S.; Wattiez, R. Microbial Biofilm Composition and Polymer Degradation of Compostable and Non-Compostable Plastics Immersed in the Marine Environment. J. Hazard. Mater. 2021, 419, 126526. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial Life on Surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef]
- Mohan, K.; Srivastava, T. Microbial Deterioration and Degradation of Polymeric Materials. J. Biochem. Technol. 2010, 2, 210–215. [Google Scholar] [CrossRef]
- Klinkov, A.S.; Belyaev, P.S.; Sokolov, M.V. Recycling and Secondary Processing of Polymer Materials; Tambov State Technical University: Tambov Oblast, Russia, 2005; 80p. [Google Scholar]
- Balykhyn, M.G.; Kirsh, I.A.; Gubanova, M.I.; Bannikova, O.A.; Bezneva, O.V.; Chalykh, A.E.; Shcherbina, A.A.; Iordansky, A.L.; Olkhov, A.A.; Schetinin, M.P.; et al. Recycling of Packaging and Biodegradable Polymeric Materials: Monograph; Prospekt: Petersburg, Russia, 2021; pp. 120–190. [Google Scholar]
- Mazhitova, A.K.; Aminova, G.K.; Zaripov, I.I.; Vikhareva, I.N. Biodegradable Polymeric Materials and Modifying Additives: State of the art. Part II. Nanotechnol. Constr. 2021, 13, 32–38. [Google Scholar] [CrossRef]
- Litvyak, V.V. Prospects for the Production of Modern Packaging Materials Using Biodegradable Polymer Compositions. J. Belarusian State Univ. Ecol. 2019, 2, 84–94. [Google Scholar]
- Choi, D.; Chipman, D.; Bents, S.; Brown, R. A techno-economic analysis of polyhydroxyalkanoates and hydrogen production from syngas fermentation of gasified biomass. Appl. Biochem. Biotechnol. 2010, 160, 1032–1046. [Google Scholar] [CrossRef]
- Maness, P.C.; Weaver, P.F. Production of poly-3-hydroxyalkanoates from CO and H2 by a novel photosynthetic bacterium. Appl. Biochem. Biotechnol. 1994, 45, 395–406. [Google Scholar] [CrossRef]
- Braun, R.; Drosg, B.; Bochmann, G.; Weiss, S.; Kirchmayr, R. Recent developments in bio-energy recovery through fermentation. In Microbes at Work, from Waste to Resources; Insam, H., Franke-Whittle, I., Goberna, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 35–58. [Google Scholar]
- Gumel, A.M.; Annuar, M.S.M.; Heidelberg, T. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida BET001 isolated from palm oil mill effluent. PLoS ONE 2012, 7, e45214. [Google Scholar] [CrossRef]
- Md Din, M.F.; Ponraj, M.; van Loosdrecht, M.C.M.; Ujang, Z.; Chelliapan, S.; Zambare, V. The utilization of palm oil mill effluent for polyhydroxyalkanoate production and nutrient removal using statistical design. Int. J. Environ. Sci. Technol. 2013, 11, 671–684. [Google Scholar] [CrossRef]
- Adetunji, A.I.; Erasmus, M. Green Synthesis of Bioplastics from Microalgae: A State-of-the-Art Review. Polymers 2024, 16, 1322. [Google Scholar] [CrossRef]
- Kabasci, S. Bio-Based Plastics: Materials and Applications; John Wiley & Sons Inc.: Chichester, UK, 2014. [Google Scholar]
- Marset, D.; Dolza, C.; Boronat, T.; Montanes, N.; Balart, R.; Sanchez-Nacher, L.; Quiles-Carrillo, L. Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes. Polymers 2020, 12, 1503. [Google Scholar] [CrossRef]
- Harlan, G.; Kmiec, C. Ethylene-carbon monoxide copolymers. In Degradable Polymers; Springer: Dordrecht, The Netherlands, 1995; pp. 153–168. [Google Scholar] [CrossRef]
- Getino, L.; Martín, J.L.; Chamizo-Ampudia, A. A Review of Polyhydroxyalkanoates: Characterization, Production, and Application from Waste. Microorganisms 2024, 12, 2028. [Google Scholar] [CrossRef]
- Castilho, L.R.; Mitchell, D.A.; Freire, D.M.G. Production of Polyhydroxyalkanoates (PHAs) from Waste Materials and Byproducts by Submerged and Solid-State Fermentation. Bioresour. Technol. 2009, 100, 5996–6009. [Google Scholar] [CrossRef]
- Sudesh, K.; Abe, H. Practical Guide to Microbial Polyhydroxyalkanoates; Smithers Rapra Technology: Shrewsbury, UK, 2010; p. 160. [Google Scholar]
- Main, P.; Petersmann, S.; Wild, N.; Feuchter, M.; Duretek, I.; Edeleva, M.; Ragaert, P.; Cardon, L.; Lucyshyn, T. Impact of Multiple Reprocessing on Properties of Polyhydroxybutyrate and Polypropylene. Polymers 2023, 15, 4126. [Google Scholar] [CrossRef] [PubMed]
- Dintcheva, N.T.; Infurna, G.; Baiamonte, M.; D’Anna, F. Natural Compounds as Sustainable Additives for Biopolymers. Polymers 2020, 12, 732. [Google Scholar] [CrossRef] [PubMed]
- Verbeek, C.J.R.; van den Berg, L.E. Extrusion Processing and Properties of Protein-Based Thermoplastics. Macromol. Mater. Eng. 2009, 295, 10–21. [Google Scholar] [CrossRef]
- Cinelli, P.; Seggiani, M.; Mallegni, N.; Gigante, V.; Lazzeri, A. Processability and Degradability of PHA-Based Composites in Terrestrial Environments. Int. J. Mol. Sci. 2019, 20, 284. [Google Scholar] [CrossRef]
- Ramesh, B.N.G.; Anitha, N.; Rani, H.K.R. Recent Trends in Biodegradable Products from Biopolymers. Adv. Biotechnol. 2010, 9, 30–34. [Google Scholar]
- Babu, R.P.; O’Connor, K.; Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013, 2, 8. [Google Scholar] [CrossRef]
- Shen, L.; Haufe, J.; Patel, M.K. Product overview and market projection of emerging bio-based plastics PRO-BIP 2009. In Report for the European Polysaccharide Network of Excellence (EPNOE) and European Bioplastics; Utrecht University: Utrecht, The Netherlands, 2009. [Google Scholar]
- Niaounakis, M. Recycling of Biopolymers–The Patent Perspective. Eur. Polym. J. 2019, 114, 464–475. [Google Scholar] [CrossRef]
- Jha, S.; Akula, B.; Enyioma, H.; Novak, M.; Amin, V.; Liang, H. Biodegradable Biobased Polymers: A Review of the State of the Art, Challenges, and Future Directions. Polymers 2024, 16, 2262. [Google Scholar] [CrossRef]
- Righetti, G.I.C.; Faedi, F.; Famulari, A. Embracing Sustainability: The World of Bio-Based Polymers in a Mini Review. Polymers 2024, 16, 950. [Google Scholar] [CrossRef]
- Latour-Paczka, K.; Luciński, R. Artificial Biopolymers Derived from Transgenic Plants: Applications and Properties—A Review. Int. J. Mol. Sci. 2024, 25, 13628. [Google Scholar] [CrossRef]
- Gunatillake, T.; Adhikari, R. Biodegradable Synthetic Polymers for Tissue Engineering. Eur. Cells Mater. 2003, 5, 1–16. [Google Scholar] [CrossRef]
- Mecking, S. Nature or Petrochemistry?–Biologically Degradable Polymers. Angew. Chem. Int. Ed. 2004, 43, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Weerasinghe, M.A.S.N.; McBeth, P.A.; Mancini, M.C.; Raji, I.O.; Needham, P.M.; Yehl, K.; Oestreicher, Z.; Konkolewicz, D. Controlling Photodegradation in Vinyl Ketone Polymers. Chem. Eng. J. 2024, 483, 149307. [Google Scholar] [CrossRef]
- Morgen, T.O.; Baur, M.; Göttker-Schnetmann, I.; Mecking, S. Photodegradable branched polyethylenes from carbon monoxide copolymerization under benign conditions. Nat. Commun. 2020, 11, 17542. [Google Scholar] [CrossRef] [PubMed]
- Laycock, B.; Nikolić, M.; Colwell, J.M.; Gauthier, E.; Halley, P.; Bottle, S.; George, G. Lifetime prediction of biodegradable polymers. Prog. Polym. Sci. 2017, 71, 144–189. [Google Scholar] [CrossRef]
- Norrish, R.G.W.; Bamford, C.H. Photo-decomposition of aldehydes and ketones. Nature 1937, 140, 195–196. [Google Scholar] [CrossRef]
- Loong-Tak, L. Biodegradable Packaging for Food Products. Milk Process. 2011, 6, 61–63. [Google Scholar]
- Rahman, M.H.; Bhoi, P.R. An Overview of Non-Biodegradable Bioplastics. J. Clean. Prod. 2021, 294, 126218. [Google Scholar] [CrossRef]
- Ojeda, T.F.; Dalmolin, E.; Forte, M.M.; Jacques, R.J.; Bento, F.M.; Camargo, F.A. Abiotic and biotic degradation of oxo-biodegradable polyethylene’s. Polym. Degrad. Stab. 2009, 94, 965–970. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Al-Hazza’a, A.; Karam, H.J.; Al-Wadi, M.H.; Al-Dhafeeri, A.T.; Al-Rowaih, A.A. Insights into the evaluation of the abiotic and biotic degradation rate of commercial pro-oxidant filled polyethylene thin films. J. Environ. Manag. 2019, 250, 109475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Wang, X.L.; Wang, Y.Z.; Yang, K.K.; Li, J. A novel biodegradable polyester from chain-extension of poly(p-dioxanone) with poly(butylene succinate). Polym. Degrad. Stab. 2005, 88, 294–299. [Google Scholar] [CrossRef]
- Ali, S.; Isha; Chang, Y.-C. Ecotoxicological Impact of Bioplastics Biodegradation: A Comprehensive Review. Processes 2023, 11, 3445. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, Z.; Xiang, S.; Yan, H.; Tian, H. Degradation of Polymer Materials in the Environment and Its Impact on the Health of Experimental Animals: A Review. Polymers 2024, 16, 2807. [Google Scholar] [CrossRef]
- Cai, Z.; Li, M.; Zhu, Z.; Wang, X.; Huang, Y.; Li, T.; Gong, H.; Yan, M. Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms 2023, 11, 1661. [Google Scholar] [CrossRef]
- Rabek, J.F. Photosensitized Degradation of Polymers; American Chemical Society (ACS): Washington, DC, USA, 1976; Volume 18, pp. 255–271. [Google Scholar] [CrossRef]
- Samir, A.; Ashour, F.H.; Hakim, A.A.A.; Bassyouni, M. Recent Advances in Biodegradable Polymers for Sustainable Applications. Npj Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Legonkova, O. Once Again About the Biodegradation of Polymeric Materials. Packag. Contain. 2006, 2, 57–58. [Google Scholar]
- Karpunin, I.I.; Kuzmich, V.V.; Balabanova, T.F. Classification of biodegradable polymers. Sci. Tech. 2015, 5, 53–59. [Google Scholar]
- Zeng, S.; Duan, P.; Shen, M.; Xue, Y. Preparation and degradation mechanisms of biodegradable polymer: A review. IOP Conf. Ser. Mater. Sci. Eng. 2016, 137, 012003. [Google Scholar] [CrossRef]
- Bangar, S.P.; Purewal, S.S.; Trif, M.; Maqsood, S.; Kumar, M.; Manjunatha, V.; Rusu, A.V. Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach. Foods 2021, 10, 2181. [Google Scholar] [CrossRef]
- Bian, Y.; Hu, T.; Lv, Z.; Xu, Y.; Wang, Y.; Wang, H.; Zhu, W.; Feng, B.; Liang, R.; Tan, C.; et al. Bone Tissue Engineering for Treating Osteonecrosis of the Femoral Head. Exploration 2023, 3, 20210105. [Google Scholar] [CrossRef]
- Rasheed, F. Production of Sustainable Bioplastic Materials from Wheat Gluten Proteins; The Swedish University of Agricultural Sciences: Uppsala, Sweden, 2011; No. 4. [Google Scholar]
- Jiménez-Rosado, M.; Zarate-Ramírez, L.S.; Romero, A.; Bengoechea, C.; Partal, P.; Guerrero, A. Bioplastics Based on Wheat Gluten Processed by Extrusion. J. Clean Prod. 2019, 239, 117994. [Google Scholar] [CrossRef]
- Andonegi, M.; Irastorza, A.; Izeta, A.; Cabezudo, S.; de la Caba, K.; Guerrero, P. A Green Approach towards Native Collagen Scaffolds: Environmental and Physicochemical Assessment. Polymers 2020, 12, 1597. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Shahidi, F.; Arachchi, J.K.V.; Jeon, Y.J. Food Applications of Chitin and Chitosans. Trends Food Sci. Technol. 1999, 10, 37–51. [Google Scholar] [CrossRef]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Tasekeev, M.S.; Eremeeva, L.M. Production of Biopolymers as a Solution to Ecological and Agricultural Problems: Analytical Review; NC NTI: Almaty, Kazakhstan, 2009; p. 7. [Google Scholar]
- Alharbi, R.A.; Alminderej, F.M.; Al-Harby, N.F.; Elmehbad, N.Y.; Mohamed, N.A. Preparation and Characterization of a New Bis-Uracil Chitosan-Based Hydrogel as Efficient Adsorbent for Removal of Anionic Congo Red Dye. Polymers 2023, 15, 1529. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.I.; Valencia-Llano, C.H.; Zapata, M.E.V.; Restrepo, Y.J.; Hernandez, J.H.M.; Navia-Porras, D.P.; Valencia, Y.; Valencia, C.; Grande-Tovar, C.D. Chitosan/Polyvinyl Alcohol/Tea Tree Essential Oil Composite Films for Biomedical Applications. Polymers 2021, 13, 3753. [Google Scholar] [CrossRef]
- Yan, D.; Li, Y.; Liu, Y.; Li, N.; Zhang, X.; Yan, C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules 2021, 26, 7136. [Google Scholar] [CrossRef]
- Kryuk, T.V.; Mikhaltchuk, V.M.; Petrenko, L.V. Prospective Oxidation Inhibitors for Polyethylene Glycol in Aqueous Solutions. Khim.-Farm. Zh. 2002, 36, 31–34. [Google Scholar]
- Pribil, M.M. Highly Efficient Lactate Biosensors Based on Immobilized Lactate Oxidase Engineering. Ph.D. Thesis, Moscow State University, Moscow, Russia, 2015; 163p. [Google Scholar]
- Pan, Y.; Zhang, Y.; Zhang, Y.; Wang, K.; Zhao, Y.; Li, J. Preparation and Properties of Microcrystalline Cellulose/Fish Gelatin Composite Film. Materials 2020, 13, 4370. [Google Scholar] [CrossRef] [PubMed]
- Aung, H.T. Production of Composite Materials Based on Rice Husk Derivatives. Ph.D. Thesis, Moscow State University, Moscow, Russia, 2020. [Google Scholar]
- Kirsh, I.A. Development of Biodegradable Polymer Compositions Based on Agro-Industrial Waste. Int. J. Adv. Biotechnol. Res. 2019, 2, 15–23. [Google Scholar]
- Maharana, T.; Mohanty, B.; Negi, Y.S. Melt-solid polycondensation of lactic acid and its biodegradability. Progr. Polym. Sci. 2009, 34, 99–124.42. [Google Scholar] [CrossRef]
- Garlotta, D. A Literature Review of Poly(Lactic Acid). J. Polym. Environ. 2001, 9, 63–84. [Google Scholar] [CrossRef]
- Kamluk, A.N.; Likhamanau, A.O. Experimental Determination of the Rational Geometrical Parameters of the Sprinkler Frame Arms and Deflector on the Expansion Rate and Stability of Foam. Proc. Natl. Acad. Sci. USA Belarus Phys. Tech. Ser. 2019, 64, 60–68. [Google Scholar] [CrossRef]
- Ayyoob, M.; Lee, S.; Kim, Y.J. Well-Defined High Molecular Weight Polyglycolide-b-Poly(L-lactide)-b-Polyglycolide Triblock Copolymers: Synthesis, Characterization and Microstructural Analysis. J. Polym. Res. 2020, 27, 109. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, X.; Ding, Y.; Zhang, L.; Yang, C.; Zhang, J.; Chen, J.; Yang, Y. Preparation and Drug Release Behaviors of Nimodipine-Loaded Poly(caprolactone)-Poly(ethylene oxide)-Polylactide Amphiphilic Copolymer Nanoparticles. Biomaterials 2003, 24, 2395–2404. [Google Scholar] [CrossRef]
- Bourges, J.L.; Gautier, S.E.; Delie, F.; Bejjani, R.A.; Jeanny, J.C.; Gurny, R.; BenEzra, D.; Behar-Cohen, F.F. Ocular Drug Delivery Targeting the Retina and Retinal Pigment Epithelium Using Polylactide Nanoparticles. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3562–3569. [Google Scholar] [CrossRef]
- Singh, M.; Shirley, B.; Bajwa, K.; Samara, E.; Hora, M.; O’Hagan, D. Controlled Release of Recombinant Insulin-like Growth Factor from a Novel Formulation of Polylactide-Co-Glycolide Microparticles. J. Control. Release 2001, 70, 21–28. [Google Scholar] [CrossRef]
- Romero-Cano, M.S.; Vincent, B. Controlled Release of 4-Nitroanisole from Poly(lactic acid) Nanoparticles. J. Control. Release 2002, 82, 127–135. [Google Scholar] [CrossRef]
- Ouchi, T.; Saito, T.; Kontani, T.; Ohya, Y. Encapsulation and/or Release Behavior of Bovine Serum Albumin within and from Polylactide-Grafted Dextran Microspheres. Macromol. Biosci. 2004, 4, 458–463. [Google Scholar] [CrossRef]
- Olivier, J.C. Drug Transport to the Brain with Targeted Nanoparticles. NeuroRx 2005, 2, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Gross, R.A.; Kalra, B. Biodegradable Polymers for the Environment. Science 2002, 297, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Danner, H.; Braun, R. Biotechnology for the Production of Commodity Chemicals from Biomass. Chem. Soc. Rev. 1999, 28, 395–405. [Google Scholar] [CrossRef]
- Thomas, C.M. Stereocontrolled Ring-Opening Polymerization of Lactide: Synthesis of Stereoregular Polyesters Using Chiral Catalysts. Chem. Soc. Rev. 2010, 39, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Letcher, T.M. Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Narayanan, N.; Roychoudhury, P.K.; Srivastava, A. L(+) Lactic Acid Fermentation and Its Product Polymerization. Electron. J. Biotechnol. 2004, 7, 167–179. [Google Scholar] [CrossRef]
- Avérous, L. Chapter 21—Polylactic Acid: Synthesis, Properties and Applications. In Monomers, Polymers and Composites from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2008; pp. 433–450. [Google Scholar] [CrossRef]
- Tsuji, H.; Ikada, Y. Properties and morphologies of poly(L-lactide): 1. Annealing condition effects on properties and morphologies of poly(L-lactide). Biomaterials 2000, 21, 343–350. [Google Scholar] [CrossRef]
- Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J.E. Polymer Biodegradation: Mechanisms and Estimation Techniques—A Review. Chemosphere 2008, 73, 429–442. [Google Scholar] [CrossRef]
- Savenkova, L.; Gercberga, Z.; Nikolaeva, V.; Dzene, A.; Bibers, I.; Kalmin, M. Mechanical properties and biodegradation characteristics of poly-(hydroxy butyrate)-based films. Process Biochem. 2000, 35, 573–579. [Google Scholar] [CrossRef]
- Bagde, P.; Nadanathangam, V. Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose. Carbohydr. Polym. 2019, 222, 115021. [Google Scholar] [CrossRef]
- Lamberti, F.M.; Román-Ramírez, L.A.; Wood, J. Recycling of Bioplastics: Routes and Benefits. J. Polym. Environ. 2020, 28, 2551–2571. [Google Scholar] [CrossRef]
- Singhvi, M.S.; Zinjarde, S.S.; Gokhale, D.V. Polylactic Acid: Synthesis and Biomedical Applications. J. Appl. Microbiol. 2019, 127, 1612–1626. [Google Scholar] [CrossRef] [PubMed]
- McLain, S.; Drysdale, N. Process for Preparing Polylactide. U.S. Patent 5,028,667, 2 July 1991. [Google Scholar]
- McLain, S.; Ford, T.; Drysdale, N. Synthesis of Polylactide Using Yttrium Alkoxide Catalysts. Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 1992, 33, 463–464. [Google Scholar]
- Momeni, S.; Craplewe, K.; Safder, M.; Luz, S.; Sauvageau, D.; Elias, A. Accelerating the Biodegradation of Poly(lactic acid) through the Inclusion of Plant Fibers: A Review of Recent Advances. ACS Sustain. Chem. Eng. 2023, 11, 12345–12356. [Google Scholar] [CrossRef]
- Jamshidi, K.; Hyon, S.H.; Ikada, Y. Thermal Characterization of Polylactides. Polymer 1988, 29, 2229–2234. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, H.; Park, C. Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. Materials 2022, 15, 4312. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Int. J. Biol. Macromol. 2016, 83, 374–386. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Ju, Z.; Tam, P.Y.; Hua, T.; Younas, M.W.; Kamrul, H.; Hu, H. Poly(lactic acid) fibers, yarns and fabrics: Manufacturing, properties and applications. Text. Res. J. 2021, 91, 1641–1669. [Google Scholar] [CrossRef]
- Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers 2021, 13, 1822. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(Lactic Acid)—Mass Production, Processing, Industrial Applications, and End of Life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef] [PubMed]
- Ranakoti, L.; Gangil, B.; Bhandari, P.; Singh, T.; Sharma, S.; Singh, J.; Singh, S. Promising Role of Polylactic Acid as an Ingenious Biomaterial in Scaffolds, Drug Delivery, Tissue Engineering, and Medical Implants: Research Developments, and Prospective Applications. Molecules 2023, 28, 485. [Google Scholar] [CrossRef] [PubMed]
- Lasprilla, A.J.R.; Martinez, G.A.R.; Lunelli, B.H.; Jardini, A.L.; Filho, R.M. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012, 30, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Fuoco, T.; Mathisen, T.; Finne-Wistrand, A. Poly(L-Lactide) and Poly(L-Lactide-Co-Trimethylene Carbonate) Melt-Spun Fibers: Structure-Processing-Properties Relationship. Biomacromolecules 2019, 20, 1346–1361. [Google Scholar] [CrossRef]
- Ali, A.; El-Dessouky, H. An insight on the process–property relationships of melt spun polylactic acid fibers. Text. Res. J. 2019, 89, 4959–4966. [Google Scholar] [CrossRef]
- Capuana, E.; Lopresti, F.; Ceraulo, M.; La Carrubba, V. Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications. Polymers 2022, 14, 1153. [Google Scholar] [CrossRef]
- Penning, J.P.; Dijkstra, H.; Pennings, A.J. Preparation and Properties of Absorbable Fibres from L-Lactide Copolymers. Polymer 1993, 34, 942–951. [Google Scholar] [CrossRef]
- Dorigato, A.; Sebastiani, M.; Pegoretti, A.; Fambri, L. Effect of silica nanoparticles on the mechanical performances of poly(lactic acid). J. Polym. Environ. 2012, 20, 713–725. [Google Scholar] [CrossRef]
- Tait, M.; Pegoretti, A.; Dorigato, A.; Kalaitzidou, K. The effect of filler type and content and the manufacturing process on the performance of multifunctional carbon/poly-lactide composites. Carbon 2011, 49, 4280–4290. [Google Scholar] [CrossRef]
- Fambri, L.; Dorigato, A.; Pegoretti, A. Role of surface-treated silica nanoparticles on the thermo-mechanical behavior of poly(lactide). Appl. Sci. 2020, 10, 6731. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Otari, S.V.; Jeon, J.M.; Gurav, R.; Choi, Y.K.; Bhatia, R.K.; Pugazhendhi, A.; Kumar, V.; Banu, J.R.; Yoon, J.J.; et al. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. Bioresour. Technol. 2021, 326, 124733. [Google Scholar] [CrossRef]
- Colombo, B.; Sciarria, T.P.; Reis, M.; Scaglia, B.; Adani, F. Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Bioresour. Technol. 2016, 218, 692–699. [Google Scholar] [CrossRef]
- Pulingam, T.; Appaturi, J.N.; Parumasivam, T.; Ahmad, A.; Sudesh, K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers 2022, 14, 2141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; You, S.; Tian, Y.; Li, J. Comparison of plastic film, biodegradable paper and bio-based film mulching for summer tomato production: Soil properties, plant growth, fruit yield and fruit quality. Sci. Hortic. 2019, 249, 38–48. [Google Scholar] [CrossRef]
- Mukherjee, A.; Knoch, S.; Tavares, J.R. Use of bio-based polymers in agricultural exclusion nets: A perspective. Biosyst. Eng. 2019, 180, 121–145. [Google Scholar] [CrossRef]
- Briassoulis, D.; Giannoulis, A. Evaluation of the functionality of bio-based plastic mulching films. Polym. Test. 2018, 67, 99–109. [Google Scholar] [CrossRef]
- Bucci, D.Z.; Tavares, L.B.B. PHB packaging for the storage of food products. Polym. Test. 2005, 24, 564–571. [Google Scholar] [CrossRef]
- Verlinden, R.A.J.; Hill, D.J.; Kenward, M.A.; Williams, C.D.; Radecka, I. Bacterial synthesis of biodegradable polyhydroxyalkanoates. J. Appl. Microbiol. 2007, 102, 1437–1449. [Google Scholar] [CrossRef]
- Zhou, W.; Bergsma, S.; Colpa, D.I.; Euverink, G.J.W.; Krooneman, J. Polyhydroxyalkanoates (PHAs) Synthesis and Degradation by Microbes and Applications towards a Circular Economy. J. Environ. Manage. 2023, 341, 118033. [Google Scholar] [CrossRef]
- Girotto, F.; Alibardi, L.; Cossu, R. Food waste generation and industrial uses: A review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef]
- Dietrich, K.; Dumont, M.-J.; Del Rio, L.F.; Orsat, V. Producing PHAs in the bioeconomy—Towards a sustainable bioplastic. Sustain. Prod. Consum. 2017, 9, 58–70. [Google Scholar] [CrossRef]
- Jiang, Y.; Marang, L.; Tamis, J.; van Loosdrecht, M.C.; Dijkman, H.; Kleerebezem, R. Waste to resource: Converting paper mill wastewater to bioplastic. Water Res. 2012, 46, 5517–5530. [Google Scholar] [CrossRef]
- Javaid, H.; Nawaz, A.; Riaz, N.; Mukhtar, H.; Ul-Haq, I.; Shah, K.A.; Khan, H.; Naqvi, S.M.; Shakoor, S.; Rasool, A.; et al. Biosynthesis of polyhydroxyalkanoates (PHAs) by the valorization of biomass and synthetic waste. Molecules 2020, 25, 5539. [Google Scholar] [CrossRef] [PubMed]
- Kenny, S.T.; Runic, J.N.; Kaminsky, W.; Woods, T.; Babu, R.P.; Keely, C.M.; Blau, W.; O’Connor, K.E. Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environ. Sci. Technol. 2008, 42, 7696–7701. [Google Scholar] [CrossRef] [PubMed]
- Devi, E.S.; Vijayendra, S.V.N.; Shamala, T.R. Exploration of rice bran, an agro-industry residue, for the production of intra- and extra-cellular polymers by Sinorhizobium meliloti MTCC 100. Biocatal. Agric. Biotechnol. 2012, 1, 80–84. [Google Scholar] [CrossRef]
- Pérez-Rivero, C.; López-Gómez, J.P.; Roy, I. A Sustainable Approach for the Downstream Processing of Bacterial Polyhydroxyalkanoates: State-of-the-art and latest developments. Biochem. Eng. J. 2019, 150, 107283. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Patanè, G.T.; Corrado, I.; Giosafatto, C.V.L.; Ginestra, G.; Nostro, A.; Foti, A.; Gucciardi, P.G.; Mandalari, G.; Barreca, D.; et al. Functionalization of Polyhydroxyalkanoates (PHA)-Based Bioplastic with Phloretin for Active Food Packaging: Characterization of Its Mechanical, Antioxidant, and Antimicrobial Activities. Int. J. Mol. Sci. 2023, 24, 11628. [Google Scholar] [CrossRef]
- Zinn, M.; Hany, R. Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification. Adv. Eng. Mater. 2005, 7, 408–411. [Google Scholar] [CrossRef]
- Kunze, C.; Bernd, H.E.; Androsch, R.; Nischan, C.; Freier, T.; Kramer, S.; Kramp, B.; Schmitz, K.P. In vitro and in vivo studies on blends of isotactic and atactic poly(3-hydroxybutyrate) for development of a dura substitute material. Biomaterials 2006, 27, 192–201. [Google Scholar] [CrossRef]
- Lee, M.S.; Park, W.H. Compatibility and thermal properties of poly(3-hydroxybutyrate)/poly(glycidyl methacrylate) blends. J. Polym. Sci. A Polym. Chem. 2002, 40, 351–358. [Google Scholar] [CrossRef]
- Gao, Y.; Kong, L.; Zhang, L.; Gong, Y.D.; Chen, G.Q.; Zhao, N.M.; Zhang, X.F. Improvement of mechanical properties of poly(DL-lactide) films by blending with poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Eur. Polym. J. 2006, 42, 764–775. [Google Scholar] [CrossRef]
- Wang, Y.W.; Wu, Q.; Chen, G.Q. Gelatin blending improves the performance of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films for biomedical application. Biomacromolecules 2005, 6, 566–571. [Google Scholar] [CrossRef]
- Reichert, C.L.; Bugnicourt, E.; Coltelli, M.-B.; Cinelli, P.; Lazzeri, A.; Canesi, I.; Braca, F.; Martínez, B.M.; Alonso, R.; Agostinis, L.; et al. Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers 2020, 12, 1558. [Google Scholar] [CrossRef] [PubMed]
- Tatai, L.; Moore, T.G.; Adhikari, R.; Malherbe, F.; Jayasekara, R.; Griffiths, I.; Gunatillake, A. Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation. Biomaterials 2007, 28, 5407–5417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Beckman, E.J.; Piesco, N.P.; Agrawal, S. A new peptide-based urethane polymer: Synthesis, biodegradation and potential to support cell growth in-vitro. Biomaterials 2000, 21, 1247–1258. [Google Scholar] [CrossRef]
- Chen, G.-Q. A microbial polyhydroxyalkanoates (PHA)-based bio-and materials industry. Chem. Soc. Rev. 2009, 38, 2434–2446. [Google Scholar] [CrossRef] [PubMed]
- Lule, Z.C.; Shiferaw, E.W.; Kim, J. Thermomechanical Properties of SiC-Filled Polybutylene Succinate Composite Fabricated via Melt Extrusion. Polymers 2020, 12, 418. [Google Scholar] [CrossRef]
- Lule, Z.C.; Kim, J. Thermally Conductive Polybutylene Succinate Composite Filled with Si-O-N-C Functionalized Silicon Carbide Fabricated via Low-Speed Melt Extrusion. Eur. Polym. J. 2020, 134, 109849. [Google Scholar] [CrossRef]
- Lule, Z.C.; Kim, J. Compatibilization Effect of Silanized SiC Particles on Polybutylene Adipate Terephthalate/Polycarbonate Blends. Mater. Chem. Phys. 2021, 258, 123879. [Google Scholar] [CrossRef]
- Gontard, N.; Sonesson, U.; Birkved, M. A Research Challenge Vision Regarding Management of Agricultural Waste in a Circular Bio-Based Economy. Crit. Rev. Environ. Sci. Technol. 2018, 48, 614–654. [Google Scholar] [CrossRef]
- Chen, T.T.; Cai, T.J.; Jin, Q.; Ji, J. Design and Fabrication of Functional Polycaprolactone. E-Polymers 2015, 15, 3–13. [Google Scholar] [CrossRef]
- Hajiali, F.; Tajbakhsh, S.; Shojaei, A. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. Polym. Rev. 2018, 58, 164–207. [Google Scholar] [CrossRef]
- Chan, D.S.; Fnais, N.; Ibrahim, I.; Daniel, S.; Manoukian, J. Exploring Polycaprolactone in Tracheal Surgery: A Scoping Review of In-Vivo Studies. Int. J. Pediatr. Otorhinolaryngol. 2019, 123, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Ghavimi, A.A.A.; Ebrahimzadeh, M.H.; Solati-Hashjin, M.; Osman, N.A.A. Polycaprolactone/starch composite: Fabrication, structure, properties, and applications. J. Biomed. Mater. Res. A 2015, 103, 2482–2498. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, A.; Mousavi, S.M.; Saljoughi, E.; Kiani, S. Biodegradable Membrane Based on Polycaprolactone/Polybutylene Succinate: Characterization and Performance Evaluation in Wastewater Treatment. J. Appl. Polym. Sci. 2021, 138, 50332. [Google Scholar] [CrossRef]
- Follain, N.; Joly, C.; Dole, P.; Bliard, C. Properties of Starch-Based Blends. Part 2: Influence of Polyvinyl Alcohol Addition and Photocrosslinking on Mechanical Properties. Carbohydr. Polym. 2005, 60, 185–192. [Google Scholar] [CrossRef]
- Zhai, M.L.; Yoshii, F.; Kume, T.; Hashim, K. Synthesis of PVA/Starch Grafted Hydrogels by Irradiation. Carbohydr. Polym. 2002, 50, 295–303. [Google Scholar] [CrossRef]
- Xiao, C.M.; Yang, M.L. Controlled Preparation of Physical Cross-Linked Starch-g-PVA Hydrogel. Carbohydr. Polym. 2006, 64, 37–40. [Google Scholar] [CrossRef]
- Aslam, M.; Kalyar, M.A.; Raza, Z.A. Polyvinyl Alcohol: A Review of Research Status and Use of Polyvinyl Alcohol-Based Nanocomposites. Polym. Eng. Sci. 2018, 58, 2119–2132. [Google Scholar] [CrossRef]
- Baker, M.I.; Walsh, S.P.; Schwartz, Z.; Boyan, B.D. A Review of Polyvinyl Alcohol and Its Uses in Cartilage and Orthopedic Applications. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100B, 1451–1457. [Google Scholar] [CrossRef]
- Sapalidis, A.A. Porous Polyvinyl Alcohol Membranes: Preparation Methods and Applications. Symmetry 2020, 12, 960. [Google Scholar] [CrossRef]
- Pavlenok, A.V.; Davydova, O.V.; Drobychevskaya, N.E.; Poddenezhny, E.N.; Boyko, A.A.; Shapovalov, V.M. Development and Properties of Biodegradable Composite Materials Based on Polyvinyl Alcohol and Starch. Vestn. GGTU im. P.O. Sukhoi 2018, 1, 1–9. [Google Scholar]
- Watanabe, Y.; Hameda, N.; Morita, M.; Tsujisaka, Y. Purification and Properties of a Polyvinyl Alcohol-Degrading Enzyme Produced by a Strain of Pseudomonas. Arch. Biochem. Biophys. 1976, 174, 575–581. [Google Scholar] [CrossRef]
- Haugwitz, M.; Pudman, P.; Müller, S. Synthesis of Modified Poly(vinyl Alcohol)s and Their Degradation Using an Enzymatic Cascade. Angew. Chem. Int. Ed. 2023, 62, e202216962. [Google Scholar] [CrossRef]
- Sanaei Ataabadi, H.; Mirzaei, E.; Sedaghatdoost, A. Effect of Polypropylene and Polyvinyl Alcohol Fibers on Characteristics and Microstructure of Polymer Composite. Polym. Compos. 2021, 42, 1782–1794. [Google Scholar] [CrossRef]
- Shen, Y.; Li, Q.; Xu, S.; Liu, X. Electromagnetic Wave Absorption of Multifunctional Cementitious Composites Incorporating Polyvinyl Alcohol (PVA) Fibers and Fly Ash: Effects of Microstructure and Hydration. Cement Concr. Res. 2021, 143, 106389. [Google Scholar] [CrossRef]
- Lule, Z.C.; Kim, J. Properties of Economical and Eco-Friendly Polybutylene Adipate Terephthalate Composites Loaded with Surface-Treated Coffee Husk. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106154. [Google Scholar] [CrossRef]
- Kim, K.S.; Yoo, J.; Shim, J.S.; Ryu, Y.I.; Choi, S.; Lee, J.Y.; Lee, H.M.; Koo, J.; Kang, S.K. Biodegradable Molybdenum/Polybutylene Adipate Terephthalate Conductive Paste for Flexible and Stretchable Transient Electronics. Adv. Mater. Technol. 2021, 6, 2001297. [Google Scholar] [CrossRef]
- Terzopoulou, Z.; Papadopoulos, L.; Zamboulis, A.; Papageorgiou, D.G.; Papageorgiou, G.Z.; Bikiaris, D.N. Tuning the Properties of Furandicarboxylic Acid-Based Polyesters with Copolymerization: A Review. Polymers 2020, 12, 1209. [Google Scholar] [CrossRef]
- Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. [Google Scholar] [CrossRef]
- Pina, S.; Ferreira, J.M.F. Bioresorbable plates and screws for clinical applications: A review. J. Healthc. Eng. 2012, 3, 243–260. [Google Scholar] [CrossRef]
- Middleton, J.C.; Tipton, A.J. Synthetic Biodegradable Polymers as Orthopedic Devices. Biomaterials 2000, 21, 2335–2346. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Jing, Z.; Zhang, G. Crystallization and Properties of Poly(Lactide)/Poly(δ-Valerolactone) Alternating Supramolecular Copolymers Adjusted by Stereocomplexation. ACS Omega 2019, 4, 11145–11151. [Google Scholar] [CrossRef]
- Srithep, Y.; Pholharn, D.; Akkaprasa, T. Effect of Molecular Weight of Poly(L-Lactic Acid) on the Stereocomplex Formation between Enantiomeric Poly(Lactic Acid)s Blendings. IOP Conf. Ser. Mater. Sci. Eng. 2019, 526, 012024. [Google Scholar] [CrossRef]
- Oyama, H.T.; Tanishima, D.; Ogawa, R. Biologically Safe Poly(l-Lactic Acid) Blends with Tunable Degradation Rate: Microstructure, Degradation Mechanism, and Mechanical Properties. Biomacromolecules 2017, 18, 1281–1292. [Google Scholar] [CrossRef]
- Chakoli, A.N. Poly(L-Lactide) Bionanocomposites. In Peptide Synthesis; Varkey, J.T., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Puricelli, C.; Gigliotti, C.L.; Stoppa, I.; Sacchetti, S.; Pantham, D.; Scomparin, A.; Rolla, R.; Pizzimenti, S.; Dianzani, U.; Boggio, E.; et al. Use of Poly Lactic-Co-Glycolic Acid Nano and Micro Particles in the Delivery of Drugs Modulating Different Phases of Inflammation. Pharmaceutics 2023, 15, 1772. [Google Scholar] [CrossRef]
- Taşkor Önel, G. Synthesis of L-Ornithine- and L-Glutamine-Linked PLGAs as Biodegradable Polymers. Polymers 2023, 15, 3998. [Google Scholar] [CrossRef]
- Li, S.; Tian, M.; Wang, J.; Du, F.; Li, L.; Xue, Z. Poly (Ethylene Oxide)-Based Block Copolymer Electrolytes Formed via Ligand-Free Iron-Mediated Atom Transfer Radical Polymerization. Polymers 2020, 12, 763. [Google Scholar] [CrossRef]
- Zhu, K.J.; Hendren, R.W.; Jensen, K.; Pitt, C.G. Synthesis, Properties and Biodegradation of Poly(1,3-Trimethylene Carbonate). Macromolecules 1991, 24, 1736–1740. [Google Scholar] [CrossRef]
- Kim, B.K.; Seo, J.W.; Jeong, H.M. Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur. Polym. J. 2003, 39, 85–91. [Google Scholar] [CrossRef]
- Olivito, F.; Jagdale, P.; Oza, G. Synthesis and Biodegradation Test of a New Polyether Polyurethane Foam Produced from PEG 400, L-Lysine Ethyl Ester Diisocyanate (L-LDI) and Bis-hydroxymethyl Furan (BHMF). Toxics 2023, 11, 698. [Google Scholar] [CrossRef]
- Wu, G.; Song, X.; Yang, Z.; Li, Y.; Zhang, H. Synthesis and Characterization of Biodegradable Polyester/Polyether WPU as the Environmental Protection Coating. J. Polym. Environ. 2022, 30, 528–540. [Google Scholar] [CrossRef]
- Han, J.; Chen, B.; Ye, L.; Zhang, A.-Y.; Zhang, J.; Feng, Z.-G. Electrospinning and biocompatibility evaluation of biodegradable polyurethanes based on L-lysine diisocyanate and L-lysine chain extender. J. Biomed. Mater. Res. Part A 2011, 96A, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Storey, R.F.; Wiggins, J.S.; Puckett, A.D. Hydrolysable poly(ester urethane) networks from L-lysine diisocyanate and D,L-lactide/ε-caprolactone homo- and copolyester triols. J. Polym. Sci. A Polym. Chem. 1994, 32, 2342–2345. [Google Scholar] [CrossRef]
- Lu, Y.; Tighzert, L.; Dole, P.; Erre, D. Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources. Polymer 2005, 46, 9863–9870. [Google Scholar] [CrossRef]
- Lu, Y.; Tighzert, L.; Berzin, F.; Rondot, S. Innovative plasticized starch films modified with waterborne polyurethane from renewable resources. Carbohydr. Polym. 2005, 61, 174–182. [Google Scholar] [CrossRef]
- Siracusa, V.; Blanco, I. Bio-polyethylene (Bio-PE), bio-polypropylene (Bio-PP) and bio-poly(ethylene terephthalate) (Bio-PET): Recent developments in biobased polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers 2020, 12, 1641. [Google Scholar] [CrossRef]
- European Bioplastics Association. Bioplastics: Facts and Figures; European Bioplastics e.V.: Berlin, Germany, 2019. [Google Scholar]
- Pinaeva, L.G.; Noskov, A.S. Biodegradable Biopolymers: Real Impact to Environment Pollution. Sci. Total Environ. 2024, 947, 174445. [Google Scholar] [CrossRef]
- Tao, J.; Song, C.; Cao, M.; Hu, D.; Liu, L.; Liu, N.; Wang, S. Thermal Properties and Degradability of Poly(Propylene Carbonate)/Poly(β-Hydroxybutyrate-Co-β-Hydroxyvalerate) (PPC/PHBV) Blends. Polym. Degrad. Stab. 2009, 94, 575–583. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.; Nakayama, A.; Aiba, S. Edible Films Made from Hydroxypropyl Starch and Gelatin and Plasticized by Polyols and Water. Carbohydr. Polym. 1998, 36, 105–119. [Google Scholar] [CrossRef]
- Wei, R.; Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microb. Biotechnol. 2017, 10, 1302–1307. [Google Scholar] [CrossRef]
- Kurowiak, J.; Mackiewicz, A.; Klekiel, T.; Będziński, R. Material Characteristic of an Innovative Stent for the treatment of Urethral Stenosis. Acta Mech. Autom. 2023, 17, 477–484. [Google Scholar] [CrossRef]
- Zhang, W.; Kanwal, F.; Rehman, M.F.U.; Wan, X. Efficacy of Biodegradable Polydioxanone and Polylactic Acid Braided Biodegrad able Biliary Stents for the Management of Benign Biliary Strictures. Turk. J. Gastroenterol. 2021, 32, 651–660. [Google Scholar] [CrossRef]
- Loskot, J.; Jezbera, D.; Zmrhalová, Z.O.; Nalezinková, M.; Alferi, D.; Lelkes, K.; Voda, P.; Andrýs, R.; Fučíková, A.M.; Hosszú, T.; et al. A Complex In Vitro Degradation Study on Polydioxanone Biliary Stents during a Clinically Relevant Period with the Focus on RamanSpectroscopy Validation. Polymers 2022, 14, 938. [Google Scholar] [CrossRef] [PubMed]
- Miah, M.R.; Dong, Y.; Wang, J.; Zhu, J. Recent Progress on Sustainable 2,5-Furandicarboxylate-Based Polyesters: Properties and Applications. ACS Sustain. Chem. Eng. 2024, 12, 2927–2961. [Google Scholar] [CrossRef]
- Avérous, L. Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. J. Macromol. Sci. Polym. Rev. 2004, C4, 231–274. [Google Scholar] [CrossRef]
- Takahashi, M. Biodegradable, Dust-Capturing Hair Caps. JP Patent 2002345541, 29 May 2001. [Google Scholar]
- Tsai, F.-J.D.; Balogh, B.A. Breathable, Biodegradable/Compostable Laminate for Disposable Personal Care Product. WO Patent 2002053376, 25 July 2000. [Google Scholar]
- Kawanaka, S.; Ueda, A.; Miyake, M. Biodegradable Sanitary Products Containing Galactomannan-Based Water Absorbents. JP Patent 2002035037, 25 July 2000. [Google Scholar]
- Mueller, D.H. Biodegradable nonwovens–natural and polymer fibers, technology, properties. In Proceedings of the International Nonwovens Technical Conference, Baltimore, MD, USA, 15–18 September 2003. [Google Scholar]
- Parikh, D.V.; Calamari, T.A. Performance of Nonwoven Cellulosic Composites for Automotive Interiors. Int. Nonwovens J. 2000, 9, 83–85. [Google Scholar] [CrossRef]
- Yachmenev, V.G.; Parikh, D.V.; Calamari, T.A., Jr. Thermal Insulation Properties of Biodegradable, Cellulosic-based Nonwoven Composites for Automotive Application. J. Ind. Text. 2002, 31, 283–296. [Google Scholar] [CrossRef]
- Takano, N.; Ryoichi Hane, R.; Nakano, Y. Biodegradable Nonwoven Fabric Filtering Material for Sink Drain. JP Patent 2005113278A, 3 October 2003. [Google Scholar]
- Omori, T. Biodegradable Pleated Filter Material and Filter Unit for Air Purification and Liquid Filtration. JP Patent A-2003-299924, 5 April 2002. [Google Scholar]
- Okada, M. Chemical Syntheses of Biodegradable Polymers. Prog. Polym. Sci. 2002, 27, 87–133. [Google Scholar] [CrossRef]
- Rass-Hansen, J.; Falsig, H.; Jorgensen, B.; Christensen, C.H.J. Bioethanol: Fuel or feedstock? Chem. Technol. Biotechnol. 2007, 82, 329–333. [Google Scholar] [CrossRef]
- Rogovina, S.Z.; Aleksanyan, K.V.; Prut, E.V. Biodegradable chitin and chitosan blends with synthetic polymers. Encycl. Chem. Eng. 2011, 6, 32–38. [Google Scholar]
- Drumright, R.E.; Gruber, P.R.; Henton, E.H. Polylactic Acid Technology. Adv. Mater. 2000, 12, 1841–1846. [Google Scholar] [CrossRef]
- Hiljanen-Vainio, M.; Varpomaa, P.; Seppälä, J.; Törmälä, P. Modification of Poly(L-Lactides) by Blending: Mechanical and Hydrolytic Behavior. Macromol. Chem. Phys. 1996, 197, 1503–1523. [Google Scholar] [CrossRef]
- Sarasua, J.-R.; Prud’homme, R.E.; Wisniewski, M.; Le Borgne, A.; Spassky, N. Crystallization and Melting Behavior of Polylactides. Macromolecules 1998, 31, 3895–3905. [Google Scholar] [CrossRef]
- Tsuji, H.; Ikada, Y. Crystallization from the Melt of Poly(Lactide)s with Different Optical Purities and Their Blends. Macromol. Chem. Phys. 1996, 197, 3483–3499. [Google Scholar] [CrossRef]
- Nakamura, C.E.; Whited, G.M. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 2003, 14, 454–459. [Google Scholar] [CrossRef]
- Kluge, M.; Perocheau Arnaud, S.; Robert, T. 1,3-Propanediol and its application in bio-based polyesters for resin applications. Chem. Afr. 2018, 2, 215–221. [Google Scholar] [CrossRef]
- Ma, G.-Q.; Sun, Z.-B.; Ren, J.-Y.; Zeng, Y.; Jia, D.-Z.; Li, Y.; Guan, B.; Zhong, G.-J.; Li, Z.-M. Reorganization of Hydrogen Bonding in Biobased Polyamide 5,13 under the Thermo-Mechanical Field: Hierarchical Microstructure Evolution and Achieving Excellent Mechanical Performance. Biomacromolecules 2022, 23, 3990–4003. [Google Scholar] [CrossRef]
- Iglesias, J.; Martínez-Salazar, I.; Maireles-Torres, P.; Martin Alonso, D.; Mariscal, R.; López Granados, M. Advances in Catalytic Routes for the Production of Carboxylic Acids from Biomass: A Step Forward for Sustainable Polymers. Chem. Soc. Rev. 2020, 49, 5704–5771. [Google Scholar] [CrossRef]
- Maurya, A.; Bhattacharya, A.; Khare, S.K. Enzymatic remediation of polyethylene terephthalate (PET)-based polymers for effective management of plastic wastes: An overview. Front. Bioeng. Biotechnol. 2020, 8, 602325. [Google Scholar] [CrossRef]
- Pillai, C.K.S.; Sharma, C.P. Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance. J. Biomater. Appl. 2010, 25, 291–366. [Google Scholar] [CrossRef]
- Ikada, Y.; Tsuji, H. Biodegradable Polyesters for Medical and Ecological Applications. Macromol. Rapid Commun. 2000, 21, 117–132. [Google Scholar] [CrossRef]
- Sinisaari, I. Infections and Bioabsorbable Implants in Orthopedic and Trauma Surgery—With Special Reference to the Treatment of Ankle Fractures. Ph.D. Thesis, Helsingin Yliopisto, Helsinki, Finland, 2004. [Google Scholar]
- Holland, S.J.; Tighe, B.J.; Gould, P.L. Polymers for Biodegradable Medical Devices. I. The Potential of Polyesters as Controlled Macromolecular Release Systems. J. Control. Release 1986, 4, 155–180. [Google Scholar] [CrossRef]
- Blasi, P. Poly(Lactic Acid)/Poly(Lactic-Co-Glycolic Acid)-Based Microparticles: An Overview. J. Pharm. Investig. 2019, 49, 337–346. [Google Scholar] [CrossRef]
- Langer, R. New Methods of Drug Delivery. Science 1990, 249, 1527–1533. [Google Scholar] [CrossRef]
- Wang, H.T.; Palmer, H.; Linhardt, R.J.; Flanagan, D.R.; Schmitt, E. Degradation of Poly(ester) Microspheres. Biomaterials 1990, 11, 679–685. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Fernández Blázquez, J.P.; Yin, G.-Z.; Wang, D.-Y.; Llorca, J.; Echeverry-Rendón, M. A Strategy to Tailor the Mechanical and Degradation Properties of PCL-PEG-PCL Based Copolymers for Biomedical Application. Polymers 2023, 15, 1234. [Google Scholar] [CrossRef]
- Dobrzyńska-Mizera, M.; Dodda, J.M.; Liu, X.; Knitter, M.; Oosterbeek, R.N.; Salinas, P.; Pozo, E.; Ferreira, A.M.; Sadiku, E.R. Engineering of Bioresorbable Polymers for Tissue Engineering and Drug Delivery Applications. Adv. Healthc. Mater. 2024, 13, 2301674. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Saiding, Q.; Zhou, X.; Wang, J.; Cui, W.; Chen, X. Electrospun Fiber-Based Immune Engineering in Regenerative Medicine. Smart Med. 2024, 3, 100034. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xu, S.; Wang, R.; Che, Y.; Han, C.; Feng, W.; Wang, C.; Zhao, W. Electrospun Nanofiber/Hydrogel Composite Materials and Their Tissue Engineering Applications. J. Mater. Sci. Technol. 2023, 162, 157–178. [Google Scholar] [CrossRef]
- Kurowiak, J.; Klekiel, T.; Będziński, R. Biodegradable Polymers in Biomedical Applications: A Review—Developments, Perspectives and Future Challenges. Int. J. Mol. Sci. 2023, 24, 16952. [Google Scholar] [CrossRef]
- Gomzyak, V.I.; Demina, V.A.; Razuvaeva, E.V.; Sedush, N.G.; Chvalun, S.N. Biodegradable Polymer Materials for Medical Applications: From Implants to Organs. Fine Chem. Technol. 2017, 12, 5–20. [Google Scholar] [CrossRef]
- Martins, J.A.; Lach, A.A.; Morris, H.L.; Carr, A.J.; Mouthuy, P.A. Polydioxanone implants: A systematic review on safety and performance in patients. J Biomater Appl. 2020, 34, 902–916. [Google Scholar] [CrossRef]
- Reed, A.M.; Gilding, D.K. Biodegradable Polymers for Use in Surgery—Poly(glycolic)/Poly(lactic acid) Homo- and Copolymers: 2. In Vitro Degradation. Polymer 1981, 22, 342–352. [Google Scholar]
- Boden, S.D. Bioactive Factors for Bone Tissue Engineering. Clin. Orthop. Relat. Res. 1999, 367S, S84–S94. [Google Scholar] [CrossRef]
- Khardenavis, A.A.; Kumar, M.S.; Mudliar, S.N.; Chakrabarti, T. Biotechnological Conversion of Agro-Industrial Wastewaters into Biodegradable Plastic, Poly β-Hydroxybutyrate. Bioresour. Technol. 2007, 98, 3579–3584. [Google Scholar] [CrossRef]
- Sinha Ray, S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar] [CrossRef]
- Sinha Ray, S.; Okamoto, M. New Polylactide/Layered Silicate Nanocomposites. Part 6. Macromol. Mater. Eng. 2003, 288, 936–944. [Google Scholar] [CrossRef]
- Krikorian, V.; Pochan, D.J. Poly(L-Lactic Acid)/Layered Silicate Nanocomposite: Fabrication, Characterization, and Properties. Chem. Mater. 2003, 15, 4317–4324. [Google Scholar] [CrossRef]
- Maiti, P.; Yamada, K.; Okamoto, M.; Ueda, K.; Okamoto, K. New Polylactide/Layered Silicate Nanocomposites: Role of Organoclays. Chem. Mater. 2002, 14, 4654–4661. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Sinha Ray, S.; Okamoto, M.; Ogami, A.; Yamada, K.; Ueda, K. Well-Controlled Biodegradable Nanocomposite Foams: From Microcellular to Nanocellular. Macromol. Rapid Commun. 2003, 24, 457–461. [Google Scholar] [CrossRef]
- Sarazin, P.; Roy, X.; Favis, B.D. Controlled Preparation and Properties of Porous Poly(L-Lactide) Obtained from a Co-Continuous Blend of Two Biodegradable Polymers. Biomaterials 2004, 25, 5965–5978. [Google Scholar] [CrossRef] [PubMed]
- Vert, M.; Schwarch, G.; Coudane, J. Present and Future of PLA Polymers. J. Macromol. Sci. A 1995, 32, 787–796. [Google Scholar] [CrossRef]
- Hoogsteen, W.; Postema, A.R.; Pennings, A.J.; Ten Brinke, G.; Zugenmaier, P. Crystal Structure, Conformation, and Morphology of Solution-Spun Poly(L-Lactide) Fibers. Macromolecules 1990, 23, 634–642. [Google Scholar] [CrossRef]
- Mainil-Varlet, P.; Rahm, R.; Gogolewski, S. Long-Term In Vivo Degradation and Bone Reaction to Various Polylactides. Biomaterials 1997, 18, 257–266. [Google Scholar] [CrossRef]
- Vert, M.; Li, S.M.; Spenlehauer, G.; Guerin, P. Bioresorbability and Biocompatibility of Aliphatic Polyesters. J. Mater. Sci. Mater. Med. 1992, 3, 432–446. [Google Scholar] [CrossRef]
- Duncan, R.; Kopeček, J. Soluble Synthetic Polymers as Potential Drug Carriers. Adv. Polym. Sci. 1984, 57, 51–101. [Google Scholar]
- Kopitar, D.; Marasovic, P.; Jugov, N.; Schwarz, I. Biodegradable Nonwoven Agrotextile and Films—A Review. Polymers 2022, 14, 2272. [Google Scholar] [CrossRef]
- Kiselevsky, M.V.; Sitdikova, S.M.; Tenchurin, T.K.; Khomchenko, A.Y. Contemporary Approaches and Perspectives to Creation of Tracheal Bioimplants. Russ. Biother. J. 2014, 13, 127–131. [Google Scholar]
- Rodina, A.V.; Tenchurin, T.K.; Saprykin, V.P.; Shepelev, A.D.; Mamagulashvili, V.G.; Grigor’ev, T.E.; Lukanina, K.I.; Orekhov, A.S.; Moskaleva, E.Y.; Chvalun, S.N. Migration and Proliferative Activity of Mesenchymal Stem Cells in 3D Polylactide Scaffolds Depends on Cell Seeding Technique and Collagen Modification. Bull. Exp. Biol. Med. 2016, 162, 120–126. [Google Scholar] [CrossRef]
- Xu, F.; Wang, H.; Zhang, J.; Jiang, L.; Zhang, W.; Hu, Y. A Facile Design of EGF Conjugated PLA/Gelatin Electrospun Nanofibers for Nursing Care of In Vivo Wound Healing Applications. J. Ind. Text. 2020, 51, 152808372097634. [Google Scholar] [CrossRef]
- Zheng, J.; Northrup, S.R.; Hornsby, P.J. Modification of materials formed from poly(L-lactic acid) to enable covalent binding of biopolymers: Application to high-density three-dimensional cell culture in foams with attached collagen. Vitr. Cell Dev. Biol.—Anim. 1998, 34, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Mikos, A.G.; Thorsen, A.J.; Czerwonka, L.A.; Bao, Y.; Langer, R.; Winslow, D.N.; Vacanti, J.P. Preparation and characterization of poly(L-lactic acid) foams. Polymer 1994, 35, 1068–1077. [Google Scholar] [CrossRef]
- Whang, K.; Thomas, C.H.; Healy, K.E.; Nuber, G.A. A novel method to fabricate bioabsorbable scaffolds. Polymer 1995, 36, 837–842. [Google Scholar] [CrossRef]
- Nam, Y.S.; Yoon, J.J.; Park, T.G. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J. Biomed. Mater. Res. Part A 2000, 53, 1–7. [Google Scholar] [CrossRef]
- Mooney, D.J.; Baldwin, D.F.; Suh, N.P.; Vacanti, J.P.; Langer, R. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 1996, 17, 1417–1422. [Google Scholar] [CrossRef]
- van de Witte, P.; Esselbrugge, H.; Dijkstra, P.J.; van den Berg, J.W.A.; Feijen, J. A morphological study of membranes obtained from the systems polylactide-dioxane-methanol, polylactide-dioxane-water, and polylactide-N-methyl-2-pyrrolidone-water. J. Polym. Sci. Part B: Polym. Phys. 1996, 34, 2569–2577. [Google Scholar] [CrossRef]
- Aslan, S.; Calandrelli, L.; Laurenzio, P.; Malinconico, M.; Migliaresi, C. Poly(D,L-lactic acid)/poly(ε-caprolactone) blends membranes: Preparation and morphological characterisation. J. Mater. Sci. 2000, 35, 1615–1622. [Google Scholar] [CrossRef]
- Zoppi, R.A.; Contant, S.; Duek, E.A.R.; Marques, F.R.; Wada, M.L.F.; Nunes, S.P. Porous poly(L-lactide) films obtained by immersion precipitation process: Morphology, phase separation and culture of VERO cells. Polymer 1999, 40, 3275–3289. [Google Scholar] [CrossRef]
- Hua, F.J.; Kim, G.E.; Lee, J.D.; Son, Y.K.; Lee, D.S. Macroporous Poly(L-Lactide) Scaffold 1. Preparation of a Macroporous Scaffold by Liquid-Liquid Phase Separation of a PLLA-Dioxane-Water System. J. Biomed. Mater. Res. 2002, 63, 161–167. [Google Scholar] [CrossRef]
- Tsuji, H.; Smith, R.; Bonfield, W.; Ikada, Y. Porous biodegradable polyesters. I. Preparation of porous poly(L-lactide) films by extraction of poly(ethylene oxide) from their blends. J. Appl. Polym. Sci. 2000, 75, 629–637. [Google Scholar] [CrossRef]
- Shastri, V.P.; Martin, I.; Langer, R. Macroporous polymer foams by hydrocarbon templating. Proc. Natl. Acad. Sci. USA 2000, 97, 1970–1975. [Google Scholar] [CrossRef]
- Lukanina, K.I.; Shepelev, A.D.; Budyka, A.K. Synthesis of ultrafine fibers from L- and D,L-isomers of polylactide by electrospinning. Fibre Chem. 2012, 43, 332–338. [Google Scholar] [CrossRef]
- Sytina, E.V.; Tenchurin, T.K.; Rudyak, S.G.; Saprykin, V.P.; Romanova, O.A.; Orehov, A.S.; Vasiliev, A.L.; Alekseev, A.A.; Chvalun, S.N.; Paltsev, M.A.; et al. Comparative biocompatibility of nonwoven polymer scaffolds obtained by electrospinning and their use for development of 3D dermal equivalents. Mol. Meditsina (Mol. Med.) 2014, 6, 38–47. [Google Scholar]
- Whang, K.; Healy, K.E.; Elenz, D.R.; Nam, E.K.; Tsai, D.C.; Thomas, C.H.; Nuber, G.W.; Glorieux, F.H.; Travers, R.; Sprague, S.M. Engineered bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng. 1999, 5, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Boyan, B.D.; Lohmann, C.H.; Romero, J.; Schwartz, Z. Bone and cartilage tissue engineering. Tissue Eng. 1999, 94, 627–645. [Google Scholar] [CrossRef]
- Cornell, C.N. Osteoconductive materials and their role as substitutes for autogenous bone grafts. Orthop. Clin. N. Am. 1999, 30, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Nilawar, S.; Uddin, M.; Chatterjee, K. Surface engineering of biodegradable implants: Emerging trends in bioactive ceramic coatings and mechanical treatments. Mater. Adv. 2021, 2, 7820–7841. [Google Scholar] [CrossRef]
- Amini, A.R.; Wallace, J.S.; Nukavarapu, S.P. Short-Term and Long-Term Effects of Orthopedic Biodegradable Implants. J. Long Term Eff. Med. Implant. 2012, 21, 93–122. [Google Scholar] [CrossRef]
- Godavitarne, C.; Robertson, A.; Peters, J.; Rogers, B. Biodegradable materials. Orthop. Trauma 2017, 31, 316–320. [Google Scholar] [CrossRef]
- Athanasiou, K.A.; Agrawal, C.E.; Barber, F.A.; Burkhart, S.S. Orthopaedic applications for PLA/PGA biodegradable polymers. Arthrosc. J. Arthrosc. Relat. Surg. 1998, 14, 726–737. [Google Scholar] [CrossRef]
- Wang, E.A.; Rosen, V.; D’Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Isreal, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; et al. Recombinant human bone morphogenic protein induces bone formation. Proc. Natl. Acad. Sci. USA 1990, 87, 2220–2224. [Google Scholar] [CrossRef] [PubMed]
- Ramchandani, M.; Robinson, D. In vitro release of ciprofloxacin from PLGA 50:50 implants. J. Control. Release 1998, 54, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Yoshie, N.; Nakasato, K.; Fujiwara, M.; Kasuya, K.; Abe, H.; Doi, Y.; Inoue, Y. Effect of low molecular weight additives on enzymatic degradation of poly(3-hydroxybutyrate). Polymer 2000, 41, 3227–3234. [Google Scholar] [CrossRef]
- Chen, G.Q.; Wu, Q.; Wang, Y.; Zheng, Z. Application of microbial polyesters-polyhydroxyalkanoates as tissue engineering materials. Key Eng. Mater. 2005, 288–289, 437–440. [Google Scholar] [CrossRef]
- Koller, M. Biodegradable and biocompatible polyhydroxyalkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 2018, 23, 362. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Kumar, P.; Singh, M.; Lee, J.-K.; Kalia, V.C. Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour. Technol. 2015, 176, 136–141. [Google Scholar] [CrossRef]
- Yadav, B.; Pandey, A.; Kumar, L.R.; Tyagi, R.D. Bioconversion of Waste (Water)/Residues to Bioplastics—A Circular Bioeconomy Approach. Bioresour. Technol. 2019, 298, 122584. [Google Scholar] [CrossRef]
- Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Bioplastics with a Green Agenda. Curr. Opin. Microbiol. 2010, 13, 321–326. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, P.X. Biomimetic Polymer/Apatite Composite Scaffolds for Mineralized Tissue Engineering. Macromol. Biosci. 2004, 4, 100–111. [Google Scholar] [CrossRef]
- Bendix, D. Chemical Synthesis of Polylactide and Its Copolymers for Medical Applications. Polym. Degrad. Stabil. 1998, 59, 129–135. [Google Scholar] [CrossRef]
- Amass, W.; Amass, A.; Tighe, B. A Review of Biodegradable Polymers: Uses, Current Developments in the Synthesis and Characterization of Biodegradable Polyesters, Blends of Biodegradable Polymers and Recent Advances in Biodegradation Studies. Polym. Int. 1998, 47, 89–144. [Google Scholar] [CrossRef]
- Kallela, I.; Iizuka, T.; Salo, A.; Lindqvist, C. Lag-Screw Fixation of Anterior Mandibular Fractures Using Biodegradable Polylactide Screws: A Preliminary Report. J. Oral Maxillofac. Surg. 1999, 57, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Kesenci, K.; Fambri, L.; Migliaresi, C.; Piskin, E. Preparation and Properties of Poly(L-lactide)/Hydroxyapatite Composites. J. Biomater. Sci. Polym. Ed. 2000, 11, 617–632. [Google Scholar] [CrossRef]
- Ignjatovic, N.; Uskokovic, D. Synthesis and Application of Hydroxyapatite/Polylactide Composite Biomaterial. Appl. Surf. Sci. 2004, 238, 314–319. [Google Scholar] [CrossRef]
- Baimark, Y.; Molloy, R.; Molloy, N.; Siripitayananon, J.; Punyodom, W.; Sriyai, M. Synthesis, Characterization and Melt Spinning of a Block Copolymer of L-lactide and ε-Caprolactone for Potential Use as an Absorbable Monofilament Surgical Suture. J. Mater. Sci. Mater. Med. 2005, 16, 699–707. [Google Scholar] [CrossRef]
- Viinikainen, A.; Goransson, H.; Huovinen, K.; Kellomaki, M.; Tormala, P.; Rokkanen, P. Material and Knot Properties of Braided Polyester (Ticron®) and Bioabsorbable Poly-L/D-lactide (PLDLA) 96/4 Sutures. J. Mater. Sci. Mater. Med. 2006, 17, 169–177. [Google Scholar] [CrossRef]
- Roether, J.A.; Boccaccini, A.R.; Hench, L.L.; Maquet, V.; Gautier, S.; Jerome, R. Development and In Vitro Characterisation of Novel Bioresorbable and Bioactive Composite Materials Based on Polylactide Foams and Bioglass for Tissue Engineering Applications. Biomaterials 2002, 23, 3871–3878. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Blaker, J.J.; Maquet, V.; Day, R.M.; Jerome, R. Preparation and Characterisation of Poly(Lactide-co-Glycolide) (PLGA) and PLGA/Bioglass Composite Tubular Foam Scaffolds for Tissue Engineering Applications. Mater. Sci. Eng. C 2005, 25, 23–31. [Google Scholar] [CrossRef]
- Blaker, J.J.; Gough, J.E.; Maquet, V.; Notingher, I.; Boccaccini, A.R. In Vitro Evaluation of Novel Bioactive Composites Based on Bioglass-Filled Polylactide Foams for Bone Tissue Engineering Scaffolds. J. Biomed. Mater. Res. Part A 2003, 67A, 1401–1411. [Google Scholar] [CrossRef]
- Van Bochove, B.; Grijpma, D.W. Photo-Crosslinked Synthetic Biodegradable Polymer Networks for Biomedical Applications. J. Biomater. Sci. Polym. Ed. 2018, 30, 77–106. [Google Scholar] [CrossRef]
- Luchese, C.L.; Sperotto, N.; Spada, J.C.; Tessaro, I.C. Effect of Blueberry Agro-Industrial Waste Addition to Corn Starch-Based Films for the Production of a pH-Indicator Film. Int. J. Biol. Macromol. 2017, 104, 11–18. [Google Scholar] [CrossRef]
- Shogren, R.L.; Fanta, G.F.; Doane, W.M. Development of Starch-Based Plastics—A Reexamination of Selected Polymer Systems in Historical Perspective. Staerke 1993, 45, 276–280. [Google Scholar] [CrossRef]
- Song, J.H.; Murphy, R.J.; Narayan, R.; Davies, G.B.H. Biodegradable and Compostable Alternatives to Conventional Plastics. Phil. Trans. R. Soc. B 2009, 364, 2127–2139. [Google Scholar] [CrossRef] [PubMed]
- Engler, L.; Farias, N.C.; Crespo, J.S.; Gately, N.M.; Major, I.; Pezzoli, R.; Devine, D.M. Designing sustainable polymer blends: Tailoring mechanical properties and degradation behaviour in PHB/PLA/PCL blends in a seawater environment. Polymers 2023, 15, 2874. [Google Scholar] [CrossRef] [PubMed]
- Maraveas, C. Environmental Sustainability of Greenhouse Covering Materials. Sustainability 2019, 11, 6129. [Google Scholar] [CrossRef]
- Yuen, C.B.; Chong, H.L.; Kwok, M.H.; Ngai, T. Natural Polymer-Based Food Packaging: Paving the Way to a Greener Future—A Review. Sustain. Food Technol. 2025, 3, 908–929. [Google Scholar] [CrossRef]
- Chiumarelli, M.; Hubinger, D. Stability, Solubility, Mechanical and Barrier Properties of Cassava Starch–Carnauba Wax Edible Coatings to Preserve Fresh-Cut Apples. Food Hydrocoll. 2012, 28, 59–67. [Google Scholar] [CrossRef]
- Ayhllon-Meixueiro, F.; Vaca-Garcia, C.; Silvestre, F.J. Biodegradable Films from Isolate of Sunflower (Helianthus annuus) Proteins. Agric. Food Chem. 2000, 48, 3032–3036. [Google Scholar] [CrossRef]
- Benito-González, I.; López-Rubio, A.; Martínez-Sanz, M. High-Performance Starch Biocomposites with Celullose from Waste Biomass: Film Properties and Retrogradation Behaviour. Carbohydr. Polym. 2019, 216, 180–188. [Google Scholar] [CrossRef]
- Krupp, L.R.; Jewel, W.J. Biodegradability of Modified Plastic Films in Controlled Biological Environment. Environ. Technol. 1992, 26, 193–198. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and Chemical Recycling of Solid Plastic Waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.C.; Popineau, Y.; Mangavel, C.; LarreÂ, C.; Gueguen, J. Effect of Different Plasticizers on the Mechanical and Surface Properties of Wheat Gliadin Films. J. Agric. Food Chem. 1998, 46, 4539–4544. [Google Scholar] [CrossRef]
- Gennadios, A.; Brandenburg, A.H.; Weller, C.L.; Testin, R.F. Effect of pH on Properties of Wheat Gluten and Soy Protein Isolate Films. J. Agric. Food Chem. 1993, 41, 1835–1839. [Google Scholar] [CrossRef]
- Shaikh, S.; Yaqoob, M.; Aggarwal, P. An Overview of Biodegradable Packaging in Food Industry. Curr. Res. Food Sci. 2021, 4, 503–520. [Google Scholar] [CrossRef]
- Bauer, A.S.; Leppik, K.; Galić, K.; Anestopoulos, I.; Panayiotidis, M.I.; Agriopoulou, S.; Milousi, M.; Uysal-Unalan, I.; Varzakas, T.; Krauter, V. Cereal and Confectionary Packaging: Background, Application and Shelf-Life Extension. Foods 2022, 11, 697. [Google Scholar] [CrossRef]
- Salgado, P.R.; Di Giorgio, L.; Musso, Y.S.; Mauri, A.N. Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers. Front. Sustain. Food Syst. 2021, 5, 630393. [Google Scholar] [CrossRef]
- Brandenburg, A.H.; Weller, C.L.; Testin, R.F. Edible Films and Coatings from Soy Proteins. J. Food Sci. 1993, 58, 1086–1089. [Google Scholar] [CrossRef]
- Pablo, R.; Salgado, V.C.; Schmidt, S.E.; Molina, O.; Mauri, A.N.; Joao, B.L. Biodegradable Foams Based on Cassava Starch, Sunflower Proteins, and Cellulose Fibers Obtained by a Baking Process. J. Food Eng. 2007, 85, 435–443. [Google Scholar]
- Di Liberto, E.A.; Dintcheva, N.T. Biobased Films Based on Chitosan and Microcrystalline Cellulose for Sustainable Packaging Applications. Polymers 2024, 16, 568. [Google Scholar] [CrossRef]
- Chaudhary, V.; Punia Bangar, S.; Thakur, N.; Trif, M. Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry. Polymers 2022, 14, 829. [Google Scholar] [CrossRef] [PubMed]
- Piergiovanni, L.; Limbo, S. Plastic Packaging Materials. In Food Packaging Materials; Springer Briefs in Molecular Science; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Barikani, M.; Oliaei, E.; Seddiqi, H.; Honarkar, H. Preparation and Application of Chitin and Its Derivatives: A Review. Iran Polym J. 2014, 23, 307–326. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Kelly, A.; Oldham, T.; Rogers, R.D. Agricultural Uses of Chitin Polymers. Environ. Chem. Lett. 2020, 18, 53–60. [Google Scholar] [CrossRef]
- Plackett, D.; Andersen, T.L.; Pedersen, W.B.; Nielsen, L. Biodegradable Composites Based on Polylactide and Jute Fibres. Compos. Sci. Technol. 2003, 63, 1287–1296. [Google Scholar] [CrossRef]
- Ray, S.S.; Yamada, K.; Okamoto, M.; Fujimoto, Y.; Ogami, A.; Ueda, K. New Polylactide/Layered Silicate Nanocomposites. 5. Designing of Materials with Desired Properties. Polymer 2003, 44, 6633–6646. [Google Scholar] [CrossRef]
- Okamoto, M. Biodegradable Polymer/Layered Silicate Nanocomposites: A Review. In Handbook of Biodegradable Polymeric Materials and Their Applications; Mallapragada, S.K., Narasimhan, B., Eds.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2005; Volume 1, pp. 1–45. [Google Scholar]
- Paul, M.A.; Delcourt, C.; Alexandre, M.; Degege, P.; Monteverde, F.; Dubois, P. Polylactide/Montmorillonite Nanocomposites: Study of the Hydrolytic Degradation. Polym. Degrad. Stab. 2005, 87, 535–542. [Google Scholar] [CrossRef]
- Pluta, M. Morphology and Properties of Polylactide Modified by Thermal Treatment, Filling with Layered Silicates and Plasticization. Polymer 2004, 45, 8239–8251. [Google Scholar] [CrossRef]
- Nakajima-Kambe, T.; Shigeno-Akutsu, Y.; Nomura, N.; Onuma, F.; Nakahara, T. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl. Microbiol. Biotechnol. 1999, 51, 134–140. [Google Scholar] [CrossRef]
- Elsabee, M.Z.; Abdou, E.S. Chitosan Based Edible Films and Coatings: A Review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef]
- Tharanathan, R.N. Biodegradable Films and Composite Coatings: Past, Present and Future. Trends Food Sci. Technol. 2003, 14, 71–78. [Google Scholar] [CrossRef]
- Felton, L.A. Mechanisms of Polymeric Film Formation. Int. J. Pharm. 2013, 456, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Devi, L.S.; Jaiswal, A.K.; Jaiswal, S. Lipid Incorporated Biopolymer Based Edible Films and Coatings in Food Packaging: A Review. Curr. Res. Food Sci. 2024, 8, 100720. [Google Scholar] [CrossRef] [PubMed]
- Syamaladevi, R.M.; Tang, J.; Villa-Rojas, R.; Sablani, S.S.; Carter, B.; Campbell, G. Influence of Water Activity on Thermal Resistance of Microorganisms in Low-Moisture Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 353–370. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, S.C.; de Oliveira, T.V.; de Fátima Ferreira Soares, N.; Raymundo-Pereira, P.A. Sustainable and Biodegradable Polymer Packaging: Perspectives, Challenges, and Opportunities. Food Chem. 2025, 470, 142652. [Google Scholar] [CrossRef]
- Tabassum, N.; Rafique, U.; Qayyum, M.; Mohammed, A.A.A.; Asif, S.; Bokhari, A. Kaolin–Polyvinyl Alcohol–Potato Starch Composite Films for Environmentally Friendly Packaging: Optimization and Characterization. J. Compos. Sci. 2024, 8, 29. [Google Scholar] [CrossRef]
- Shukla, R.; Cheryan, M. Zein: The industrial protein from corn. Ind. Crops Prod. 2001, 13, 171–192. [Google Scholar] [CrossRef]
- Luís, Â.; Domingues, F.; Ramos, A. Production of Hydrophobic Zein-Based Films Bioinspired by The Lotus Leaf Surface: Characterization and Bioactive Properties. Microorganisms 2019, 7, 267. [Google Scholar] [CrossRef]
- Ribeiro, I.S.; Maciel, G.M.; Bortolini, D.G.; Fernandes, I.D.A.A.; Maroldi, W.V.; Pedro, A.C.; Rubio, F.T.V.; Haminiuk, C.W.I. Sustainable Innovations in Edible Films and Coatings: An Overview. Trends Food Sci. Technol. 2024, 143, 104272. [Google Scholar] [CrossRef]
- Ukhartseva, I.Y. Modern Trends in the Use of High-Molecular Compounds in the Creation of Packaging Materials for Food Products (Review). International Polymer Science and Technology 2014, 42, 57–64. [Google Scholar] [CrossRef]
- Savitskaya, T.A. Edible Polymer Films and Coatings: History and Current State (Review). Polym. Mater. Technol. 2016, 2, 6–36. [Google Scholar]
- Goldade, V.A. Modern Trends in the Development of Polymer Film Packaging. Polym. Mater. Technol. 2015, 1, 65–70. [Google Scholar]
- Bai, J.; Alleyne, V.; Hagenmaier, R.D.; Mattheis, J.P.; A Baldwin, E. Formulation of Zein Coatings for Apples (Malus domestica Borkh). Postharvest Biol. Technol. 2003, 28, 259–268. [Google Scholar] [CrossRef]
- Ribeiro, C.; Vicente, A.A.; Teixeira, J.A.; Miranda, C. Optimization of Edible Coating Composition to Retard Strawberry Fruit Senescence. Postharvest Biol. Technol. 2007, 44, 63–70. [Google Scholar] [CrossRef]
- Rojas-Grau, M.A.; Raybaudi-Massilia, R.M.; Soliva-Fortuny, R.C.; Avena Bustillos, R.D.; Mc Hugh, T.H.; Martin-Belloso, O. Apple Puree-Alginate Edible Coating as Carrier of Antimicrobial Agents to Prolong Shelf-Life of Fresh-Cut Apples. Postharvest Biol. Technol. 2007, 45, 254–264. [Google Scholar] [CrossRef]
- Talens, P.; Pérez-Masía, R.; Fabra, M.J.; Vargas, M.; Chiralt, A. Application of Edible Coatings to Partially Dehydrated Pineapple for Use in Fruit–Cereal Products. J. Food Eng. 2012, 112, 86–93. [Google Scholar] [CrossRef]
- de Aquino, A.B.; Blank, A.F.; de Aquino Santana, L.C.L. Impact of Edible Chitosan–Cassava Starch Coatings Enriched with Lippia gracilis Schauer Genotype Mixtures on the Shelf Life of Guavas (Psidium guajava L.) During Storage at Room Temperature. Food Chem. 2015, 171, 108–116. [Google Scholar] [CrossRef]
- Tapia, M.S.; Rojas-Graü, M.A.; Carmona, A.; Rodríguez, F.J.; Soliva-Fortuny, R.; Martin-Belloso, O. Use of alginate-and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocoll. 2008, 22, 1493–1503. [Google Scholar] [CrossRef]
- Salmieri, S.; Lacroix, M. Physicochemical Properties of Alginate/Polycaprolactone-Based Films Containing Essential Oils. J. Agric. Food Chem. 2006, 54, 10205–10214. [Google Scholar] [CrossRef] [PubMed]
- Ukhartseva, I.; Kadolich, Z.; Tsvetkova, E. Modern Packaging for Food Products. Packag. Contain. 2016, 2, 18–23. [Google Scholar]
- Shulga, O.S.; Petrusha, O.A. Effect of Gelatin on the Properties of Edible Films and Coatings from Potato Starch. Polym. Mater. Technol. 2017, 3, 64–70. [Google Scholar]
- Ukhartseva, I.; Goldade, V.; Tsvetkova, E. Food Packaging: Trends and Prospects; LAP Lambert Academic Publishing: Saarbrücken, Germany; Omni Scriptum GmbH & Co. KG: Dusseldorf, Germany, 2019; 251p. [Google Scholar]
- Bartolucci, L.; Cordiner, S.; De Maina, E.; Kumar, G.; Mele, P.; Mulone, V.; Igliński, B.; Piechota, G. Sustainable Valorization of Bioplastic Waste: A Review on Effective Recycling Routes for the Most Widely Used Biopolymers. Int. J. Mol. Sci. 2023, 24, 7696. [Google Scholar] [CrossRef]
- Dietrich, T.; Del Carmen Villaran Velasco, M.; Echeverría, P.J.; Pop, B.; Rusu, A. Biotransformation of Agricultural Waste and By-Products: The Food, Feed, Fibre, Fuel (4F) Economy. Crop and Plant Biomass as Valuable Material for BBB. In Alternatives for Valorization of Green Wastes; Elsevier: San Diego, CA, USA, 2016. [Google Scholar]
- Maraveas, C. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Shabarin, A.A.; Kuzmin, A.M.; Vodyakov, V.N.; Shabarin, I.A. Development of Biodegradable Composite Materials Based on Polyolefins and Sunflower Seed Husk. Izvestiya Vysshikh Uchebnykh Zavedenii. Chem. Chem. Technol. 2021, 4, 73–76. [Google Scholar] [CrossRef]
- Nunes, L.A.; Silva, M.L.S.; Gerber, J.Z.; Kalid, R.D.A. Waste Green Coconut Shells: Diagnosis of the Disposal and Applications for Use in Other Products. J. Clean. Prod. 2020, 255, 120169. [Google Scholar] [CrossRef]
- Mose, B.R.; Maranga, S.M. A Review on Starch Based Nanocomposites for Bioplastic Materials. J. Mat. Sci. Eng. B 2011, 1, 239–245. [Google Scholar]
- Mathiot, C.; Ponge, P.; Gallard, B.; Sassi, J.; Delrue, F.; Le, N.; Niu, B.; Shao, P.; Chen, H.; Sun, P. Microalgae Starch-Based Bioplastics: Screening of Ten Strains and Plasticization of Unfractionated Microalgae by Extrusion. Carbohydr. Polym. 2019, 208, 142–151. [Google Scholar] [CrossRef]
- Utoiu, E.; Manoiu, V.S.; Oprita, E.I.; Craciunescu, O. Bacterial Cellulose: A Sustainable Source for Hydrogels and 3D-Printed Scaffolds for Tissue Engineering. Gels 2024, 10, 387. [Google Scholar] [CrossRef]
- Magar, S.P.; Ingle, A.B.; Ganorkar, R.N. Production of Bioplastic (PHA) from Emulsified Cotton Seed Oil Medium by Ralstonia spp. Int. J. Eng. Res. Gen. Sci. 2015, 3, 436–441. [Google Scholar]
- Park, D.H.; Kim, B.S. Production of Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from Soybean Oil. New Biotechnol. 2011, 28, 719–724. [Google Scholar] [CrossRef]
- Wong, Y.-M.; Brigham, C.J.; Rha, C.K.; Sinskey, A.J.; Sudesh, K. Biosynthesis and Characterization of Polyhydroxyalkanoate Containing High 3-Hydroxyhexanoate Monomer Fraction from Crude Palm Kernel Oil by Recombinant Cupriavidus necator. Bioresour. Technol. 2012, 121, 320–327. [Google Scholar] [CrossRef]
- Govil, T.; Wang, J.; Samanta, D.; David, A.; Tripathi, A.; Rauniyar, S.; Salem, D.R.; Sani, R.K. Lignocellulosic Feedstock: A Review of a Sustainable Platform for Cleaner Production of Nature’s Plastics. J. Clean. Prod. 2020, 270, 122521. [Google Scholar] [CrossRef]
- Brodin, M.; Vallejos, M.; Opedal, M.T.; Area, M.C.; Chinga-Carrasco, G. Lignocellulosics as Sustainable Resources for Production of Bioplastics—A Review. J. Clean. Prod. 2017, 162, 646–664. [Google Scholar] [CrossRef]
- Lopez, J.P.; Girones, J.; Mendez, J.A.; Puig, J.; Pelach, M.A. Recycling Ability of Biodegradable Matrices and Their Cellulose-Reinforced Composites in a Plastic Recycling Stream. J. Polym. Environ. 2012, 20, 96–103. [Google Scholar] [CrossRef]
- de Brito, E.B.; Tienne, L.G.P.; Cordeiro, S.B.; Marques, M.F.V. Development of Polypropylene Composites with Green Coffee Cake Fibres Subjected to Water Vapor Explosion. Waste Biomass Valor. 2020, 13, 6855–6867. [Google Scholar] [CrossRef]
- Yu, L. Biodegradable Polymer Blends and Composites from Renewable Resources; John Wiley & Sons: Hoboken, NJ, USA, 2009; 487p. [Google Scholar]
- Rogovina, S.Z. Biodegradable Polymer Compositions Based on Synthetic and Natural Polymers of Various Classes. Vysokomol. Soedin. 2016, 1, 68–80. [Google Scholar] [CrossRef]
- Vroman, I.; Tighzert, L. Biodegradable Polymers. Materials 2009, 2, 317–320. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Arizaga, G.G.C.; Wypych, F. Biodegradable Composites Based on Lignocellulosic Fibers—An Overview. Prog. Polym. Sci. 2009, 34, 982–1021. [Google Scholar] [CrossRef]
- Visco, A.; Scolaro, C.; Facchin, M.; Brahimi, S.; Belhamdi, H.; Gatto, V.; Beghetto, V. Agri-Food Wastes for Bioplastics: European Prospective on Possible Applications in Their Second Life for a Circular Economy. Polymers 2022, 14, 2752. [Google Scholar] [CrossRef]
- Di Donato, P.; Taurisano, V.; Poli, A. Vegetable Wastes Derived Polysaccharides as Natural Eco-Friendly Plasticizers of Sodium Alginate. Carbohydr. Polym. 2020, 229, 115427. [Google Scholar] [CrossRef]
- Santana, R.F.; Bonomo, R.C.F.; Gandolfi, O.R.R.; Rodrigues, L.B.; Santos, L.S.; Dos Santos Pires, A.C.; de Oliveira, C.P.; da Costa Ilhéu Fontan, R.; Veloso, C.M. Characterization of Starch-Based Bioplastics from Jackfruit Seed Plasticized with Glycerol. J. Food Sci. Technol. 2018, 55, 278–286. [Google Scholar] [CrossRef]
- Suffo, M.; De Mata, M.; Molina, S.I. A Sugar-Beet Waste Based Thermoplastic Agro-Composite as Substitute for Raw Materials. J. Clean. Prod. 2020, 257, 120382. [Google Scholar] [CrossRef]
- Szacherska, K.; Oleskowicz-Popiel, P.; Ciesielski, S.; Mozejko-Ciesielska, J. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production. Polymers 2021, 13, 321. [Google Scholar] [CrossRef] [PubMed]
- Navas, C.S.; Reboredo, M.M.; Granados, D.L. Comparative Study of Agroindustrial Wastes for Their Use in Polymer Matrix Composites. Procedia Mater. Sci. 2015, 8, 778–785. [Google Scholar] [CrossRef]
- Patil, A.Y.; Hrishikesh, U.; Basavaraj, N. Influence of Biodegradable Natural Fiber Embedded in Polymer Matrix. Mater. Today Proc. 2018, 5, 7532–7540. [Google Scholar] [CrossRef]
- Zielińska, M.; Bułkowska, K. Agricultural Wastes and Their By-Products for the Energy Market. Energies 2024, 17, 2099. [Google Scholar] [CrossRef]
- Xie, Y.; Niu, X.; Yang, J.; Fan, R.; Shi, J.; Ullah, N.; Feng, X.; Chen, L. Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. Int. J. Biol. Macromol. 2020, 150, 480–491. [Google Scholar] [CrossRef]
- Bashir, A.; Jabeen, S.; Gull, N.; Islam, A.; Sultan, M. Co-Concentration Effect of Silane with Natural Extract on Biodegradable Polymeric Films for Food Packaging. Int. J. Biol. Macromol. 2018, 106, 351–359. [Google Scholar] [CrossRef]
- Karimi Sani, I.; Masoudpour-Behabadi, M.; Alizadeh Sani, M.; Motalebinejad, H.; Juma, A.S.M.; Asdagh, A.; Eghbaljoo, H.; Khodaei, S.M.; Rhim, J.W.; Mohammadi, F. Value-Added Utilization of Fruit and Vegetable Processing By-Products for the Manufacture of Biodegradable Food Packaging Films. Food Chem. 2023, 405, 134964. [Google Scholar] [CrossRef]
- Palmeri, R.; Pappalardo, F.; Fragala, M.; Tomasello, M.; Damigella, A.; Catara, A.F. Polyhydroxyalkanoates (PHAs) Production through Conversion of Glycerol by Selected Strains of Pseudomonas mediterranea and Pseudomonas corrugata. Chem. Eng. Trans. 2012, 27, 121–126. [Google Scholar] [CrossRef]
- Du, C.; Sabirova, J.; Soetaert, W.; Lin, S.K.C. Polyhydroxyalkanoates Production from Low-Cost Sustainable Raw Materials. Curr. Chem. Biol. 2012, 6, 14–25. [Google Scholar]
- Pratheep Kumar, A.; Pandey, J.K.; Kumar, B.; Singh, R.P. Photo-/Bio-Degradability of Agro Waste and Ethylene-Propylene Copolymer Composites under Abiotic and Biotic Environments. J. Polym. Environ. 2006, 14, 203–221. [Google Scholar] [CrossRef]
- Barlaz, M.A.; Staley, B.F.; De Los Reyes, F.L. III. Anaerobic Biodegradation of Solid Waste. In Environmental Microbiology, 2nd ed.; Mitchell, R., Gu, J.D., Eds.; Wiley: Hoboken, NJ, USA, 2010; pp. 281–299. [Google Scholar]
- Anjum, A.; Zuber, M.; Zia, K.M.; Noreen, A.; Anjum, M.N.; Tabasum, S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol. 2016, 89, 161–174. [Google Scholar] [CrossRef]
- Tsang, Y.F.; Kumar, V.; Samadar, P. Production of bioplastic through food waste valorization. Environ. Int. 2019, 127, 625–644. [Google Scholar] [CrossRef]
- Farzadnia, N.; Hessam, S.; Asadi, A.; Hosseini, S. Mechanical and Microstructural Properties of Cement Pastes with Rice Husk Ash Coated with Carbon Nanofibers Using a Natural Polymer Binder. Constr. Build. Mater. 2018, 175, 691–704. [Google Scholar] [CrossRef]
- Nagarajan, K.J.; Balaji, A.N.; Basha, K.S.; Ramanujam, N.R.; Kumar, R.A. Effect of Agro Waste α-Cellulosic Micro Filler on Mechanical and Thermal Behavior of Epoxy Composites. Int. J. Biol. Macromol. 2020, 152, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, V.; Stabnikov, V.; Ahmed, Z.; Dobrenko, S.; Saliuk, A. Production and Applications of Crude Polyhydroxyalkanoate-Containing Bioplastic from the Organic Fraction of Municipal Solid Waste. Int. J. Environ. Sci. Technol. 2015, 12, 725–738. [Google Scholar] [CrossRef]
- Plank, J. Application of Biopolymers and Other Biotechnological Products in Building Materials. Appl. Microbiol. Biotechnol. 2004, 66, 1–9. [Google Scholar] [CrossRef]
- Zain, A.H.M.; Ab Wahab, M.K.; Ismail, H. Biodegradation behaviour of thermoplastic starch: The roles of carboxylic acids on cassava starch. J. Polym. Environ. 2017, 26, 691–700. [Google Scholar] [CrossRef]
- Dorigato, A.; Fredi, G.; Negri, M.; Pegoretti, A. Thermo-mechanical behaviour of novel wood laminae-thermoplastic starch biodegradable composites with thermal energy storage/release capability. Front. Mater. 2019, 6, 76. [Google Scholar] [CrossRef]
- Ahsan, W.A.; Hussain, A.; Lin, C.; Nguyen, M.K. Biodegradation of Different Types of Bioplastics through Composting—A Recent Trend in Green Recycling. Catalysts 2023, 13, 294. [Google Scholar] [CrossRef]
- García-Guzmán, L.; Cabrera-Barjas, G.; Soria-Hernández, C.G.; Castaño, J.; Guadarrama-Lezama, A.Y.; Rodríguez Llamazares, S. Progress in Starch-Based Materials for Food Packaging Applications. Polysaccharides 2022, 3, 136–177. [Google Scholar] [CrossRef]
- Kalambur, S.; Rizvi, S.H.J. An overview of starch-based plastic blends from reactive extrusion. Plast. Film. Sheeting 2006, 22, 39–58. [Google Scholar] [CrossRef]
- Reis, R.L.; Cunha, A.M.; Allan, P.S.; Bevis, M.J. Structure development and control of injection-molded hydroxylapatite-reinforced starch/EVOH composites. Adv. Polym. Technol. 1997, 16, 263–277. [Google Scholar] [CrossRef]
- Peressini, D.; Bravin, B.; Lapasin, R.; Rizzotti, C.; Sensidoni, A. Starch–methylcellulose based edible films: Rheological properties of film-forming dispersions. Food Eng. 2003, 59, 25–32. [Google Scholar] [CrossRef]
- Rachmawati, N.; Triwibowo, R.; Widianto, R. Mechanical properties and biodegradability of acid-soluble chitosan-starch based film. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2015, 10, 1. [Google Scholar] [CrossRef]
- Sen, C.; Das, M. Biodegradability of Starch Based Self-Supporting Antimicrobial Film and Its Effect on Soil Quality. J. Polym. Environ. 2018, 26, 4331–4337. [Google Scholar] [CrossRef]
- Sobeih, M.O.; Sawalha, S.; Hamed, R.; Ali, F.; Kim, M.P. Starch-Derived Bioplastics: Pioneering Sustainable Solutions for Industrial Use. Materials 2025, 18, 1762. [Google Scholar] [CrossRef]
- Rivadeneira-Velasco, K.E.; Utreras-Silva, C.A.; Díaz-Barrios, A.; Sommer-Márquez, A.E.; Tafur, J.P.; Michell, R.M. Green Nanocomposites Based on Thermoplastic Starch: A Review. Polymers 2021, 13, 3227. [Google Scholar] [CrossRef]
- Asyakina, L.K.; Dolganyuk, V.F.; Belova, D.D.; Peral, M.M.; Dyshlyuk, L.S. The study of rheological behavior and safety metrics of natural biopolymers. Foods Raw Mater. 2016, 4, 70–78. [Google Scholar] [CrossRef]
- Muller, J.; Gonzalez-Martinez, C.; Chiralt, A. Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials 2017, 10, 952. [Google Scholar] [CrossRef]
- Ojogbo, E.; Ogunsona, E.O.; Mekonnen, T.H. Chemical and physical modifications of starch for renewable polymeric materials. Mater. Today Sustain. 2020, 7–8, 100028. [Google Scholar] [CrossRef]
- Liu, H.; Xie, F.; Yu, L.; Chen, L.; Li, L. Thermal processing of starch-based polymers. Prog. Polym. Sci. 2009, 34, 1348–1368. [Google Scholar] [CrossRef]
- Agama-Acevedo, E.; Flores-Silva, P.C.; Bello-Perez, L.A. Starches for Food Application. In Cereal Starch Production for Food Applications; Academic Press: Cambridge, MA, USA, 2019; pp. 71–102. [Google Scholar]
- Flores, S.; Fama, L.; Rojas, A.M.; Goyanes, S.; Gerschenson, L. Physical properties of tapioca-starch edible films: Influence of film-making and potassium sorbate. Food Res. Int. 2007, 40, 257–265. [Google Scholar] [CrossRef]
- Nagy, E.M.; Todica, M.; Cota, C.; Pop, V.C.; Cioica, N.; Cozar, O. Water degradation effect on some starch-based plastics. In Aktualni Zadaci Mehanizacije Poljoprivrede: Actual Tasks on Agricultural Engineering, Proceedings of the 43rd International Symposium on Agricultural Engineering, Actual Tasks on Agricultural Engineering, Opatija, Croatia, 24–27 February 2015; University of Zagreb: Zagreb, Croatia, 2015; Volume 43, pp. 755–762. [Google Scholar]
- Meriem, H.; Messaoud, C.; Badra, H.; Anissa, B. Biodegradation of plastic film based on starch. Biointerface Res. Appl. Chem. 2016, 6, 1517–1519. [Google Scholar]
- Khan, B.; Niazi, M.B.K.; Samin, G.; Jahan, Z. Thermoplastic Starch: A Possible Biodegradable Food Packaging Material—A Review. J. Food Process Eng. 2017, 40, e12447. [Google Scholar] [CrossRef]
- Doane, W.M. USDA research on starch-based biodegradable plastics. Staerke 1992, 44, 293–295. [Google Scholar] [CrossRef]
- Ataeian, P.; Trinh, B.M.; Mekonnen, T.H. Effect of pro-oxidants on the aerobic biodegradation, disintegration, and physio-mechanical properties of compostable polymers. J. Appl. Polym. Sci. 2023, 141, e54970. [Google Scholar] [CrossRef]
- Shamsabadi, O.D.; Soltanolkottabi, F. Green nanocomposite of (starch/polylactic acid/cellulose nanofiber) thermoplastic. Polym. Polym. Composites. 2024, 32, 09673911241294213. [Google Scholar] [CrossRef]
- Gamage, A.; Thiviya, P.; Mani, S.; Ponnusamy, P.G.; Manamperi, A.; Evon, P.; Merah, O.; Madhujith, T. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers 2022, 14, 4578. [Google Scholar] [CrossRef]
- Jayarathna, S.; Andersson, M.; Andersson, R. Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers 2022, 14, 4557. [Google Scholar] [CrossRef]
- Razavi, S.M.A.; Cui, S.W.; Ding, H. Structural and physicochemical characteristics of a novel water-soluble gum from Lallemantia royleana seed. Int. J. Biol. Macromol. 2016, 83, 142–151. [Google Scholar] [CrossRef]
- Domene-López, D.; García-Quesada, J.C.; Martin-Gullon, I.; Montalbán, M.G. Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers 2019, 11, 1084. [Google Scholar] [CrossRef]
- Touchaleaume, F.; Angellier-Coussy, H.; César, G.; Raffard, G.; Gontard, N.; Gastaldi, E. How Performance and Fate of Biodegradable Mulch Films are Impacted by Field Ageing. J. Polym. Environ. 2018, 26, 2588–2600. [Google Scholar] [CrossRef]
- Chen, G. Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review. Chem. Rev. 2012, 112, 2082–2099. [Google Scholar] [CrossRef]
- Luchese, C.L.; Garrido, T.; Spada, J.C.; Tessaro, I.C.; de la Caba, K. Development and characterization of cassava starch films incorporated with blueberry pomace. Int. J. Biol. Macromol. 2018, 106, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, G.F.; Fakhouri, F.M.; de Oliveira, R.A. Extraction and characterization of arrowroot (Maranta arundinaceae L.) starch and its application in edible films. Carbohydr. Polym. 2018, 186, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Hornung, P.S.; Ávila, S.; Masisi, K.; Malunga, L.N.; Lazzarotto, M.; Schnitzler, E.; Ribani, R.H.; Beta, T. Green development of biodegradable films based on native yam (Dioscoreaceae) starch mixtures. Starch-Stärke 2018, 70, 1700234. [Google Scholar] [CrossRef]
- Domene-López, D.; Guillén, M.; Martin-Gullon, I.; García-Quesada, J.; Montalbán, M. Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydr. Polym. 2018, 202, 299–305. [Google Scholar] [CrossRef]
- Sanyang, M.; Sapuan, S.; Jawaid, M.; Ishak, M.; Sahari, J. Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydr. Polym. 2016, 146, 36–45. [Google Scholar] [CrossRef]
- Ewing, T.A.; Nouse, N.; van Lint, M.; van Haveren, J.; Hugenholtz, J.; van Es, D.S. Fermentation for the Production of Biobased Chemicals in a Circular Economy: A Perspective for the Period 2022–2050. Green Chem. 2022, 24, 6373–6405. [Google Scholar] [CrossRef]
- Tang, X.; Alavi, S.; Herald, T.J. Barrier and Mechanical Properties of Starch–Clay Nanocomposite Films. Cereal Chem. 2008, 85, 433–439. [Google Scholar] [CrossRef]
- Frangopoulos, T.; Marinopoulou, A.; Goulas, A.; Likotrafiti, E.; Rhoades, J.; Petridis, D.; Kannidou, E.; Stamelos, A.; Theodoridou, M.; Arampatzidou, A.; et al. Optimizing the Functional Properties of Starch-Based Biodegradable Films. Foods 2023, 12, 2812. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.P.; Bangar, S.P.; Yang, T.; Trif, M.; Kumar, V.; Kumar, D. Effect on the Properties of Edible Starch-Based Films by the Incorporation of Additives: A Review. Polymers 2022, 14, 1987. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, A.; Fabra, M.J.; Talens, P.; Chiralt, A. Edible and Biodegradable Starch Films: A Review. Food Bioprocess Technol. 2012, 5, 2058–2076. [Google Scholar] [CrossRef]
- Pesterev, M.A.; Rudenko, O.S.; Kondrat’ev, N.B.; Bazhenova, A.E.; Usachev, I.S. Effect of Biodegradable and Polypropylene Film Packaging on the Safety Profile of Jelly Marmalade. Food Process. Tech. Technol. 2020, 50, 536–548. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Abral, H.; Ishak, M.R.; Zainudin, E.S.; Atikah, M.S.N.; Mohd Nurazzi, N.; Atiqah, A.; Ansari, M.N.M.; et al. Effect of Sugar Palm Nanofibrillated Cellulose Concentrations on Morphological, Mechanical and Physical Properties of Biodegradable Films Based on Agro-Waste Sugar Palm (Arenga Pinnata (Wurmb.) Merr) Starch. J. Mater. Res. Technol. 2019, 8, 4819–4830. [Google Scholar] [CrossRef]
- Mojibayo, I.; Samson, A.O.; Johnson, O.Y.; Joshusa, I.O.A.S.A. A Preliminary Investigation of Cassava Starch Potentials as Natural Polymer in Bioplastic Production. Am. J. Interdiscip. Innov. Res. 2020, 2, 31–39. [Google Scholar] [CrossRef]
- Asrofi, M.; Sapuan, S.M.; Ilyas, R.A.; Ramesh, M. Characteristic of Composite Bioplastics from Tapioca Starch and Sugarcane Bagasse Fiber: Effect of Time Duration of Ultrasonication (Bath-Type). Mater. Today Proc. 2021, 46, 1626–1630. [Google Scholar] [CrossRef]
- Pinto, T.; Pinto, A.; Vilela, A. Edible Coatings and Films for Preparation of Grapevine By-Product Infusions and in Freshly Processed Products. Coatings 2023, 13, 1350. [Google Scholar] [CrossRef]
- Matloob, A.; Ayub, H.; Mohsin, M.; Ambreen, S.; Khan, F.A.; Oranab, S.; Rahim, M.A.; Khalid, W.; Nayik, G.A.; Ramniwas, S.; et al. A Review on Edible Coatings and Films: Advances, Composition, Production Methods, and Safety Concerns. ACS Omega 2023, 8, 28932–28944. [Google Scholar] [CrossRef]
- Chettri, S.; Sharma, N.; Mohite, A.M. Formulation of Extracted Soyabean Starch Based Edible Coatings by Different Methods and Their Impact on Shelf Life of Sapota Fruit. J. Saudi Soc. Agric. Sci. 2024, 23, 205–211. [Google Scholar] [CrossRef]
- Weng, S.; Marcet, I.; Rendueles, M.; Díaz, M. Edible Films from the Laboratory to Industry: A Review of the Different Production Methods. Food Bioprocess Technol. 2024, 18, 3245–3271. [Google Scholar] [CrossRef]
- Pillai, A.R.S.; Eapen, A.S.; Zhang, W.; Roy, S. Polysaccharide-Based Edible Biopolymer-Based Coatings for Fruit Preservation: A Review. Foods 2024, 13, 1529. [Google Scholar] [CrossRef]
- Miranda, M.; Bai, J.; Pilon, L.; Torres, R.; Casals, C.; Solsona, C.; Teixidó, N. Fundamentals of Edible Coatings and Combination with Biocontrol Agents: A Strategy to Improve Postharvest Fruit Preservation. Foods 2024, 13, 2980. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Rempel, C.; Liu, Q. Thermoplastic Starch Processing and Characteristics-A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1353–1370. [Google Scholar] [CrossRef] [PubMed]
- Surendren, A.; Mohanty, A.K.; Liu, Q.; Misra, M. A Review of Biodegradable Thermoplastic Starches, Their Blends and Composites: Recent Developments and Opportunities for Single-Use Plastic Packaging Alternatives. Green Chem. 2022, 19, 8606–8636. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, D.; Liu, X.; Ma, T.; He, J.; Dong, Q.; Din, Z.-U.; Zhou, J.; Chen, L.; Hu, Z.; et al. Improving the Hydrophobicity and Mechanical Properties of Starch Nanofibrous Films by Electrospinning and Cross-Linking for Food Packaging Applications. LWT 2022, 169, 114005. [Google Scholar] [CrossRef]
- Yu, L.; Chen, Y.; Lin, H.; Du, W.; Chen, H.; Shi, J. Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery. Biomaterials 2018, 161, 292–305. [Google Scholar] [CrossRef]
- Dorigato, A. Recycling of Polymer Blends. Adv. Ind. Eng. Polym. Res. 2021, 4, 53–69. [Google Scholar] [CrossRef]
- Van Roijen, E.C.; Miller, S.A. A Review of Bioplastics at End-of-Life: Linking Experimental Biodegradation Studies and Life Cycle Impact Assessments. Resour. Conserv. Recycl. 2022, 181, 106236. [Google Scholar] [CrossRef]
- Chandra, R.; Rustgi, R. Biodegradable Polymers. Prog. Polym. Sci. 1998, 23, 1273–1335. [Google Scholar] [CrossRef]
- Barrows, T.H. Degradable implant materials: A review of synthetic absorbable polymers and their applications. Clin. Mater. 1986, 1, 233–257. [Google Scholar] [CrossRef]
- Hou, L.; Majumder, E.L.-W. Potential for and Distribution of Enzymatic Biodegradation of Polystyrene by Environmental Microorganisms. Materials 2021, 14, 503. [Google Scholar] [CrossRef]
- Fontanella, S.; Bonhomme, S.; Koutny, M.; Husarova, L.; Brussson, J.M.; Courdavault, J.P.; Delort, A.M. Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives. Polym. Degrad. Stab. 2010, 95, 1011–1021. [Google Scholar] [CrossRef]
- Vorobyeva, E.V.; Popov, A.A. Biodegradable composites based on fossil raw materials. Part I: Strategies of synthesis, key properties, and market trends. Polym. Mater. Technol. 2022, 4, 6–24. [Google Scholar]
- Heris, Y.S. Bacterial biodegradation of synthetic plastics: A review. Bull. Natl. Res. Cent. 2024, 48, 41. [Google Scholar] [CrossRef]
- Grabitz, E.; Olsson, O.; Kümmerer, K. Towards the Design of Organosilicon Compounds for Environmental Degradation by Using Structure Biodegradability Relationships. Chemosphere 2021, 279, 130442. [Google Scholar] [CrossRef]
- Ermolovich, O.A. Influence of compatibilizer additives on technological and operational characteristics of biodegradable materials based on starch-filled polyethylene. Zh. Prikl. Khim. 2006, 79, 1542–1547. [Google Scholar]
- De Donno Novelli, L.; Moreno Sayavedra, S.; Rene, E.R. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives. Bioresour. Technol. 2021, 331, 124985. [Google Scholar] [CrossRef]
- Kraus, S.V.; Lukin, N.D.; Ivanova, T.V.; Sdobnikova, O.A. Physicochemical Properties of Polymer Compositions Using Starch. Khranenie I Pererab. Sel’khozsyr’ya 2011, 1, 8–11. [Google Scholar]
- Awasthi, S.K.; Kumar, M.; Kumar, V.; Sarsaiya, S.; Anerao, P.; Ghosh, P.; Singh, L.; Liu, H.; Zhang, Z.; Awasthi, M.K. A Comprehensive Review on Recent Advancements in Biodegradation and Sustainable Management of Biopolymers. Environ. Pollut. 2022, 307, 119600. [Google Scholar] [CrossRef]
- Lukin, N.D.; Usachev, I.S. Technology of Thermoplastic Starches. Vestn. Voronezh. Gos. Univ. Inzh. Tekhnol. 2015, 66, 156–159. [Google Scholar]
- Scaffaro, R.; Maio, A.; Sutera, F.; Gulino, E.F.; Morreale, M. Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers 2019, 11, 651. [Google Scholar] [CrossRef] [PubMed]
- Gioia, C.; Giacobazzi, G.; Vannini, M.; Totaro, G.; Sisti, L.; Colonna, M.; Marchese, P.; Celli, A. End of Life of Biodegradable Plastics: Composting versus Re/Upcycling. ChemSusChem 2021, 14, 4167–4175. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, J.; Zeng, Y.; Sun, X.; Yuan, Q.; Liu, L.; Shen, X. Biodegradation: The best solution to the world problem of discarded polymers. Bioresour. Bioprocess. 2024, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Hemwey, R. Environmental Impacts of Coronavirus Crisis, Challenges Ahead: Report. Available online: https://unctad.org/news/environmental-impacts-coronavirus-crisis-challenges-ahead (accessed on 4 June 2025).
- Chow, C.-F.; So, W.-M.W.; Cheung, T.-Y.; Yeung, S.-K.D. Plastic Waste Problem and Education for Plastic Waste Management. In Emerging Practices in Scholarship of Learning and Teaching in a Digital Era; Springer: Berlin/Heidelberg, Germany, 2017; pp. 125–140. [Google Scholar]
- Popov, A.A.; Zykova, A.K.; Mastalygina, E.E. Biodegradable Composite Materials (Review). Chem. Phys. 2020, 39, 71–80. [Google Scholar] [CrossRef]
- Kasyanov, G.I. Biodegradable Packaging for Food Products. Sci. Technol. Technol. (Polytech. Bull.) 2015, 3, 165–184. [Google Scholar]
- Garifullina, L.I.; Li, N.I.; Garipov, R.M.; Minnakhmetova, A.K. Biodegradation of Polymeric Film Materials (Review). Bull. Technol. Univ. 2019, 22, 47–53. [Google Scholar]
- Aumnate, C.; Kiesel, R.; Rudolph, N. Understanding Plastics Recycling: Economic, Ecological and Technical Aspects of Plastic Waste; Hanser Publishers: Munich, Germany, 2017. [Google Scholar]
- Tsuchimoto, I.; Kajikawa, Y. Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis. Sustainability 2022, 14, 16340. [Google Scholar] [CrossRef]
- Rameshkumar, S.; Shaiju, P.; O’Connor, K.E. Bio-Based and Biodegradable Polymers—State-of-the-Art, Challenges and Emerging Trends. Curr. Opin. Green Sustain. Chem. 2020, 21, 75–81. [Google Scholar] [CrossRef]
- Sousa, A.F.; Vilela, C.; Fonseca, A.C.; Matos, M.; Freire, C.S.R.; Gruter, G.-J.M.; Coelho, J.F.J.; Silvestre, A.J.D. Biobased Polyesters and Other Polymers from 2,5-Furandicarboxylic Acid: A Tribute to Furan Excellency. Polym. Chem. 2015, 6, 5961–5983. [Google Scholar] [CrossRef]
- Lamtai, A.; Elkoun, S.; Robert, M.; Mighri, F.; Diez, C. Mechanical Recycling of Thermoplastics: A Review of Key Issues. Waste 2023, 1, 860–883. [Google Scholar] [CrossRef]
- Kumar, R.; Sadeghi, K.; Jang, J.; Seo, J. Mechanical, Chemical, and Bio-Recycling of Biodegradable Plastics: A Review. Sci. Total Environ. 2023, 882, 163446. [Google Scholar] [CrossRef] [PubMed]
- Hirschberg, C.; Rodrigue, D. Recycling of Polyamides: Processes and Conditions. J. Polym. Sci. 2023, 61, 1669–1682. [Google Scholar] [CrossRef]
- Piemonte, V.; Sabatini, S.; Gironi, F. Chemical Recycling of PLA: A Great Opportunity Towards Sustainable Development. J. Polym. Environ. 2013, 21, 640–647. [Google Scholar] [CrossRef]
- Vu, D.H.; Akesson, D.; Taherzadeh, M.J.; Ferreira, J.A. Recycling Strategies for Polyhydroxyalkanoate-Based Waste Materials: An Overview. Bioresour. Technol. 2020, 298, 122393. [Google Scholar] [CrossRef]
- ISO 14855-2:2018; International Standards Organization. Determination of the Ultimate Aerobic Biodegradability of Plastic Materials under Controlled Composting Conditions—Method by Analysis of Evolved Carbon Dioxide—Part 2: Gravimetric Measurement of Carbon Dioxide Evolved in a Laboratory. ISO: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/72046.html (accessed on 3 June 2025).
- EU Commission. Directive (EU) 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste. Off. J. Eur. Union L 2008, 312, 3–30. [Google Scholar]
- Ruj, B.; Pandey, V.; Jash, P.; Srivastava, V.K. Sorting of Plastic Waste for Effective Recycling. Int. J. Appl. Sci. Eng. Res. 2015, 4, 564–571. [Google Scholar]
- Pacheco-Torgal, F.; Khatib, J.; Colangelo, F.; Tuladhar, R. Use of Recycled Plastics in Eco-Efficient Concrete; Woodhead Publishing: Duxford, UK, 2019. [Google Scholar]
- EU Commission. Council Directive (EU) 1999/31/EC of 26 April 1999 on the Landfill of Waste. Off. J. Eur. Union L 1999, 182, 1–19. [Google Scholar]
- You, Y.S.; Oh, Y.S.; Kim, U.S.; Choi, S.W. National Certification Marks and Standardization Trends for Biodegradable, Oxo-Biodegradable and Bio-Based Plastics. Clean Technol. 2015, 21, 1–11. [Google Scholar] [CrossRef]
- Vasnev, V.A. Biodegradable Polymers. Vysokomol. Soedin. Ser. B 1997, 39, 2073–2086. [Google Scholar]
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of Bioplastics in Natural Environments. Waste Manag. 2017, 59, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Briassoulis, D.; Dejean, C. Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part I: Biodegradation in Soil. J. Polym. Environ. 2010, 18, 384–400. [Google Scholar] [CrossRef]
- Gastaldi, E.; Buendia, F.; Greuet, P.; Benbrahim Bouchou, Z.; Benihya, A.; Cesar, G.; Domenek, S. Degradation and Environmental Assessment of Compostable Packaging Mixed with Biowaste in Full-Scale Industrial Composting Conditions. Bioresour. Technol. 2024, 400, 130670. [Google Scholar] [CrossRef] [PubMed]
- Gnanavel, G.; Thirumarimurugan, M.; Valli, M.J. Biodegradation of Oxo Polyethylene: An Approach Using Soil Compost Degraders. Int. J. Adv. Eng. Technol. 2016, 2, 140–144. [Google Scholar]
- Mhaddolkar, N.; Tischberger-Aldrian, A.; Astrup, T.F.; Vollprecht, D. Consumers Confused ‘Where to Dispose Biodegradable Plastics?’: A Study of Three Waste Streams. Waste Manag. Res. 2024, 42. [Google Scholar] [CrossRef]
- Briassoulis, D.; Dejean, C.; Picuno, P. Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part II: Composting. J. Polym. Environ. 2010, 18, 364–383. [Google Scholar] [CrossRef]
- Folino, A.; Pangallo, D.; Calabrò, P.S. Assessing Bioplastics Biodegradability by Standard and Research Methods: Current Trends and Open Issues. J. Environ. Chem. Eng. 2023, 11, 109424. [Google Scholar] [CrossRef]
- Gadaleta, G.; Andrade-Chapal, J.C.; López-Ibáñez, S.; Mozo-Toledo, M.; Navarro-Calderón, Á. Biodegradability of Bioplastics in Managed and Unmanaged Environments: A Comprehensive Review. Materials 2025, 18, 2382. [Google Scholar] [CrossRef]
- Fernández-Dacosta, C. Alternative Sources to Fossil Carbon: Ex-Ante Assessment of Novel Technologies Using Waste as a Source; Utrecht University: Utrecht, The Netherlands, 2018. [Google Scholar]
- Tschan, M.J.-L.; Brule, E.; Haquette, P.; Thomas, C.M. Synthesis of Biodegradable Polymers from Renewable Resources. Polym. Chem. 2012, 3, 836–845. [Google Scholar] [CrossRef]
- Ryberg, M.W.; Hauschild, M.Z.; Wang, F.; Averous-Monnery, S.; Laurent, A. Global Environmental Losses of Plastics across Their Value Chains. Resour. Conserv. Recycl. 2019, 151, 104459. [Google Scholar] [CrossRef]
- Bondarenko, A.V.; Islamov, S.R.; Ignatyev, K.V.; Mardashov, D.V. Laboratory Studies of Polymer Compositions for Well-Kill under Increased Fracturing. Perm J. Pet. Min. Eng. 2020, 20, 37–48. [Google Scholar] [CrossRef]
- Belousov, A.; Lushpeev, V.; Sokolov, A.; Sultanbekov, R.; Tyan, Y.; Ovchinnikov, E.; Shvets, A.; Bushuev, V.; Islamov, S. Experimental Research of the Possibility of Applying the Hartmann–Sprenger Effect to Regulate the Pressure of Natural Gas in Non-Stationary Conditions. Processes 2025, 13, 1189. [Google Scholar] [CrossRef]
- Oliver-Cuenca, V.; Salaris, V.; Muñoz-Gimena, P.F.; Agüero, Á.; Peltzer, M.A.; Montero, V.A.; Arrieta, M.P.; Sempere-Torregrosa, J.; Pavon, C.; Samper, M.D.; et al. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers 2024, 16, 3015. [Google Scholar] [CrossRef]
Category | Key Points | References |
---|---|---|
Chemical Nature and Synthesis |
| [98,99,100,108,109,110] |
| [111] | |
| [112,113,122,130] | |
| [101] | |
| [100,120,121] | |
Material Properties |
| [118] |
| [99] | |
| [99,131,132,133] | |
Degradation Behavior |
| [113,115,122] |
| [114] | |
| [115] | |
Applications |
| [102,103,104,105,106,107,123,124,125,126] |
| [135,136,137] | |
| [129] | |
Advantages |
| [113,122,123,124,125,126] |
| [122,130] | |
Limitations |
| [100,118] |
| [118] |
Category | Key Points | References |
---|---|---|
Chemical Nature and Synthesis |
| [15,138] |
| [139] | |
| [147] | |
| [147] | |
Feedstocks and Sustainability |
| [148,149,150,151] |
| [149] | |
| [152] | |
Closed-loop Production |
| [146] |
Material Properties |
| [138] |
| [147] | |
Biodegradability and Eco-Friendliness |
| [148,149,153] |
Applications |
| [16,138,141,142,143,145] |
| [144,154,160] | |
| [163] | |
Market Outlook |
| [153] |
Enhancement Techniques |
| [155,156,157,158,159] |
Polymer | Key Applications | Key Properties | Synthesis/Notes | References |
---|---|---|---|---|
PBS | Packaging, bags, mulch films | Low biocompatibility; improved in composites | Blended to enhance thermal/mechanical/gas/flame properties | [164,165,166] |
PCL | Medical (sutures, scaffolds) | Biocompatible, slow degradation (1–2 years) | Ring-opening polymerization of caprolactone | [167,168,169,170,171,172] |
PVA | Packaging, fibers, biomedical | Excellent film formation, thermal stability, water solubility | Biodegradable; crystallinity affects properties | [173,174,175,176,177,178,179,180,181,182,183] |
PBAT | Compostable bags, wraps | Flexible, elongation (~700%), oil/water resistance | Polycondensation of adipic acid, terephthalic acid, and BDO | [184,185] |
PEF/Furan Polyesters | Emerging bioplastics | No petrochemical counterpart | Made via polycondensation of 2,5-FDCA and glycol | [186,214] |
PGA | Biomedical | Degrades via hydrolytic erosion | Linear aliphatic polyester | [187,188] |
PLLA/PLA | Load-bearing, medical, packaging | Biodegradable, good mechanics, recyclable | High melting temp, high MW variants exist | [100,189,190,191,192,193,194,224,225,226,227,228,229,230] |
PLGA | Biomedical (drug delivery) | Biodegradable, biocompatible | Copolymer of lactide and glycolide | [194,195] |
PDLLA | Medical | Amorphous structure | Differs from crystalline PLLA | [196] |
PTMC | Biomedical | Fully biodegradable | Ring-opening polymerization | [197] |
Polyurethanes (PU) | Coatings, adhesives, foams | Properties depend on soft segments | Biodegradable with polyester polyols | [198,199,200,201,202,203,204] |
Bio-PP | General-purpose plastic | Renewable source | Derived from bio-propylene | [205,206] |
PPC | Impact-resistant plastics | Biodegradability enhanced via blends | Copolymer of propylene oxide + CO2 | [208] |
PET (bio/non-bio) | Packaging | Suggested for biodegradation, recyclable | Biodegradation via PETase enzyme possible | [209,210,235] |
PDO | Biomedical | Fully biodegradable | Used in sutures and implants | [211,212,213] |
Agropolymers/Biopolyesters | General bio-based plastic categories | PLA, PHA, etc. | Derived from renewable resources | [215] |
Nonwoven Polymers (PLA, Bionolle) | Medical, hygiene, automotive | Breathable, compostable | Nonwovens from natural/bio-fibers | [216,217,218,219,220,221,222,223] |
Natural Fibers (e.g., coir, kenaf) | Automotive, geotextiles, insulation | Good thermal/sound insulation | Used with recycled polymers | [219,220,221] |
Bio-based PDO | Biopolymer production | High purity, economically viable | Microbial fermentation (DuPont process) | [231,232] |
Bio-based Polyamides (BioPA) | Engineering plastics | High impact, abrasion resistance | Diacid + diamine or amino acid precursors | [233] |
Bio-PET/Bio-PTT | Bottles, textiles | Partially bio-based | New methods to produce bio-based TA | [234] |
Polymer/Material | Key Properties | Biomedical Applications | Processing/Techniques | References |
---|---|---|---|---|
PGA (Polyglycolic Acid) | Strong, fast biodegradation | Sutures, orthopedic screws, bone treatment | Copolymerized with lactide (PGLA) | [236,237,238,239,240,241,242] |
PLA (Polylactic Acid) | Biocompatible, thermoplastic, tailorable degradation | Sutures, implants, scaffolds, drug delivery, wound care, agricultural uses | Electrospinning, melt extrusion, gas foaming, TIPS, phase separation | [239,240,241,249,258,264,293,294,295,296,297,298,299,300,301,302,303] |
PCL (Poly(ε-caprolactone)) | Slow degradation, good flexibility | Drug delivery systems, implants, scaffolds | Copolymers with PLA, electrospinning | [249] |
PDO (Polydioxanone) | Biodegradable, flexible | Medical devices | Approved in medical-grade formulations | [249] |
PLGA (Poly(lactic-co-glycolic acid)) | Variable degradation (days–years) | Controlled drug release, implants | Adjusting lactide–glycolide ratio | [250,251] |
Chitin derivatives | High biodegradability | Wound healing, scaffold development | — | [200] |
PHB (Poly(β-hydroxybutyrate)) | Biodegradable, strong, biocompatible | Sutures, bone grafts, implants | Microbial synthesis from carbon-rich feedstocks | [252,288,289,290,291] |
PHAs (Polyhydroxyalkanoates) | Renewable, biocompatible | Heart valves, vascular grafts, drug carriers | Industrial microbial production | [288,289,290,291] |
PLA/O-MMT Nanocomposites | Enhanced strength, porosity, nanostructure | Scaffolds, foams, biomedical nanomaterials | Melt extrusion, CO2 foaming, selective extraction | [253,254,255,256,257,258] |
PLA/Gelatin + EGF | Bioactive, nanostructured | Diabetic wound scaffolds | Electrospinning | [267] |
Photo-crosslinked synthetic polymers | Tunable crosslinking/degradation | Drug delivery, cell encapsulation, tissue scaffolds | Additive manufacturing, stereolithography | [304,307] |
Scaffold polymers (general) | Porous, bioresorbable | Tissue engineering, regenerative medicine | Salt leaching, freeze-drying, gas foaming, TIPS | [268,269,270,271,272,273,274,275,276,277,278,281,282,283] |
Biodegradable nonwoven polymers | Micro/nanofibrous, agent-releasing | Wound/burn dressings | Electrospinning | [279,280] |
Plasticized PHB | Improved flexibility, processability | Implants, packaging | Plasticizers (DBS, DOS, PEG, PIB), up to 20 wt% | [290] |
Aspect | Details | References |
---|---|---|
Raw Material | Starch (from potato, rice, wheat, tapioca, corn, barley) | [400,401,402,414,416,429,430,431,432,433] |
Key Advantages |
| [400,401,402,409,413,423] |
Main Development Strategies |
| [402,403,404,405,406,425] |
Environmental Impact | Reduces reliance on petroleum resources; decomposes naturally | [407,410,411,412,439] |
Thermoplastic Conversion | Requires plasticizers (e.g., glycerol, water, urea); processed under heat and shear | [419,420,441] |
Additives Used | Natural fillers, essential oils, nanoparticles, PLA, BHET, PVA | [419,424] |
Functional Enhancements | Increased tensile strength, flexibility, barrier properties | [422,423,438] |
Common Applications | Biowaste bags, trays, mulch films, plant pots, cosmetics, food packaging | [417,418,425] |
Commercial Products | Mater-Bi by Novamont S.p.A. | [428] |
Processing Techniques | Casting (lab-scale), thermal processing (preferred for scale-up), extrusion | [435,436,437,438] |
Film Characteristics | Transparent, odorless, tasteless, good mechanical and barrier properties | [435,436,437] |
Challenges |
| [419,438] |
Solutions for Challenges |
| [420,421,438] |
Mechanical Performance | E.g., TPS/PLA/CNF nanocomposites: ~37 MPa tensile strength, ~630 MPa Young’s modulus | [422] |
Nanofillers | Nanocellulose, nanoclays, metal oxides | [423,424] |
Physicochemical Influences |
| [409] |
Modification Methods | Chemical derivatization, cross-linking, enzymatic saccharification, ultrasonication | [415,440,442] |
Recent Advances | Tapioca starch + sugarcane bagasse fiber composites; improved via ultrasonication | [442] |
Market Share (2021) | Starch-based blends ≈ 16.4% of global bioplastic production | [424] |
Starch’s Role in Biopolymer Production | Fermented to glucose → lactic acid → PLA | [434] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dallaev, R.; Papež, N.; Allaham, M.M.; Holcman, V. Biodegradable Polymers: Properties, Applications, and Environmental Impact. Polymers 2025, 17, 1981. https://doi.org/10.3390/polym17141981
Dallaev R, Papež N, Allaham MM, Holcman V. Biodegradable Polymers: Properties, Applications, and Environmental Impact. Polymers. 2025; 17(14):1981. https://doi.org/10.3390/polym17141981
Chicago/Turabian StyleDallaev, Rashid, Nikola Papež, Mohammad M. Allaham, and Vladimír Holcman. 2025. "Biodegradable Polymers: Properties, Applications, and Environmental Impact" Polymers 17, no. 14: 1981. https://doi.org/10.3390/polym17141981
APA StyleDallaev, R., Papež, N., Allaham, M. M., & Holcman, V. (2025). Biodegradable Polymers: Properties, Applications, and Environmental Impact. Polymers, 17(14), 1981. https://doi.org/10.3390/polym17141981