Hydrogen plays a vital role in the global shift toward cleaner energy solutions, with water electrolysis standing out as one of the most promising techniques for generating hydrogen. Despite its potential, the oxygen evolution reaction (OER) involved in this process faces significant challenges,
[...] Read more.
Hydrogen plays a vital role in the global shift toward cleaner energy solutions, with water electrolysis standing out as one of the most promising techniques for generating hydrogen. Despite its potential, the oxygen evolution reaction (OER) involved in this process faces significant challenges, including high overpotentials and slow reaction rates, which underscore the need for advanced electrocatalytic materials to enhance efficiency. Noble metal catalysts are effective but expensive, so transition-metal-based electrocatalysts like nickel–cobalt layered double hydroxides (NiCo LDHs) have become promising alternatives. In this research, a series of NiCo LDH catalysts doped with Fe, Mn, Cu, and Zn were effectively produced using a one-step hydrothermal technique. Among the catalysts, the Fe-doped NiCo LDH exhibited OER activity, achieving a lower overpotential (289 mV) at a current density of 50 mA/cm
2, which was far better than the 450 mV of the undoped NiCo LDH. The Mn-, Cu-, and Zn-NiCo LDHs also exhibited lower overpotentials of 414 mV, 403 mV, and 357 mV, respectively, at this current density. The Fe-doped NiCo LDH had a 3D layered nanoflower structure, increasing the surface area for reactant adsorption. The electrochemically active surface area (ECSA), as indicated by the double-layer capacitance (C
dl), was larger in the doped samples. The C
dl value of the Fe-doped NiCo LDH was 3.72 mF/cm
2, significantly surpassing the 0.82 mF/cm
2 of the undoped NiCo LDH. These changes improved charge transfer and optimized reaction kinetics, enhancing the overall OER performance. This study offers significant contributions to the development of efficient electrocatalysts for the OER, advancing the understanding of key design principles for enhanced catalytic performance.
Full article