Corrosion Performance and Post-Corrosion Evolution of Tensile Behaviors in Rebar Reinforced Ultra-High Performance Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Property
2.2. Specimen Preparation
2.3. Electrochemical Corrosion Test
2.4. Direct Tensile Test
3. Conductive Corrosion Pathways
3.1. Fiber-to-Fiber Pathways and Fiber-to-Rebar Pathways
3.2. Voltage Evolution Under Constant-Current Corrosion Environment
4. Corrosion Performance
4.1. Corrosion Morphology and Crack Propagation
4.2. Surface and Internal Corrosion Damage Development
4.3. Steel Fiber Corrosion
4.4. Rebar Corrosion
5. Mechanical Behaviors
5.1. Crack Behavior and Failure Modes
5.2. Tensile Performance
5.3. Component Response of Corroded R-UHPC in Tension
6. Conclusions
- The embedding of rebar in UHPC leads to the development of F-R conductive pathways, altering corrosion-induced cracking behavior. Beyond the laminar cracks induced by corrosion along F-F pathways, corrosion at F-R pathways generates radial cracks that direct corrosive solution to the rebar, accelerating the electrochemical corrosion process of the specimen.
- Corrosion progressively degrades the tensile crack resistance of R-UHPC. As corrosion advances, the bridging effect of steel fibers deteriorates, and the debonding between rebar and matrix intensifies. These combined effects lead to the gradual loss of R-UHPC’s characteristic multiple-cracking behavior, critically undermining its durability in aggressive environments.
- R-UHPC load-bearing capacity exhibited a transition from gradual to accelerated deterioration phases with corrosion period, aligning with steel fibers reduction temporally. In the initial 4 days of corrosion, only surface-level corrosion and cracking occurred, accompanied by minimal steel fiber loss and a marginal 3.8% reduction in load-bearing capacity. As corrosion progressed, steel fiber content decreased by 22.6% and 41.5% after 8 and 16 days, respectively, accompanied by corresponding bearing capacity reductions of 18.3% and 29.1%.
- The ultrasonic damage factor and the corrosion crack width exhibit approximately linear growth trends before reaching critical damage thresholds, which serve as the indicators of internal and surface corrosion damage in R-UHPC, providing a cost-effective approach to estimate the residual load-bearing capacity of in-service structures non-destructively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Larrard, F.; Sedran, T. Optimization of ultra-high-performance concrete by the use of a packing model. Cem. Concr. Res. 1994, 24, 997–1009. [Google Scholar] [CrossRef]
- Roux, N.; Andrade, C.; Sanjuan, M.A. Experimental Study of Durability of Reactive Powder Concretes. J. Mater. Civ. Eng. 1996, 8, 1–6. [Google Scholar] [CrossRef]
- Matos, A.M.; Nunes, S.; Costa, C.; Aguiar, J.L.B. Durability of an UHPC containing spent equilibrium catalyst. Constr. Build. Mater. 2021, 305, 124681. [Google Scholar] [CrossRef]
- Mishra, O.; Singh, S.P. An overview of microstructural and material properties of ultra-high-performance concrete. J. Sustain. Cem. Mater. 2019, 8, 97–143. [Google Scholar] [CrossRef]
- Du, J.; Meng, W.; Khayat, K.H.; Bao, Y.; Guo, P.; Lyu, Z.; Abu-Obeidah, A.; Nassif, H.; Wang, H. New development of ultra-high-performance concrete (UHPC). Compos. Part B Eng. 2021, 224, 109220. [Google Scholar] [CrossRef]
- Tam, C.; Tam, V.W.; Ng, K. Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong. Constr. Build. Mater. 2012, 26, 79–89. [Google Scholar] [CrossRef]
- Wei, J.; Chen, R.; Huang, W.; Bian, X.; Chen, B. Effect of endogenous chloride ion content and mineral admixtures on the passivation behavior of reinforcement embedded in sea-sand ultra-high performance concrete matrix. Constr. Build. Mater. 2022, 321, 126402. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, S.; Li, A.; Zhang, D. Fiber content optimization of UHPC and R-UHPC oriented to tensile behavior and cost reduction. Constr. Build. Mater. 2023, 395, 132314. [Google Scholar] [CrossRef]
- Wille, K.; El-Tawil, S.; Naaman, A. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cem. Concr. Compos. 2014, 48, 53–66. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, B.; Chen, W.; Liu, H. Multi-scale analysis on the tensile properties of UHPC considering fiber orientation. Compos. Struct. 2022, 280, 114835. [Google Scholar] [CrossRef]
- Yang, J.; Chen, B.; Wu, X.; Xu, G. Quantitative analysis of steel fibers on UHPFRC uniaxial tensile behavior using X-CT and UTT. Constr. Build. Mater. 2023, 368, 130349. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, S.; Li, A.; Yang, X.; Liang, Z. Steel rebar effect on tensile and cracking behavior of UHPFRC based on direct tensile tests and digital image correlation. Cem. Concr. Compos. 2023, 137, 104940. [Google Scholar] [CrossRef]
- Nicolaides, D.; Kanellopoulos, A.; Petrou, M.; Savva, P.; Mina, A. Development of a new Ultra High Performance Fibre Reinforced Cementitious Composite (UHPFRCC) for impact and blast protection of structures. Constr. Build. Mater. 2015, 95, 667–674. [Google Scholar] [CrossRef]
- Yu, Q.; Zhuang, W.; Shi, C. Research progress on the dynamic compressive properties of ultra-high performance concrete under high strain rates. Cem. Concr. Compos. 2021, 124, 104258. [Google Scholar] [CrossRef]
- Azmee, N.M.; Shafiq, N. Ultra-high performance concrete: From fundamental to applications. Case Stud. Constr. Mater. 2018, 9, e00197. [Google Scholar] [CrossRef]
- Hussein, L.; Amleh, L. Structural behavior of ultra-high performance fiber reinforced concrete-normal strength concrete or high strength concrete composite members. Constr. Build. Mater. 2015, 93, 1105–1116. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Zhu, Y.; Shao, X. Experimental study on flexural behavior of damaged reinforced concrete (RC) beam strengthened by toughness-improved ultra-high performance concrete (UHPC) layer. Compos. Part B Eng. 2020, 186, 107834. [Google Scholar] [CrossRef]
- Xinghong, J.; Ke, L.; Min, L.; Yongwei, W.; Yongkang, W.; Lihua, S. Flexural performance test and finite element analysis of UHPC-NC composite beam. Case Stud. Constr. Mater. 2024, 20, e02771. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Xie, T.; Yang, J. Flexural behaviour and cost effectiveness of layered UHPC-NC composite beams. Eng. Struct. 2022, 273, 115060. [Google Scholar] [CrossRef]
- Ji, H.; Liu, C. Ultimate shear resistance of ultra-high performance fiber reinforced concrete-normal strength concrete beam. Eng. Struct. 2020, 203, 109825. [Google Scholar] [CrossRef]
- He, J.; Chao, L. Numerical analysis on shear resistance of ultra-high performance concrete-normal strength concrete composite beam. Struct. Concr. 2021, 22, 1128–1146. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, S.; Zhang, Y.; Jiang, Y. Investigation of cracking and ductility performance of layered UHPC-NC composite members with reinforced UHPC as protective layer under bending moment. Thin-Walled Struct. 2025, 208, 112828. [Google Scholar] [CrossRef]
- Qiu, M.; Hu, Y.; Shao, X.; Zhu, Y.; Li, P.; Li, X. Experimental investigation on flexural and ductile behaviors of rebar-reinforced ultra-high-performance concrete beams. Struct. Concr. 2022, 23, 1533–1554. [Google Scholar] [CrossRef]
- Hasgul, U.; Turker, K.; Birol, T.; Yavas, A. Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios. Struct. Concr. 2018, 19, 1577–1590. [Google Scholar] [CrossRef]
- Shao, Y.; Billington, S.L. Impact of UHPC Tensile Behavior on Steel Reinforced UHPC Flexural Behavior. J. Struct. Eng. 2022, 148, 04021244. [Google Scholar] [CrossRef]
- Zhu, J.; Al-Samawi, M.; Al-Shakhdha, N.A.; Farouk, A.; Liu, Z. Experimental investigation on compressive and flexural behavior of composite concrete systems incorporating UHPC under chloride-sulfate attack. Constr. Build. Mater. 2024, 448, 138179. [Google Scholar] [CrossRef]
- Dong, J.; Wu, H.; Xie, S.; Shang, X.; Shi, Z.; Tu, Z.; Zhou, P.; Zhang, T. Impact of calcium formate and anhydrous sodium sulfate on the flowability, mechanical properties, and hydration characteristics of UHPC. J. Build. Eng. 2024, 96, 110534. [Google Scholar] [CrossRef]
- Yang, L.; Fulin, Y.; Gaozhan, Z. Synergistic effects of sustained loading and sulfate attack on the damage of UHPC based on lightweight aggregate. Constr. Build. Mater. 2023, 374, 130929. [Google Scholar] [CrossRef]
- Pyo, S.; Koh, T.; Tafesse, M.; Kim, H.-K. Chloride-induced corrosion of steel fiber near the surface of ultra-high performance concrete and its effect on flexural behavior with various thickness. Constr. Build. Mater. 2019, 224, 206–213. [Google Scholar] [CrossRef]
- Zhong, R.; Ai, X.; Pan, M.; Yao, Y.; Cheng, Z.; Peng, X.; Wang, J.; Zhou, W. Durability of micro-cracked UHPC subjected to coupled freeze-thaw and chloride salt attacks. Cem. Concr. Compos. 2024, 148, 105471. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Shin, W.; Banthia, N. Corrosion of partially and fully debonded steel fibers from ultra-high-performance concrete and its influence on pullout resistance. Cem. Concr. Compos. 2021, 124, 104269. [Google Scholar] [CrossRef]
- Song, Q.; Yu, R.; Shui, Z.; Rao, S.; Fan, D.; Gao, X. Macro/micro characteristics variation of ultra-high performance fibre reinforced concrete (UHPFRC) subjected to critical marine environments. Constr. Build. Mater. 2020, 256, 119458. [Google Scholar] [CrossRef]
- Yang, S.; Qin, Y.; Kou, J.; Duan, M.; Zhang, X.; Zhou, H.; Cheng, X. Sulfate resistance of UHPC during dry-wet cycling and energy dissipation under compression. J. Build. Eng. 2024, 95, 110149. [Google Scholar] [CrossRef]
- Valcuende, M.; Lliso-Ferrando, J.; Ramón-Zamora, J.; Soto, J. Corrosion resistance of ultra-high performance fibre-reinforced concrete. Constr. Build. Mater. 2021, 306, 124914. [Google Scholar] [CrossRef]
- Song, Q.; Yu, R.; Shui, Z.; Rao, S.; Wang, X.; Sun, M.; Jiang, C. Steel fibre content and interconnection induced electrochemical corrosion of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cem. Concr. Compos. 2018, 94, 191–200. [Google Scholar] [CrossRef]
- Song, Z.; Li, S.; Brouwers, H.; Yu, Q. Corrosion risk and corrosion-induced deterioration of ultra-high performance fiber-reinforced concrete containing initial micro-defects. Cem. Concr. Compos. 2023, 142, 105208. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, H.; Zhou, Z.; Ma, C. Steel corrosion process in ultra-high performance concrete monitored by fiber bragg grating sensor. Constr. Build. Mater. 2024, 431, 136442. [Google Scholar] [CrossRef]
- Song, Z.; Li, S.; Yu, Q. Chloride induced mechanical degradation of ultra-high performance fiber-reinforced concrete: Insights from corrosion evolution paths. Constr. Build. Mater. 2023, 395, 132329. [Google Scholar] [CrossRef]
- Han, J.; Miao, Z.; Wang, J.; Zhang, X.; Lv, Y. Investigation of the corrosion-induced damage mechanism of steel fibers in ultra-high-performance steel fiber-reinforced concrete using X-ray computed tomography. Constr. Build. Mater. 2023, 368, 130429. [Google Scholar] [CrossRef]
- Lv, L.-S.; Wang, J.-Y.; Xiao, R.-C.; Fang, M.-S.; Tan, Y. Influence of steel fiber corrosion on tensile properties and cracking mechanism of ultra-high performance concrete in an electrochemical corrosion environment. Constr. Build. Mater. 2021, 278, 122338. [Google Scholar] [CrossRef]
- Shin, W.; Yoo, D.-Y. Influence of steel fibers corroded through multiple microcracks on the tensile behavior of ultra-high-performance concrete. Constr. Build. Mater. 2020, 259, 120428. [Google Scholar] [CrossRef]
- Bian, C.; Wang, J.-Y. Mechanical and damage mechanisms of reinforced ultra high performance concrete under tensile loading. Constr. Build. Mater. 2019, 226, 259–279. [Google Scholar] [CrossRef]
- T/ CCPA 20-2020; Premix of Ultra-High Performance Concrete. China Association for Engineering Construction Standardization: Beijing, China, 2020. (In Chinese)
- Hiew, S.Y.; Bin Teoh, K.; Raman, S.N.; Hung, C.-C.; Chaen, Y.X.; Kong, D.; Hafezolghorani, M. A unified tensile constitutive model for mono/hybrid fibre-reinforced ultra-high-performance concrete (UHPC). Cem. Concr. Compos. 2024, 150, 105553. [Google Scholar] [CrossRef]
- Al-Osta, M.A.; Sharif, A.M.; Ahmad, S.; Adekunle, S.K.; Al-Huri, M. Effect of hybridization of straight and hooked steel fibers and curing methods on the key mechanical properties of UHPC. J. Mater. Res. Technol. 2021, 15, 3222–3239. [Google Scholar] [CrossRef]
- GB/T 31387-2015; Reactive Powder Concrete. General Administration of Quality Supervision, Inspection and Quarantine of China: Beijing, China, 2015. (In Chinese)
- T/CBMF 37-2018; Ultra-high performance Concrete—Basic Properties and Test Methods. China Building Materials Federation: Beijing, China, 2018. (In Chinese)
- GB/T 228.1-2010; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. General Administration of Quality Supervision, Inspection and Quarantine of China: Beijing, China, 2010. (In Chinese)
- Yoo, D.-Y.; Shin, W. Improvement of fiber corrosion resistance of ultra-high-performance concrete by means of crack width control and repair. Cem. Concr. Compos. 2021, 121, 104073. [Google Scholar] [CrossRef]
- Bashar, I.I.; Visintin, P.; Sheikh, A.H. An experimental investigation on tensile behaviour of corroded ultra-high-performance concrete. Case Stud. Constr. Mater. 2022, 17, e01400. [Google Scholar] [CrossRef]
- Guo, X.; Li, H.; Wang, S. Effects of pre-corroded steel fibers on mechanical properties and interface bond behavior of ultra-high performance concrete-normal concrete. Constr. Build. Mater. 2022, 356, 129234. [Google Scholar] [CrossRef]
- T/CCPA 23-2021; Recommendations for on-Site Placing Ultra-High Performance Concrete. China Association for Engineering Construction Standardization: Beijing, China, 2021. (In Chinese)
- Sagar, C.; Chauhan, A.; Sharma, U.K. Synergistic effect of carbonation and cast-in-chlorides on corrosion initiation in reinforced concrete. Structures 2025, 72, 108264. [Google Scholar] [CrossRef]
- Junior, A.N.; Filho, R.D.T.; de Moraes Rego Fairbairn, E.; Dweck, J. The effects of the early carbonation curing on the mechanical and porosity properties of high initial strength Portland cement pastes. Constr. Build. Mater. 2015, 77, 448–454. [Google Scholar] [CrossRef]
- Li, K.; Zhao, F.; Zhang, Y. Influence of carbonation on the chloride ingress into concrete: Theoretical analysis and application to durability design. Cem. Concr. Res. 2019, 123, 105788. [Google Scholar] [CrossRef]
- Johannesson, B.; Utgenannt, P. Microstructural changes caused by carbonation of cement mortar. Cem. Concr. Res. 2001, 31, 925–931. [Google Scholar] [CrossRef]
- Hule, U.; Rathnarajan, S.; Pillai, R.G.; Gettu, R.; Santhanam, M. 10-year natural carbonation data of concretes with limestone, fly ash, volcanic ash, and slag and exposed to tropical climate in India. Data Brief 2024, 57, 111006. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, Z.; Shi, C.; Yuan, Q.; Zhang, Z. Durability of ultra-high performance concrete—A review. Constr. Build. Mater. 2020, 255, 119296. [Google Scholar] [CrossRef]
- Moradllo, M.K.; Qiao, C.; Ghantous, R.M.; Zaw, M.; Hall, H.; Ley, M.T.; Weiss, W.J. Quantifying the freeze-thaw performance of air-entrained concrete using the time to reach critical saturation modelling approach. Cem. Concr. Compos. 2020, 106, 103479. [Google Scholar] [CrossRef]
- Li, W.; Pour-Ghaz, M.; Castro, J.; Weiss, J. Water Absorption and Critical Degree of Saturation Relating to Freeze-Thaw Damage in Concrete Pavement Joints. J. Mater. Civ. Eng. 2012, 24, 299–307. [Google Scholar] [CrossRef]
- Shen, X.; Brühwiler, E. Influence of local fiber distribution on tensile behavior of strain hardening UHPFRC using NDT and DIC. Cem. Concr. Res. 2020, 132, 106042. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Guo, J.-Y. Damage investigation of ultra high performance concrete under direct tensile test using acoustic emission techniques. Cem. Concr. Compos. 2018, 88, 17–28. [Google Scholar] [CrossRef]
- Xu, W.; Li, Y.; Li, H.; Wang, K.; Zhang, C.; Jiang, Y.; Qiang, S. Corrosion mechanism and damage characteristic of steel fiber concrete under the effect of stray current and salt solution. Constr. Build. Mater. 2022, 314, 125618. [Google Scholar] [CrossRef]
- Zhao, P.; Xu, G.; Wang, Q.; Zeng, Z. Corrosion behavior of steel bars in simulated concrete pore solution under the coupling action of chloride salt and DC stray current. Constr. Build. Mater. 2024, 455, 139126. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, L.; Koleva, D.A. Evaluating the stray current corrosion of steel rebar in different layouts. Measurement 2022, 196, 111217. [Google Scholar] [CrossRef]
- Huang, T.; Wan, C.; Liu, T.; Miao, C. Degradation law of bond strength of reinforced concrete with corrosion-induced cracks and machine learning prediction model. J. Build. Eng. 2024, 98, 111022. [Google Scholar] [CrossRef]
- Kuntal, V.S.; Jiradilok, P.; Bolander, J.E.; Nagai, K. Estimating corrosion levels along confined steel bars in concrete using surface crack measurements and mesoscale simulations guided by model predictive control. Cem. Concr. Compos. 2021, 124, 104233. [Google Scholar] [CrossRef]
- Khorami, M.; Navarro-Gregori, J.; Serna, P. Tensile behaviour of reinforced UHPFRC elements under serviceability conditions. Mater. Struct. 2021, 54, 43. [Google Scholar] [CrossRef]
Fiber Volume Fraction (vol%) | Tensile Strength ft (MPa) | Compressive Strength fc (MPa) | Elastic Modulus E (GPa) |
---|---|---|---|
2.0 | 10.9 | 156.1 | 46.1 |
Steel Rebar | Diameter d (mm) | Elastic Modulus E (GPa) | Yield Strength fy (MPa) | Ultimate Strength fu (MPa) |
---|---|---|---|---|
HRB400 | 10 | 214 | 401 | 549 |
Group | Corrosion Period (d) | Peak Load (kN) | Peak 1 (kN) | Peak 2 (kN) |
---|---|---|---|---|
C00 | 0 | 53.24 | 25.02 | 21.76 |
C02 | 2 | 52.67 | 25.59 | 21.26 |
C04 | 4 | 51.21 | 25.57 | 19.85 |
C06 | 6 | 45.39 | 23.21 | 14.14 |
C08 | 8 | 43.49 | 24.41 | 12.28 |
C16 | 16 | 37.75 | 21.82 | 6.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, S.; Luo, X.; Wang, C. Corrosion Performance and Post-Corrosion Evolution of Tensile Behaviors in Rebar Reinforced Ultra-High Performance Concrete. Materials 2025, 18, 2661. https://doi.org/10.3390/ma18112661
Zhang Y, Zhang S, Luo X, Wang C. Corrosion Performance and Post-Corrosion Evolution of Tensile Behaviors in Rebar Reinforced Ultra-High Performance Concrete. Materials. 2025; 18(11):2661. https://doi.org/10.3390/ma18112661
Chicago/Turabian StyleZhang, Yuchen, Sumei Zhang, Xianzhi Luo, and Chaofan Wang. 2025. "Corrosion Performance and Post-Corrosion Evolution of Tensile Behaviors in Rebar Reinforced Ultra-High Performance Concrete" Materials 18, no. 11: 2661. https://doi.org/10.3390/ma18112661
APA StyleZhang, Y., Zhang, S., Luo, X., & Wang, C. (2025). Corrosion Performance and Post-Corrosion Evolution of Tensile Behaviors in Rebar Reinforced Ultra-High Performance Concrete. Materials, 18(11), 2661. https://doi.org/10.3390/ma18112661