Progress of MXene-Based Materials in the Field of Rechargeable Batteries
Abstract
:1. Introduction
2. Properties of MXene
2.1. Structure of MXene
2.2. Conductivity
2.3. Hydrophilicity
2.4. Mechanical Properties
3. Preparation Methods
3.1. Etching with HF and F Salts
3.2. Alkali Etching
3.3. Electrochemical Etching Method
3.4. Molten Salt Etching
3.5. Chemical Vapor Deposition (CVD) Method
4. Rechargeable Battery
4.1. Lithium–Ion Batteries
4.2. Sodium–Ion Batteries
4.3. Lithium–Sulfur Batteries
4.4. Multivalent Ion Batteries
5. Conclusions and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, B.B.; Jiang, Y.; Liu, T.X.; Guo, Z.; Yu, G.; Titirici, M.-M. Beyond Lithium: A New Era of Sustainable Energy Engineering. Small 2022, 18, 2201793. [Google Scholar] [CrossRef] [PubMed]
- Jangra, S.; Kumar, B.; Sharma, J.; Sengupta, S.; Das, S.; Brajpuriya, R.K.; Ohlan, A.; Mishra, Y.K.; Goyat, M.S. A review on overcoming challenges and pioneering advances: MXene-based materials for energy storage applications. J. Energy Storage 2024, 101, 113810. [Google Scholar] [CrossRef]
- Kiai, M.S.; Eroglu, O.; Aslfattahi, N. Metal-Ion Batteries: Achievements, Challenges, and Prospects. Crystals 2023, 13, 1002. [Google Scholar] [CrossRef]
- Machín, A.; Márquez, F. Advancements in Photovoltaic Cell Materials: Silicon, Organic, and Perovskite Solar Cells. Materials 2024, 17, 1165. [Google Scholar] [CrossRef]
- Chen, S.; Ma, J.; Song, C.; Cai, X.; Jiao, F.; Du, H. Template-free synthesis of flower-like hierarchical vanadium nitride/carbon composites for long cycle-life half and full lithium-ion batteries. J. Power Sources 2022, 520, 230924. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Iqbal, M.; Zhang, Y.; Mahmood, A.; Mahmood, N.; Shi, Z.; Ma, C.; Rosin, J.R.; Zhang, H. Recent Progress and New Horizons in Emerging Novel MXene-Based Materials for Energy Storage Applications for Current Environmental Remediation and Energy Crises. Electrochem. Energy Rev. 2024, 7, 22. [Google Scholar] [CrossRef]
- Ahmed, S.; Ali, A.; Asif, M.; Shim, J.; Park, G. Exploring innovative trends and advancements in rechargeable zinc-air batteries. Inorg. Chem. Commun. 2024, 170, 113288. [Google Scholar] [CrossRef]
- Liao, L.; Wang, S.; Duan, H.; Deng, Y. MXene-based materials: Synthesis, structure and their application for advanced lithium-sulfur batteries. J. Energy Storage 2024, 75, 109555. [Google Scholar] [CrossRef]
- Aghamohammadi, H.; Khazaeli, A. Recent advances in the development of the MXenes/Ti-based nanocomposite anode materials for Li-ion batteries: A review study. J. Energy Storage 2024, 101, 113851. [Google Scholar] [CrossRef]
- Fu, W.; Aizudin, M.; Lee, P.S.; Ang, E.H. Recent Progress in the Applications of MXene-Based Materials in Multivalent Ion Batteries. Small 2024, 20, 2404093. [Google Scholar] [CrossRef]
- Hu, X.; Ma, P.; Zhang, Z.; Wang, J.; Li, C.; Sin Ang, Y.; Li, H.; Yang, H.Y. Emerging transition metal sulfide/MXene composites for the application of electrochemical energy storage. Chem. Eng. J. 2024, 499, 156272. [Google Scholar] [CrossRef]
- Johnson, D.; Qiao, Z.; Uwadiunor, E.; Djire, A. Holdups in Nitride MXene’s Development and Limitations in Advancing the Field of MXene. Small 2022, 18, 2106129. [Google Scholar] [CrossRef]
- Baghchesaraee, K.; Ghasali, E.; Raza, S.; Babenko, A.; Paimard, G.; Bashir, T.; Maleki-Ghaleh, H.; Jie, L.; Orooji, Y. Recent advancements in MXenes synthesis, properties, and cutting-edge applications: A comprehensive review. J. Environ. Chem. Eng. 2024, 12, 113546. [Google Scholar] [CrossRef]
- Liu, H.; Nai, J.; Wang, F.; Li, X.; Yan, M.; Qi, Z.; Liu, Y.; Xu, W.; Liu, G.; Yang, Z. The preparation and utilization of two-dimensional materials in electrochemical energy storage. Ionics 2024, 30, 7741–7780. [Google Scholar] [CrossRef]
- Liu, N.; Wang, Y.; Xiu, S.; Li, R.; Quan, B. Preparation of MXene-based composites and their applications in sodium and potassium-ion batteries. Acta Mater. Compos. Sin. 2024, 41, 5894–5907. [Google Scholar]
- Li, Y.; Vallem, S.; Bae, J. MXene-based composites for high-performance and fire-safe lithium-ion battery. Curr. Appl. Phys. 2023, 53, 142–164. [Google Scholar] [CrossRef]
- Salah, B.; Eid, K.; Abdelgwad, A.M.; Ibrahim, Y.; Abdullah, A.M.; Hassan, M.K.; Ozoemena, K.I. Titanium Carbide (Ti3C2Tx) MXene Ornamented with Palladium Nanoparticles for Electrochemical CO Oxidation. Electroanalysis 2022, 34, 677–683. [Google Scholar] [CrossRef]
- Liu, X.; Chen, T.; Xue, Y.; Fan, J.; Shen, S.; Hossain, M.S.A.; Amin, M.A.; Pan, L.; Xu, X.; Yamauchi, Y. Nanoarchitectonics of MXene/semiconductor heterojunctions toward artificial photosynthesis via photocatalytic CO2 reduction. Coord. Chem. Rev. 2022, 459, 214440. [Google Scholar] [CrossRef]
- Sultana, J.; Siddiqui, S.A.; Afshan, M.; Ghosh, R.; Yadav, S.S.; Riyajuddin, S.; Pahuja, M.; Ali, F.; Rani, S.; Rani, D.; et al. Strategy to Improve the Photovoltaic Performance of Si/CuO Heterojunction via Incorporation of Ta2O5 Hopping Layer and MXene as Transparent Electrode. ACS Appl. Energy Mater. 2022, 5, 3941–3951. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Sun, H.; Zhou, J.; Yang, F.; Li, H.; Chen, H.; Chen, Y.; Liu, Z.; Qiu, Z.; et al. Progress and Perspective: MXene and MXene-Based Nanomaterials for High-Performance Energy Storage Devices. Adv. Electron. Mater. 2021, 7, 2000967. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P.A.; Qin, S.; Han, M.; Yang, W.; Liu, J.; et al. Scalable Manufacturing of Free-Standing, Strong Ti3C2T MXene Films with Outstanding Conductivity. Adv. Mater. 2020, 32, 2001093. [Google Scholar] [CrossRef] [PubMed]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Zhu, C.; Hao, Y.; Wu, H.; Chen, M.; Quan, B.; Liu, S.; Hu, X.; Liu, S.; Ji, Q.; Lu, X.; et al. Self-Assembly of Binderless MXene Aerogel for Multiple-Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding. Nano-Micro Lett. 2023, 16, 57. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, J.; Zhou, M.; Wang, X. Anisotropic MXene@polydopamine- and Dialdehyde Carboxymethyl Cellulose-Modified Collagen Aerogel Supported Form-Stable Phase Change Composites for Light-To-Heat Conversion and Energy Storage. Biomacromolecules 2024, 25, 6451–6464. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, J.; Wang, T.; Li, F.; Yu, H.; Dong, X.; Yang, Y. Flexible room temperature gas sensor based on α-Fe2O3/Ti3C2Tx MXene composites for ppb-level H2S detection. Sens. Actuators B Chem. 2024, 421, 136543. [Google Scholar] [CrossRef]
- Han, F.; Yan, D.; Guan, X.; Lu, Q.; Yin, S.; Yan, Y.; Zhou, H.; Yang, P.; Zhang, Q.; Zhang, S.; et al. Self-assembled 3D CoSe-based sulfur host enables high-efficient and durable electrocatalytic conversion of polysulfides for flexible lithium-sulfur batteries. Energy Storage Mater. 2024, 71, 103652. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, J.; Liu, K.; Jiang, S.-X.; Zhang, J.; Wang, Q.; Lan, C.; Jia, H.; Li, Z. Electric-magnetic dual-gradient structure design of thin MXene/Fe3O4 films for absorption-dominated electromagnetic interference shielding. J. Colloid Interface Sci. 2025, 678, 950–958. [Google Scholar] [CrossRef]
- Huang, H.; Dong, C.; Feng, W.; Wang, Y.; Huang, B.; Chen, Y. Biomedical engineering of two-dimensional MXenes. Adv. Drug Deliv. Rev. 2022, 184, 114178. [Google Scholar] [CrossRef]
- Liu, A.; Liang, X.; Ren, X.; Guan, W.; Gao, M.; Yang, Y.; Yang, Q.; Gao, L.; Li, Y.; Ma, T. Recent Progress in MXene-Based Materials: Potential High-Performance Electrocatalysts. Adv. Funct. Mater. 2020, 30, 2003437. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef]
- Barsoum, M.W.; Radovic, M. Elastic and Mechanical Properties of the MAX Phases. Annu. Rev. Mater. Res. 2011, 41, 195–227. [Google Scholar] [CrossRef]
- Panda, S.; Deshmukh, K.; Khadheer Pasha, S.K.; Theerthagiri, J.; Manickam, S.; Choi, M.Y. MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives. Coord. Chem. Rev. 2022, 462, 214518. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, P.; Soomro, R.A.; Zhu, Q.; Xu, B. Advances in the Synthesis of 2D MXenes. Adv. Mater. 2021, 33, 2103148. [Google Scholar] [CrossRef]
- Zhao, M.-Q.; Ren, C.E.; Ling, Z.; Lukatskaya, M.R.; Zhang, C.; Van Aken, K.L.; Barsoum, M.W.; Gogotsi, Y. Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance. Adv. Mater. 2015, 27, 339–345. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Jia, L.; Zhou, S.; Ahmed, A.; Yang, Z.; Liu, S.; Wang, H.; Li, F.; Zhang, M.; Zhang, Y.; Sun, L. Tuning MXene electrical conductivity towards multifunctionality. Chem. Eng. J. 2023, 475, 146361. [Google Scholar] [CrossRef]
- Lai, S.; Jeon, J.; Jang, S.K.; Xu, J.; Choi, Y.J.; Park, J.-H.; Hwang, E.; Lee, S. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O). Nanoscale 2015, 7, 19390–19396. [Google Scholar] [CrossRef]
- Shein, I.R.; Ivanovskii, A.L. Graphene-like nanocarbides and nanonitrides of d metals (MXenes): Synthesis, properties and simulation. Micro Nano Lett. 2013, 8, 59–62. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, Z.; Shen, P. Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2X2 (X = F, OH) Monolayer. J. Am. Chem. Soc. 2012, 134, 16909–16916. [Google Scholar] [CrossRef]
- Zhang, N.; Hong, Y.; Yazdanparast, S.; Asle Zaeem, M. Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: A comprehensive first principles study. 2D Mater. 2018, 5, 045004. [Google Scholar] [CrossRef]
- Gao, K.; Hou, L.-A.; Hu, L.; Chai, Y.; Takizawa, S.; Graham, N.J.D.; Sun, Z.; Zhang, Z.; Ma, J.; Yang, Y. Co single-atom-embedded MXene nanosheets as catalytic UF membrane instant water purification with fouling resistant performance. Appl. Catal. B Environ. Energy 2025, 361, 124664. [Google Scholar] [CrossRef]
- Hussain, I.; Lamiel, C.; Javed, M.S.; Ahmad, M.; Sahoo, S.; Chen, X.; Qin, N.; Iqbal, S.; Gu, S.; Li, Y.; et al. MXene-based heterostructures: Current trend and development in electrochemical energy storage devices. Prog. Energy Combust. Sci. 2023, 97, 101097. [Google Scholar] [CrossRef]
- Patra, S.; Kiran, N.U.; Mane, P.; Chakraborty, B.; Besra, L.; Chatterjee, S.; Chatterjee, S. Hydrophobic MXene with enhanced electrical conductivity. Surf. Interfaces 2023, 39, 102969. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Xue, S.; Guan, W.; Gao, L.; Ma, T.; Ren, X.; Liu, A.; Li, X. MXene-based materials: Potential high-performance electrodes for aqueous ion batteries. J. Mater. Chem. A 2024, 12, 30944–30970. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, N.; Wang, T.; Wang, Y.; Liang, B.; Zhang, Y.; Luo, S.; Xiong, Y.; Wang, Q.; Fan, J. Theoretical insights and design of MXene for aqueous batteries and supercapacitors: Status, challenges, and perspectives. Nanoscale Horiz. 2025, 10, 78–103. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Yang, Q.-H.; Meng, X.-Y.; Zhen, M.-M.; Hu, Z.-Z.; Shen, B.-X. Research status and perspectives of MXene-based materials for aqueous zinc-ion batteries. Rare Met. 2024, 43, 1867–1885. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Hou, S.; Xie, J.; Li, Z.; Hu, Q.; Zhou, A.; Liu, X. Effect of morphology and structure of MXene Ti3C2Tx on mechanical, thermal properties of PEEK nanocomposite. Carbon 2024, 228, 119436. [Google Scholar] [CrossRef]
- Tian, S.; Zhou, K.; Huang, C.-Q.; Qian, C.; Gao, Z.; Liu, Y. Investigation and understanding of the mechanical properties of MXene by high-throughput computations and interpretable machine learning. Extrem. Mech. Lett. 2022, 57, 101921. [Google Scholar] [CrossRef]
- Shi, X.; Yu, Z.; Liu, Z.; Cao, N.; Zhu, L.; Liu, Y.; Zhao, K.; Shi, T.; Yin, L.; Fan, Z. Scalable, High-Yield Monolayer MXene Preparation from Multilayer MXene for Many Applications. Angew. Chem. Int. Ed. 2025, 64, e202418420. [Google Scholar] [CrossRef]
- Jiao, C.; Deng, Z.; Min, P.; Lai, J.; Gou, Q.; Gao, R.; Yu, Z.-Z.; Zhang, H.-B. Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding. Carbon 2022, 198, 179–187. [Google Scholar] [CrossRef]
- Luo, S.; Xiang, T.; Dong, J.; Su, F.; Ji, Y.; Liu, C.; Feng, Y. A double crosslinking MXene/cellulose nanofiber layered film for improving mechanical properties and stable electromagnetic interference shielding performance. J. Mater. Sci. Technol. 2022, 129, 127–134. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Y.; Li, L.; Wang, Y.; Wang, J.; Xiong, J.; Du, S.; Zhang, P.; Shi, X.; Yu, J. MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polym. Rev. 2021, 61, 80–115. [Google Scholar] [CrossRef]
- Abid, M.Z.; Rafiq, K.; Aslam, A.; Jin, R.; Hussain, E. Scope, evaluation and current perspectives of MXene synthesis strategies for state of the art applications. J. Mater. Chem. A 2024, 12, 7351–7395. [Google Scholar] [CrossRef]
- Kali, S.R.; Meghana, V.; Madhushree, R.; Sunaja Devi, K.R.; Pinheiro, D. Research progress of MXenes and MXenes-based catalysts for photocatalytic water splitting: A systematic review. J. Environ. Chem. Eng. 2024, 12, 112748. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, H.; Wang, L.; Li, Z.; Li, R.; Jiang, L.; Jiang, L.; Jiao, J.; Mu, S. Coupling CoIr Nanoalloys with MXene by Lewis Acidic Molten Salt Etching for Wide-pH-Environment Hydrogen Evolution Reaction. Small Methods 2024, 9, e2401449. [Google Scholar] [CrossRef]
- Murali, G.; Reddy Modigunta, J.K.; Park, Y.H.; Lee, J.-H.; Rawal, J.; Lee, S.-Y.; In, I.; Park, S.-J. A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS Nano 2022, 16, 13370–13429. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Zhan, X.; Si, C.; Zhou, J.; Sun, Z. MXene and MXene-based composites: Synthesis, properties and environment-related applications. Nanoscale Horiz. 2020, 5, 235–258. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, Y.; Zhang, M.; Sui, J.; Peng, W.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. N-Butyllithium-Treated Ti3C2Tx MXene with Excellent Pseudocapacitor Performance. ACS Nano 2019, 13, 9449–9456. [Google Scholar] [CrossRef]
- Xue, N.; Li, X.; Han, L.; Zhu, H.; Zhao, X.; Zhuang, J.; Gao, Z.; Tao, X. Fluorine-free synthesis of ambient-stable delaminated Ti2CTx (MXene). J. Mater. Chem. A 2022, 10, 7960–7967. [Google Scholar] [CrossRef]
- Naguib, M.; Halim, J.; Lu, J.; Cook, K.M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969. [Google Scholar] [CrossRef] [PubMed]
- Halim, J.; Palisaitis, J.; Lu, J.; Thörnberg, J.; Moon, E.J.; Precner, M.; Eklund, P.; Persson, P.O.Å.; Barsoum, M.W.; Rosen, J. Synthesis of Two-Dimensional Nb1.33C (MXene) with Randomly Distributed Vacancies by Etching of the Quaternary Solid Solution (Nb2/3Sc1/3)2AlC MAX Phase. ACS Appl. Nano Mater. 2018, 1, 2455–2460. [Google Scholar] [CrossRef]
- Sun, L.; Sun, J.; Zhai, S.; Yang, H.; Chen, X.; Deng, W.-Q.; Wu, H. Nb2CT MXene Derived Polymorphic Nb2O5. Small 2023, 19, 2300914. [Google Scholar] [CrossRef]
- Rafieerad, A.; Amiri, A.; Sequiera, G.L.; Yan, W.; Chen, Y.; Polycarpou, A.A.; Dhingra, S. Development of Fluorine-Free Tantalum Carbide MXene Hybrid Structure as a Biocompatible Material for Supercapacitor Electrodes. Adv. Funct. Mater. 2021, 31, 2100015. [Google Scholar] [CrossRef]
- Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B.C.; Hultman, L.; Kent, P.R.C.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano 2015, 9, 9507–9516. [Google Scholar] [CrossRef]
- Bayhan, Z.; El-Demellawi, J.K.; Yin, J.; Khan, Y.; Lei, Y.; Alhajji, E.; Wang, Q.; Hedhili, M.N.; Alshareef, H.N. A Laser-Induced Mo2CT MXene Hybrid Anode for High-Performance Li-Ion Batteries. Small 2023, 19, 2208253. [Google Scholar] [CrossRef]
- Cao, J.-M.; Zatovsky, I.V.; Gu, Z.-Y.; Yang, J.-L.; Zhao, X.-X.; Guo, J.-Z.; Xu, H.; Wu, X.-L. Two-dimensional MXene with multidimensional carbonaceous matrix: A platform for general-purpose functional materials. Prog. Mater. Sci. 2023, 135, 101105. [Google Scholar] [CrossRef]
- Miao, B.; Cao, Y.; Zhu, Q.; Nawaz, M.A.; Ordiozola, J.A.; Reina, T.R.; Bai, Z.; Ren, J.; Wei, F. Scalable synthesis of 2D Ti2CTx MXene and molybdenum disulfide composites with excellent microwave absorbing performance. Adv. Compos. Hybrid Mater. 2023, 6, 61. [Google Scholar] [CrossRef]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Meslam, M.; Eid, K.; Salah, B.; Abdullah, A.M.; Ozoemena, K.I.; Elzatahry, A.; Sharaf, M.A.; Sillanpää, M. A review of MXenes as emergent materials for dye removal from wastewater. Sep. Purif. Technol. 2022, 282, 120083. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, S.J.; Seo, D.; Chae, Y.; Anayee, M.; Lee, Y.; Gogotsi, Y.; Ahn, C.W.; Jung, H.-T. Etching Mechanism of Monoatomic Aluminum Layers during MXene Synthesis. Chem. Mater. 2021, 33, 6346–6355. [Google Scholar] [CrossRef]
- Khan, U.; Gao, B.; Kong, L.B.; Chen, Z.; Que, W. Green synthesis of fluorine-free MXene via hydrothermal process: A sustainable approach for proton supercapacitor electrodes. Electrochim. Acta 2024, 475, 143651. [Google Scholar] [CrossRef]
- Halim, J.; Lukatskaya, M.R.; Cook, K.M.; Lu, J.; Smith, C.R.; Näslund, L.-Å.; May, S.J.; Hultman, L.; Gogotsi, Y.; Eklund, P.; et al. Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films. Chemistry of Materials 2014, 26, 2374–2381. [Google Scholar] [CrossRef]
- Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B.; et al. Fluorine-Free Synthesis of High-Purity Ti3C2T (T=OH, O) via Alkali Treatment. Angew. Chem. Int. Ed. 2018, 57, 6115–6119. [Google Scholar] [CrossRef]
- Xuan, J.; Wang, Z.; Chen, Y.; Liang, D.; Cheng, L.; Yang, X.; Liu, Z.; Ma, R.; Sasaki, T.; Geng, F. Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angew. Chem. Int. Ed. 2016, 55, 14569–14574. [Google Scholar] [CrossRef]
- Sun, M.; Ye, W.; Zhang, J.; Zheng, K. Structure, Properties, and Preparation of MXene and the Application of Its Composites in Supercapacitors. Inorganics 2024, 12, 112. [Google Scholar] [CrossRef]
- Song, M.; Pang, S.-Y.; Guo, F.; Wong, M.-C.; Hao, J. Fluoride-Free 2D Niobium Carbide MXenes as Stable and Biocompatible Nanoplatforms for Electrochemical Biosensors with Ultrahigh Sensitivity. Adv. Sci. 2020, 7, 2001546. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A.G.; Lohe, M.R.; Blom, P.W.M.; Feng, X. Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System. Angew. Chem. Int. Ed. 2018, 57, 15491–15495. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Halim, J.; Dyatkin, B.; Naguib, M.; Buranova, Y.S.; Barsoum, M.W.; Gogotsi, Y. Inside Cover: Room-Temperature Carbide-Derived Carbon Synthesis by Electrochemical Etching of MAX Phases (Angew. Chem. Int. Ed. 19/2014). Angew. Chem. Int. Ed. 2014, 53, 4728. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Halim, J.; Dyatkin, B.; Naguib, M.; Buranova, Y.S.; Barsoum, M.W.; Gogotsi, Y. Room-Temperature Carbide-Derived Carbon Synthesis by Electrochemical Etching of MAX Phases. Angew. Chem. Int. Ed. 2014, 126, 4977–4980. [Google Scholar] [CrossRef]
- Liu, L.; Zschiesche, H.; Antonietti, M.; Gibilaro, M.; Chamelot, P.; Massot, L.; Rozier, P.; Taberna, P.-L.; Simon, P. In Situ Synthesis of MXene with Tunable Morphology by Electrochemical Etching of MAX Phase Prepared in Molten Salt. Adv. Energy Mater. 2023, 13, 2203805. [Google Scholar] [CrossRef]
- Kruger, D.D.; Delgado, J.J.; Recio, F.J.; Goberna-Ferrón, S.; Primo, A.; García, H. Influence of surface terminal groups on the efficiency of two-electron oxygen reduction reaction catalyzed by iron single atoms on Ti3C2Tx (T = Cl, Br, NH) MXene. J. Mater. Chem. A 2024, 12, 25291–25303. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, B.; Tang, Q.; Yang, Y.; Pu, B.; Bai, J.; Xu, J.; Feng, Q.; Liu, Y.; Yang, W. Ultrafast Synthesis of MXenes in Minutes via Low-Temperature Molten Salt Etching. Adv. Mater. 2024, 36, 2410736. [Google Scholar] [CrossRef]
- Khan, U.; Luo, Y.; Kong, L.B.; Que, W. Synthesis of fluorine free MXene through lewis acidic etching for application as electrode of proton supercapacitors. J. Alloys Compd. 2022, 926, 166903. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Luo, K.; Li, Y.; Chang, K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P.; et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737. [Google Scholar] [CrossRef]
- Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P.O.Å.; Eklund, P.; Hultman, L.; Li, M.; et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899. [Google Scholar] [CrossRef]
- Liu, L.; Orbay, M.; Luo, S.; Duluard, S.; Shao, H.; Harmel, J.; Rozier, P.; Taberna, P.-L.; Simon, P. Exfoliation and Delamination of Ti3C2Tx MXene Prepared via Molten Salt Etching Route. ACS Nano 2022, 16, 111–118. [Google Scholar] [CrossRef]
- Xiang, M.; Shen, Z.; Zheng, J.; Song, M.; He, Q.; Yang, Y.; Zhu, J.; Geng, Y.; Yue, F.; Dong, Q.; et al. Gas-phase synthesis of Ti2CCl2 enables an efficient catalyst for lithium-sulfur batteries. Innovation 2024, 5, 100540. [Google Scholar] [CrossRef]
- Xu, C.; Wang, L.; Liu, Z.; Chen, L.; Guo, J.; Kang, N.; Ma, X.-L.; Cheng, H.-M.; Ren, W. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015, 14, 1135–1141. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, C.; Filatov, A.S.; Cho, W.; Lagunas, F.; Wang, M.; Vaikuntanathan, S.; Liu, C.; Klie, R.F.; Talapin, D.V. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 2023, 379, 1242–1247. [Google Scholar] [CrossRef]
- Palacín, M.R.; de Guibert, A. Why do batteries fail? Science 2016, 351, 1253292. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Wong, Y.C.; Song, G.; Zhu, D.M.; Wen, C. Improvement on electrochemical performances of nanoporous titania as anode of lithium-ion batteries through annealing of pure titanium foils. J. Energy Chem. 2018, 27, 250–263. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Hadjikhani, A.; Shahbazmohamadi, S.; Beidaghi, M. Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries. ACS Nano 2017, 11, 11135–11144. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, C.; Zhao, Y.; Pan, W.; Xie, K.; Yue, P.; Zhang, G.; Omar, A.; Liu, L.; Yu, M.; et al. Freestanding MXene-based macroforms for electrochemical energy storage applications. SusMat 2023, 3, 471–497. [Google Scholar] [CrossRef]
- Meng, X.; Wang, L.; Wang, X.; Zhen, M.; Hu, Z.; Guo, S.-Q.; Shen, B. Recent developments and perspectives of MXene-Based heterostructures in photocatalysis. Chemosphere 2023, 338, 139550. [Google Scholar] [CrossRef]
- Ali, S.; Ahsan Farooq Qaisar, M.; Sufyan Javed, M.; Umer, K.; Alarfaji, S.S.; Mateen, M.; Chhattal, M.; Ali, S.; Parkash, A.; Lama Tamang, T.; et al. Two-dimensional MXene based innovative electrode materials for supercapacitors: Recent advances and prospects. Fuel 2024, 377, 132783. [Google Scholar] [CrossRef]
- Li, J.; Guo, C.; Li, C.M. Recent Advances of Two-Dimensional (2 D) MXenes and Phosphorene for High-Performance Rechargeable Batteries. ChemSusChem 2020, 13, 1047–1070. [Google Scholar] [CrossRef]
- Won, J.S.; Prasad, C.; Jeong, S.-G.; Rosaiah, P.; Reddy, A.S.; Ahmad, Z.; Sangaraju, S.; Choi, H.Y. Recent advances in the development of MXenes/cellulose based composites: A review. Int. J. Biol. Macromol. 2023, 240, 124477. [Google Scholar] [CrossRef]
- Li, J.; Guo, C.; Tao, L.; Meng, J.; Xu, X.; Liu, F.; Wang, X. Electrode and Electrolyte Design Strategies Toward Fast-Charging Lithium-Ion Batteries. Adv. Funct. Mater. 2024, 34, 2409097. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, X.; Zhang, Y.; Wei, Y.; Shen, N.; Chen, S.; Xu, B. Burgeoning Silicon/MXene Nanocomposites for Lithium Ion Batteries: A Review. Adv. Funct. Mater. 2024, 34, 2402307. [Google Scholar] [CrossRef]
- Li, X.-Z.; Yuan, S.-X.; Li, M.-J.; Zhu, P.-Y.; Duan, H.-Z.; Chen, Y. Designing multifunctional, 3D cross-linked network binder for actual use in high performance lithium ion batteries silicon based anodes. J. Power Sources 2024, 623, 235490. [Google Scholar] [CrossRef]
- Zhu, S.; Cui, B.; Chen, Q.; Duan, Y.; Han, J.; Tao, J.; Xu, X.; Liao, Y.; Peng, Y.; Wang, Y. Roles of MXene-Based Hybrids in Fabricating Flexible Anodes for Advanced Lithium-Ion Batteries: A Mini Review. Energy Fuels 2024, 38, 18312–18329. [Google Scholar] [CrossRef]
- Peng, Q.; Rehman, J.; Eid, K.; Alofi, A.S.; Laref, A.; Albaqami, M.D.; Alotabi, R.G.; Shibl, M.F. Vanadium Carbide (V4C3) MXene as an Efficient Anode for Li-Ion and Na-Ion Batteries. Nanomaterials 2022, 12, 2825. [Google Scholar] [CrossRef]
- Du, X.-P.; Huang, Y.; Wang, J.-M.; Feng, Z.-H.; Sun, X. Si/TiO2 carbon fiber core encapsulated in hierarchical multiple MXene@Co-MoS2 shells for constructing a free-standing anode of lithium storage. Rare Met. 2024, 43, 4222–4233. [Google Scholar] [CrossRef]
- Ju, Z.; Zhang, B.; Zheng, T.; Marschilok, A.C.; Takeuchi, E.S.; Takeuchi, K.J.; Yu, G. Assembled MXene–Liquid Metal Cages on Silicon Microparticles as Self-Healing Battery Anodes. Nano Lett. 2024, 24, 6610–6616. [Google Scholar] [CrossRef]
- Han, X.; Zhou, W.; Chen, M.; Chen, J.; Wang, G.; Liu, B.; Luo, L.; Chen, S.; Zhang, Q.; Shi, S.; et al. Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries. J. Energy Chem. 2022, 67, 727–735. [Google Scholar] [CrossRef]
- Kim, H.; Choi, J.; Bae, I.; Son, H.; Choi, J.; Lee, J.; Kim, J. Functionalized MXene anodes for high-performance lithium-ion batteries. J. Alloys Compd. 2025, 1010, 177510. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Hou, S.; Zhou, Q.; Zhang, Y.; Chen, X.; Pu, N.; Liu, J.; Yan, C. Nitrogen, phosphorus, and sulfur co-doped carbon nanotubes/melamine foam composite electrode for high-performance vanadium redox flow battery. J. Mater. Sci. Technol. 2024, 190, 127–134. [Google Scholar] [CrossRef]
- Li, D.; Wang, H.; Zhou, T.; Zhang, W.; Liu, H.K.; Guo, Z. Unique Structural Design and Strategies for Germanium-Based Anode Materials Toward Enhanced Lithium Storage. Adv. Energy Mater. 2017, 7, 1700488. [Google Scholar] [CrossRef]
- Li, Y.; Xie, J.; Wang, R.; Min, S.; Xu, Z.; Ding, Y.; Su, P.; Zhang, X.; Wei, L.; Li, J.-F.; et al. Textured Asymmetric Membrane Electrode Assemblies of Piezoelectric Phosphorene and Ti3C2Tx MXene Heterostructures for Enhanced Electrochemical Stability and Kinetics in LIBs. Nano-Micro Lett. 2024, 16, 79. [Google Scholar] [CrossRef]
- Bo, Z.; Zheng, Z.; Huang, Y.; Chen, P.; Yan, J.; Cen, K.; Mo, R.; Yang, H.; Ostrikov, K. Covalently bonded MXene@Antimonene heterostructure anode for fast lithium-ion storage. Chem. Eng. J. 2024, 485, 149837. [Google Scholar] [CrossRef]
- Xing, J.; Yan, L.; Chen, T.; Song, Z.; Wang, Z.; Liu, Y.; Zhou, L.; Li, J. Highly lithiophilic and structurally stable Cu–Zn alloy skeleton for high-performance Li-rich ternary anodes. J. Colloid Interface Sci. 2023, 652, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Kreissl, J.J.A.; Dang, H.A.; Mogwitz, B.; Rohnke, M.; Schröder, D.; Janek, J. Implementation of Different Conversion/Alloy Active Materials as Anodes for Lithium-Based Solid-State Batteries. ACS Appl. Mater. Interfaces 2024, 16, 26195–26208. [Google Scholar] [CrossRef]
- Li, X.-Y.; Qu, J.-K.; Yin, H.-Y. Electrolytic alloy-type anodes for metal-ion batteries. Rare Met. 2021, 40, 329–352. [Google Scholar] [CrossRef]
- Guan, H.; Feng, D.; Xu, X.; Chen, Q.; Mei, Y.; Zeng, T.; Xie, D. Rational carbon design and confinement of leaf-like Tin trisulfide@Carbon/MXene Ti3C2Tx for enhanced conductivity and lithium storage kinetics. Adv. Compos. Hybrid Mater. 2024, 7, 112. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, J.; Yu, F.; Zhou, Y.; Li, G.; Cheng, W.; Duan, P.; Qi, H.; Xie, H. Chemically bonded MXene/SnSe2 composite with special structural transformation as a high-performance anode for lithium and potassium ions battery. Chem. Eng. J. 2024, 481, 148737. [Google Scholar] [CrossRef]
- Liu, W.; Cao, J.; Song, F.; Zhang, D.-D.; Okhawilai, M.; Yi, J.; Qin, J.-Q.; Zhang, X.-Y. A double transition metal Ti2NbC2Tx MXene for enhanced lithium-ion storage. Rare Met. 2023, 42, 100–110. [Google Scholar] [CrossRef]
- Er, D.; Li, J.; Naguib, M.; Gogotsi, Y.; Shenoy, V.B. Ti3C2 MXene as a High Capacity Electrode Material for Metal (Li, Na, K, Ca) Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 11173–11179. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, L.; Yin, S. Synthesis and lithium ion storage performance of novel two dimensional vanadium niobium carbide (VNbCTx) MXene. Compos. Commun. 2023, 40, 101588. [Google Scholar] [CrossRef]
- Lu, L.; Guan, G.; Wang, J.; Meng, W.; Li, S.; Zhang, Y.; Guo, F. Nitrogen-doped carbon dots modified double transition metal MXene (Ti2NbC2Tx) for superior lithium/sodium-ion storage. Chem. Eng. J. 2024, 480, 147999. [Google Scholar] [CrossRef]
- Ma, C.; Tang, X.; Ben, H.; Jiang, W.; Shao, X.; Wang, G.; Sun, B. Promoting Reaction Kinetics and Boosting Sodium Storage Capability via Constructing Stable Heterostructures for Sodium-Ion Batteries. Adv. Funct. Mater. 2025, 35, 2412879. [Google Scholar] [CrossRef]
- Kim, H. Sodium-Ion Battery: Can It Compete with Li-Ion? ACS Mater. Au 2023, 3, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Riza, S.A.; Xu, R.-G.; Liu, Q.; Hassan, M.; Yang, Q.; Mu, D.-B.; Li, L.; Wu, F.; Chen, R.-J. A review of anode materials for sodium ion batteries. New Carbon Mater. 2024, 39, 743–769. [Google Scholar] [CrossRef]
- Bai, Z.; Yao, Q.; Wang, M.; Meng, W.; Dou, S.; Liu, H.K.; Wang, N. Low-Temperature Sodium-Ion Batteries: Challenges and Progress. Adv. Energy Mater. 2024, 14, 2303788. [Google Scholar] [CrossRef]
- Wang, X.; Shen, X.; Gao, Y.; Wang, Z.; Yu, R.; Chen, L. Atomic-Scale Recognition of Surface Structure and Intercalation Mechanism of Ti3C2X. J. Am. Chem. Soc. 2015, 137, 2715–2721. [Google Scholar] [CrossRef]
- Lei, Y.-J.; Yan, Z.-C.; Lai, W.-H.; Chou, S.-L.; Wang, Y.-X.; Liu, H.-K.; Dou, S.-X. Tailoring MXene-Based Materials for Sodium-Ion Storage: Synthesis, Mechanisms, and Applications. Electrochem. Energy Rev. 2020, 3, 766–792. [Google Scholar] [CrossRef]
- Xie, Y.; Dall’Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M.W.; Zhuang, H.L.; Kent, P.R.C. Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries. ACS Nano 2014, 8, 9606–9615. [Google Scholar] [CrossRef]
- Zhang, D.-T.; Li, H.-Y.; Shi, W.-J.; Hu, Y.-X.; Kong, L.-B.; Lu, X.-F.; Yuan, Z.-Z.; Liu, M.-C. Enhancing the sodium-ion storage performance of two-dimensional layered Ti3CN with a molecular riveting strategy. Chem. Eng. J. 2024, 494, 152905. [Google Scholar] [CrossRef]
- Sun, M.; Ren, X.; Gan, Z.; Liu, M.; Sun, Y.; Shen, W.; Li, Z.; Fu, Y. Nanostructured binary transition-metal-sulfides and nanocomposites as high-performance electrodes for hybrid supercapacitors. Appl. Phys. Rev. 2024, 11, 021318. [Google Scholar] [CrossRef]
- Xia, T.; Umar, A.; Wu, X. Transition metal sulfide/hydroxide electrode materials with high specific capacities. Mater. Adv. 2022, 3, 6246–6252. [Google Scholar] [CrossRef]
- Li, S.; Shen, Y.; Ni, D.; Wang, Q. A new 3D metallic carbon allotrope composed of penta-graphene nanoribbons as a high-performance anode material for sodium-ion batteries. J. Mater. Chem. A 2021, 9, 23214–23222. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Q.; Zhu, K.; Wang, G.; Cao, D.; Yan, J. N-doped carbon coated MoO3/MoS2 integrated MXene nanosheets with ultra-long cycle stability for sodium-ion batteries. Appl. Surf. Sci. 2024, 652, 159294. [Google Scholar] [CrossRef]
- Hou, Y.-L.; Chen, J.-Z.; Zhang, B.-H.; Wang, H.-Y.; Wen, W.-X.; Zhao, D.-L. Fast ion/electron transport enabled by MXene confined bimetallic sulfides with heterostructure toward highly effective lithium/sodium storage. Chem. Eng. J. 2024, 479, 147914. [Google Scholar] [CrossRef]
- He, P.; Yan, M.; Zhang, G.; Sun, R.; Chen, L.; An, Q.; Mai, L. Layered VS2 Nanosheet-Based Aqueous Zn Ion Battery Cathode. Adv. Energy Mater. 2017, 7, 1601920. [Google Scholar] [CrossRef]
- Li, J.; Shi, Z.; Law, M.; Chen, Z.; Lin, Q.; Zhang, Y.; Huo, M.; Wang, Y.; Lin, C.-T.; Balaya, P.; et al. In-situ assembly of 3D VS2/Reduced graphene oxide with superior lithium ion storage performance: The role of heterojunction. J. Power Sources 2024, 621, 235296. [Google Scholar] [CrossRef]
- Deng, G.; Xi, W.; Zhang, J.; Zhang, Y.; Wang, R.; Gong, Y.; He, B.; Wang, H.; Jin, J. A multifunctional layered Ti3C2Tx/VS2 composite sulfur host for promoting the conversion of lithium polysulfides in lithium–sulfur batteries. J. Mater. Chem. A 2024, 12, 29092–29102. [Google Scholar] [CrossRef]
- Huang, G.; Yin, J.; Zou, G.; Bayhan, Z.; Zhao, W.; Ming, F.; Xu, X.; Liang, H.; Mohammed, O.F.; Alshareef, H.N. MXene conversion to V2S3 heterostructure in CS2 ambient: A novel approach for sodium-ion battery anodes. Mater. Today Energy 2022, 30, 101184. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Wang, C.; Yi, X.; Chen, R.; Ma, L.; Hu, Y.; Zhu, G.; Chen, T.; Tie, Z.; et al. Highly Branched VS4 Nanodendrites with 1D Atomic-Chain Structure as a Promising Cathode Material for Long-Cycling Magnesium Batteries. Adv. Mater. 2018, 30, 1802563. [Google Scholar] [CrossRef]
- Ma, T.; Yue, H.; Xiao, Y.; Huang, Y.; Li, X.; Gao, X.; He, N.; Zhan, C.; Nan, D. A review of organic sulfur applications in lithium-sulfur batteries. J. Power Sources 2025, 625, 235717. [Google Scholar] [CrossRef]
- Al Khazraji, M.R.; Wang, J.; Wei, S. Recent Progress of Anode Protection in Li–S Batteries. Energy Technol. 2023, 11, 2200944. [Google Scholar] [CrossRef]
- Hou, J.; Wang, Y.; Yang, W.; Wang, F.; Yang, D.; Zhang, Y.; Liang, F.; Li, X.; Zhang, Y.; Zhao, J. Application of MXenes in lithium-sulfur batteries. Sci. China Technol. Sci. 2022, 65, 2259–2273. [Google Scholar] [CrossRef]
- Hong, H.; Che Mohamad, N.A.R.; Chae, K.; Marques Mota, F.; Kim, D.H. The lithium metal anode in Li–S batteries: Challenges and recent progress. J. Mater. Chem. A 2021, 9, 10012–10038. [Google Scholar] [CrossRef]
- Liang, X.; Rangom, Y.; Kwok, C.Y.; Pang, Q.; Nazar, L.F. Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li–S Cathode Hosts. Adv. Mater. 2017, 29, 1603040. [Google Scholar] [CrossRef] [PubMed]
- Sim, E.S.; Yi, G.S.; Je, M.Y.; Lee, Y.B.; Chung, Y.C. Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in Li-S batteries: A density functional theory study. J. Power Sources 2017, 342, 64–69. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, J.; Liu, S.; Wang, X.; Qi, M.; Dai, B.; Wang, Y.; Ma, L.; Li, J.; Yang, J.; et al. In Situ Built ZnS/MXene Heterostructure by a Mild Method for Inhibiting Polysulfide Shuttle in Li-S Batteries. Chemistry 2024, 30, e202403185. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, C.; Liu, W.; Yu, S.; Wang, L.; Wang, T.; Shi, C.; Zhao, X.; Chen, S.; Chou, S.; et al. Enabling Efficient Anchoring-Conversion Interface by Fabricating Double-Layer Functionalized Separator for Suppressing Shuttle Effect. Angew. Chem. Int. Ed. 2024, 63, e202407042. [Google Scholar] [CrossRef]
- Cai, L.; Ying, H.; Huang, P.; Zhang, Z.; Tan, H.; Han, Q.; Han, W.-Q. In-situ grown Ti3C2Tx@CoSe2 heterostructure as trapping-electrocatalyst for accelerating polysulfides conversion in lithium-sulfur battery. Chem. Eng. J. 2023, 474, 145862. [Google Scholar] [CrossRef]
- Deng, S.; Sun, W.; Tang, J.; Jafarpour, M.; Nüesch, F.; Heier, J.; Zhang, C. Multifunctional SnO2 QDs/MXene Heterostructures as Laminar Interlayers for Improved Polysulfide Conversion and Lithium Plating Behavior. Nano-Micro Lett. 2024, 16, 229. [Google Scholar] [CrossRef]
- Li, Y.; Pan, Y.; Cong, Y.; Zhu, Y.; Liu, H.; Wan, Y.; Yao, Y.; Ding, P.; Wu, M.; Hu, H. Decoration of defective graphene with MoS2 enabling enhanced anchoring and catalytic conversion of polysulfides for lithium–sulfur batteries: A first-principles study. Phys. Chem. Chem. Phys. 2022, 24, 29214–29222. [Google Scholar] [CrossRef]
- Ye, Y.-S.; Mohamed, M.G.; Tsai, M.-C.; Hu, H.-Y.; Hwang, B.-J.; Kuo, S.-W. Crown ether functionalized large-area graphene oxide and MXene hybridize as ion-sieving layers for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2024, 12, 25346–25358. [Google Scholar] [CrossRef]
- Shang, Y.; Kundu, D. A path forward for the translational development of aqueous zinc-ion batteries. Joule 2023, 7, 244–250. [Google Scholar] [CrossRef]
- Hu, X.; Chen, T.; Zhang, Q.; Gong, N.; Liu, H.; Guo, C.; Peng, W.; Li, Y.; Fan, X. Two-dimensional heterostructure of MXene-derived V2O5·H2O and graphene with enhanced Zn-ion storage capability. Electrochim. Acta 2024, 507, 145093. [Google Scholar] [CrossRef]
- Yong, B.; Wang, Y.; Zhu, J.; Sun, S.; Ma, D.; Zhang, P. Recent progress on versatile MXene mediated zinc-ion storage technologies. J. Energy Storage 2024, 93, 112334. [Google Scholar] [CrossRef]
- Ma, P.; Fang, D.; Liu, Y.; Shang, Y.; Shi, Y.; Yang, H.Y. MXene-Based Materials for Electrochemical Sodium-Ion Storage. Adv. Sci. 2021, 8, 2003185. [Google Scholar] [CrossRef]
- Zhao, M.-Q.; Ren, C.E.; Alhabeb, M.; Anasori, B.; Barsoum, M.W.; Gogotsi, Y. Magnesium-Ion Storage Capability of MXenes. ACS Appl. Energy Mater. 2019, 2, 1572–1578. [Google Scholar] [CrossRef]
- Peng, M.; Wang, L.; Li, L.; Tang, X.; Huang, B.; Hu, T.; Yuan, K.; Chen, Y. Manipulating the Interlayer Spacing of 3D MXenes with Improved Stability and Zinc-Ion Storage Capability. Adv. Funct. Mater. 2022, 32, 2109524. [Google Scholar] [CrossRef]
- Zhao, F.; Gong, S.; Xu, H.; Li, M.; Li, L.; Qi, J.; Wang, H.; Wang, Z.; Hu, Y.; Fan, X.; et al. In situ constructing amorphous V2O5@Ti3C2Tx heterostructure for high-performance aqueous zinc-ion batteries. J. Power Sources 2022, 544, 231883. [Google Scholar] [CrossRef]
- Chen, J.; Ding, Y.; Yan, D.; Huang, J.; Peng, S. Synthesis of MXene and its application for zinc-ion storage. SusMat 2022, 2, 293–318. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Xiao, B.; Huang, J.; Chen, H.; Zhu, K.; Zhang, J.; Cao, G.; He, G.; Ma, J.; et al. Using MXene as a Chemically Induced Initiator to Construct High-Performance Cathodes for Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2024, 63, e202408667. [Google Scholar] [CrossRef]
- Li, M.; Ding, Y.; Zhang, S.; Sun, Y.; Liu, M.; Zhao, J.; Yin, B.; Ma, T. Interface Polarization Effects Enhancing Mn2O3@TiO2@MXene Heterostructures for Aqueous Magnesium Ion Capacitors: Guided Charge Distribution and Transportation via Built-in Electric Fields. Small Struct. 2024, 5, 2300371. [Google Scholar] [CrossRef]
- Li, Y.; Feng, X.; Lieu, W.Y.; Fu, L.; Zhang, C.; Ghosh, T.; Thakur, A.; Wyatt, B.C.; Anasori, B.; Liu, W.; et al. MXene-Based Anode-Free Magnesium Metal Battery. Adv. Funct. Mater. 2023, 33, 2303067. [Google Scholar] [CrossRef]
- Guan, W.; Wang, W.; Huang, Z.; Tu, J.; Lei, H.; Wang, M.; Jiao, S. The Reverse of Electrostatic Interaction Force for Ultrahigh-Energy Al-Ion batteries. Angew. Chem. Int. Ed. 2024, 63, e202317203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, M.; Qi, J.; Lei, N.; Guo, S.; Li, J.; Xiao, X.; Ouyang, L. Advanced Mg-based materials for energy storage: Fundamental, progresses, challenges and perspectives. Prog. Mater. Sci. 2025, 148, 101381. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, Z.; Zhang, Z.; Du, A.; Dong, S.; Li, Z.; Li, G.; Cui, G. Current Design Strategies for Rechargeable Magnesium-Based Batteries. ACS Nano 2021, 15, 15594–15624. [Google Scholar] [CrossRef]
- Chen, H.; Cao, X.; Huang, M.; Ren, X.; Zhao, Y.; Yu, L.; Liu, Y.; Zhong, L.; Qiu, Y. In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries. J. Energy Chem. 2024, 88, 282–292. [Google Scholar] [CrossRef]
- Zhu, Y.; Cui, Y.; Alshareef, H.N. An Anode-Free Zn–MnO2 Battery. Nano Lett. 2021, 21, 1446–1453. [Google Scholar] [CrossRef]
- Louli, A.J.; Eldesoky, A.; Weber, R.; Genovese, M.; Coon, M.; deGooyer, J.; Deng, Z.; White, R.T.; Lee, J.; Rodgers, T.; et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 2020, 5, 693–702. [Google Scholar] [CrossRef]
- Cohn, A.P.; Muralidharan, N.; Carter, R.; Share, K.; Pint, C.L. Anode-Free Sodium Battery through in Situ Plating of Sodium Metal. Nano Lett. 2017, 17, 1296–1301. [Google Scholar] [CrossRef]
- Liu, M.; Lv, G.; Liu, H.; Fu, Y.; Zhang, J.; Liao, L.; Jiang, D.-E.; Guo, J. A Self-Charging Aluminum Battery Enabled by Spontaneous Disproportionation Reaction. Adv. Funct. Mater. 2023, 33, 2301913. [Google Scholar] [CrossRef]
- Yang, C.; Liang, Z.; Dong, B.; Guo, Y.; Xie, W.; Chen, M.; Zhang, K.; Zhou, L. Heterostructure Engineering for Aluminum-Ion Batteries: Mechanism, Challenge, and Perspective. Small 2024, 20, 2405495. [Google Scholar] [CrossRef]
- Yoo, D.-J.; Heeney, M.; Glöcklhofer, F.; Choi, J.W. Tetradiketone macrocycle for divalent aluminium ion batteries. Nat. Commun. 2021, 12, 2386. [Google Scholar] [CrossRef]
- Heo, Y.H.; Lee, J.; Ha, S.; Chan Hyun, J.; Kang, D.H.; Yoon, J.; Kim, H.S.; Choi, Y.; Chan Kang, Y.; Jin, H.-J.; et al. 3D-structured bifunctional MXene paper electrodes for protection and activation of Al metal anodes. J. Mater. Chem. A 2023, 11, 14380–14389. [Google Scholar] [CrossRef]
Synthesis Methods | Characteristics | Advantages | Disadvantages |
---|---|---|---|
HF Etching | The A layer in the MAX phase was etched using F− with Al3+ to generate MXene containing -F/-OH/-O end groups. | The process is simple, high yield, low cost, and universally applicable. | HF is toxic and harmful to the environment; difficult to peel off in a single layer and easy to build up. |
In situ generation HF etching | Fluorine salts (LiF/NH4F) were mixed with acid to generate HF in situ to etch the A layer atoms. | Much gentler than direct HF etching for large nanosheets (lateral dimensions > 1 μm). | Fluorine-containing reagents are still needed, and the yield is lower than that of HF etching. |
Alkali etching | High-temperature strong bases (NaOH/TMAOH) dissolve the Al layer to produce MXene, which is dominated by -OH end groups. | Fluorine-free; excellent hydrophilicity, layer spacing can be controlled by cationic intercalation. | Harsh reaction conditions. |
Electrochemical etching | Applying a voltage selectively etches the A layer to produce MXene with a -OH dominated surface. | Fluorine-free; precise etch depth control for low-layer MXene preparation; high purity (>95%). | Complex equipment; slow etching rate; easily over-etched. |
Molten salt etching | The high-temperature molten salt displaces the A layer in the MAX phase to produce MXene with end groups such as -Cl on the surface. | Fluorine-free; suitable for Si-based/nitride MAX phase etching; adjustable endbase. | High-temperature conditions; difficulty in regulating layer spacing. |
Chemical deposition (CVD) | Direct synthesis of MXene by vapor phase deposition without MAX phase. | Nitride MXene can be prepared; precise control of size/thickness and few surface defects. | The high cost of equipment makes large-scale production difficult. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Li, J.; Wang, Q.; Zou, C. Progress of MXene-Based Materials in the Field of Rechargeable Batteries. Materials 2025, 18, 2386. https://doi.org/10.3390/ma18102386
Gao J, Li J, Wang Q, Zou C. Progress of MXene-Based Materials in the Field of Rechargeable Batteries. Materials. 2025; 18(10):2386. https://doi.org/10.3390/ma18102386
Chicago/Turabian StyleGao, Jianfei, Jing Li, Qian Wang, and Cheng Zou. 2025. "Progress of MXene-Based Materials in the Field of Rechargeable Batteries" Materials 18, no. 10: 2386. https://doi.org/10.3390/ma18102386
APA StyleGao, J., Li, J., Wang, Q., & Zou, C. (2025). Progress of MXene-Based Materials in the Field of Rechargeable Batteries. Materials, 18(10), 2386. https://doi.org/10.3390/ma18102386