materials-logo

Journal Browser

Journal Browser

Magnetic Shape Memory Alloys: Fundamentals and Applications

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Smart Materials".

Deadline for manuscript submissions: 10 December 2025 | Viewed by 1093

Special Issue Editors


E-Mail Website
Guest Editor
School of Material Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
Interests: shape memory alloy; martensitic transformation; elastocaloric effect; magnetocaloric effect; thermal energy storage

E-Mail
Guest Editor
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Interests: martensitic transformation; shape memory alloys; magnetocaloric effect; elastocaloric effect; barocaloric effect

Special Issue Information

Dear Colleagues,

The fundamentals and applications of shape memory alloys in relation to solid-state refrigeration have been widely reported in recent years. In view of your expertise in the field, we invite you to submit your research to this Special Issue of Materials, entitled “Magnetic Shape Memory Alloys: Fundamentals and Applications”. The Special Issue aims to promote the development of magnetic shape memory alloy solid-state refrigeration. We believe that your research results will greatly increase the impact of this research field.

In this Special Issue, original research articles and reviews are welcome. Research areas may include the following: magnetic shape memory alloys, martensitic transformation, magnetic properties, magnetocaloric effect, elastocaloric effect, barocaloric effect, and thermal energy storage.

We look forward to receiving your contributions.

Dr. Zhenzhuang Li
Dr. Ziqi Guan
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • magnetic shape memory alloys
  • martensitic transformation
  • magnetic property
  • solid-state refrigeration
  • thermal energy storage

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 6829 KB  
Article
Thermal Hysteresis and Reversibility of the Giant Magnetocaloric Effect at the Ferromagnetic Transition of Nd2In
by Bao Gegen, Bao Huhe, Zhi-Qiang Ou, Francois Guillou and Hargen Yibole
Materials 2025, 18(13), 3104; https://doi.org/10.3390/ma18133104 - 1 Jul 2025
Viewed by 365
Abstract
The Nd2In compound exhibits an intriguing borderline first-/second-order transition at its Curie temperature. Several studies have pointed to its potential for magnetic cooling, but also raised controversies about the actual order of the transition, the amplitudes of the hysteresis, and of [...] Read more.
The Nd2In compound exhibits an intriguing borderline first-/second-order transition at its Curie temperature. Several studies have pointed to its potential for magnetic cooling, but also raised controversies about the actual order of the transition, the amplitudes of the hysteresis, and of its magnetocaloric effect. Here, we estimate the thermal hysteresis using magnetic and thermal measurements at different rates. It is found to be particularly small (0.1–0.4 K), leading to almost fully reversible adiabatic temperature changes when comparing zero-field cooling and cyclic protocols. Some open questions remain with regard to the magnetostriction of Nd2In, which is presently found to be limited, in line with the absence of a thermal expansion discontinuity at the transition. The comparison of the magnetocaloric effect in Nd2In and Eu2In highlights that the limited saturation magnetization of the former affects its performance. Further efforts should therefore be made to design materials with such borderline first-/second-order transitions using heavier rare earths. Full article
(This article belongs to the Special Issue Magnetic Shape Memory Alloys: Fundamentals and Applications)
Show Figures

Figure 1

13 pages, 2728 KB  
Article
Machine Learning-Assisted Discovery of Empirical Rule for Martensite Transition Temperature of Shape Memory Alloys
by Hao-Xuan Liu, Hai-Le Yan, Nan Jia, Bo Yang, Zongbin Li, Xiang Zhao and Liang Zuo
Materials 2025, 18(10), 2226; https://doi.org/10.3390/ma18102226 - 12 May 2025
Viewed by 555
Abstract
Shape memory alloys (SMAs) derive their unique functional properties from martensitic transformations, with the martensitic transformation temperature (TM) serving as a key design parameter. However, existing empirical rules, such as the valence electron concentration (VEC) and lattice volume (V) criteria, [...] Read more.
Shape memory alloys (SMAs) derive their unique functional properties from martensitic transformations, with the martensitic transformation temperature (TM) serving as a key design parameter. However, existing empirical rules, such as the valence electron concentration (VEC) and lattice volume (V) criteria, are typically restricted to specific alloy families and lack general applicability. In this work, we used a data-driven methodology to find a generalizable empirical formula for TM in SMAs by combining high-throughput first-principles calculations, feature engineering, and symbol regression techniques. Key factors influencing TM were first identified and a predictive machine learning model was subsequently trained based on these features. Furthermore, an empirical formula of TM = 82(ρ¯·MP¯)700 was derived, where ρ¯ and MP¯ represent the weight-average value of density and melting point, respectively. The empirical formula exhibits strong generalizability across a wide range of SMAs, such as NiMn-based, NiTi-based, TiPt-based, and AuCd-based SMAs, etc., offering practical guidance for the compositional design and optimization of shape memory alloys. Full article
(This article belongs to the Special Issue Magnetic Shape Memory Alloys: Fundamentals and Applications)
Show Figures

Figure 1

Back to TopTop