Solid-State Transformation (Stotal = 0, 1, and 2) in a Ni2+ Chelate with Two tert-Butyl 5-(p-Biphenylyl)-2-pyridyl Nitroxides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of bppyNO
2.2. Synthesis of [Ni(bppyNO)2Br2]
2.3. X-Ray Crystallographic Study
2.4. Magnetic Study
2.5. DFT Calculation Study
3. Results and Discussion
3.1. Synthesis and Crystallographic Analysis
3.2. Magnetic Properties
3.3. DFT Calculation
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
bppyNO | tert-butyl 5-(p-biphenylyl)-2-pyridyl nitroxide |
phpyNO | tert-butyl 5-phenyl-2-pyridyl nitroxide |
DFT | Density functional theory |
SCO | Spin crossover |
HS | High spin |
IS | Intermediate spin |
LS | Low spin |
References
- Hayami, S.; Weber, B.; Halcrow, M. Themed collection Recent progress and perspectives on spin transition compounds. Dalton Trans. 2024, 53, 10036. [Google Scholar] [CrossRef] [PubMed]
- Sato, O. Dynamic molecular crystals with switchable physical properties. Nat. Chem. 2016, 8, 644–656. [Google Scholar] [CrossRef]
- Maryunina, K.; Yamaguchi, K.; Nishihara, S.; Inoue, K.; Letyagin, G.; Romanenko, G.; Barskaya, I.; Veber, S.; Fedin, M.; Bogomyakov, A.; et al. Intermolecular spin-crossover-like phenomenon sensitive to applied external pressure in heterospin crystals. Cryst. Growth Des. 2020, 20, 2796–2802. [Google Scholar] [CrossRef]
- Deumal, M.; Vela, S.; Fumanal, M.; Ribas-Arino, J.; Novoa, J.J. Insights into the magnetism and phase transitions of organic radical-based materials. J. Mater. Chem. C 2021, 9, 10624–10646. [Google Scholar] [CrossRef]
- Gaspar, A.B.; Seredyuk, M. Spin crossover in soft matter. Coord. Chem. Rev. 2014, 268, 41–58. [Google Scholar] [CrossRef]
- Usmani, S.; Mikolasek, M.; Gillet, A.; Costa, J.S.; Rigoulet, M.; Chaudret, B.; Bousseksou, A.; Lassalle-Kaiser, B.; Demont, P.; Molnar, G.; et al. Spin crossover in Fe(triazole)–Pt nanoparticle self-assembly structured at the sub-5 nm scale. Nanoscale 2020, 12, 8180–8187. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.F.; Jiang, W.J.; Yao, N.T.; Mao, P.D.; Zhao, L.; Sun, H.Y.; Meng, Y.S.; Liu, T. Manipulating Fluorescence by Photo-switched Spin-state Conversions in an Iron(II)-based SCO-MOF. Chem. Sci. 2023, 14, 6936–6942. [Google Scholar] [CrossRef]
- Martinez-Martinez, A.; Resines-Urien, E.; Piñeiro-López, L.; Fernández-Blanco, A.; Lorenzo Mariano, A.; Albalad, J.; Maspoch, D.; Poloni, R.; Rodriguez-Velamazan, J.A.; Sanudo, E.C.; et al. Spin Crossover-Assisted Modulation of Electron Transport in a Single-Crystal 3D Metal–Organic Framework. Chem. Mater. 2023, 35, 6012–6023. [Google Scholar] [CrossRef]
- Thorarinsdottir, A.E.; Harris, T.D. Metal–organic framework magnets. Chem. Rev. 2020, 120, 8716–8789. [Google Scholar] [CrossRef]
- Vaz, M.G.; Andruh, M. Molecule-based magnetic materials constructed from paramagnetic organic ligands and two different metal ions. Coord. Chem. Rev. 2021, 427, 213611. [Google Scholar] [CrossRef]
- Yamashita, M. Next generation multifunctional nano-science of advanced metal complexes with quantum effect and nonlinearity. Bull. Chem. Soc. Jpn. 2021, 94, 209–264. [Google Scholar] [CrossRef]
- Kimura, S.; Uejima, M.; Ota, W.; Sato, T.; Kusaka, S.; Matsuda, R.; Nishihara, H.; Kusamoto, T. An open-shell, luminescent, two-dimensional coordination polymer with a honeycomb lattice and triangular organic radical. J. Am. Chem. Soc. 2021, 143, 4329–4338. [Google Scholar] [CrossRef] [PubMed]
- Caneschi, A.; Gatteschi, D.; Sessoli, R.; Rey, P. Toward molecular magnets: The metal-radical approach. Acc. Chem. Res. 1989, 22, 392–398. [Google Scholar] [CrossRef]
- Luneau, D. Coordination chemistry of nitronyl nitroxide radicals has memory. Eur. J. Inorg. Chem. 2020, 2020, 597–604. [Google Scholar] [CrossRef]
- Sidharth, T.N.S.; Nasani, R.; Gupta, A.; Sooraj, B.N.S.; Roy, S.; Mondal, A.; Konar, S. Reversal of magnetic exchange coupling between copper(II) and Blatter radical depending on the coordination environment. Inorg. Chim. Acta 2020, 503, 119395. [Google Scholar] [CrossRef]
- Mavragani, N.; Kitos, A.A.; Brusso, J.L.; Murugesu, M. Enhancing Magnetic Communication between Metal Centres: The Role of s-Tetrazine Based Radicals as Ligands. Chem.—Eur. J. 2021, 27, 5091–5106. [Google Scholar] [CrossRef]
- Kanetomo, T.; Naoi, Y.; Enomoto, M. Gadolinium-Triradical Complex with Ground S = 10 State: Synthesis, Structural Characterization and Magnetic Studies. Eur. J. Inorg. Chem. 2021, 2021, 1130–1136. [Google Scholar] [CrossRef]
- Romanenko, G.V.; Letyagin, G.A.; Ovcharenko, V.I. Effect of pressure on the structure of multispin complexes. Russ. Chem. Rev. 2022, 91, RCR5028. [Google Scholar] [CrossRef]
- Ishida, T.; Ito, S.; Homma, Y.; Kyoden, Y. Molecular S = 2 High-Spin, S = 0 Low-Spin and S = 0 ⇄ 2 Spin-Transition/-Crossover Nickel(II)-Bis(nitroxide) Coordination Compounds. Inorganics 2021, 9, 10. [Google Scholar] [CrossRef]
- Ovcharenko, V.; Fokin, S.; Chubakova, E.; Romanenko, G.; Bogomyakov, A.; Dobrokhotova, Z.; Lukzen, N.; Morozov, V.; Petrova, M.; Petrova, M.; et al. A Copper-Nitroxide Adduct Exhibiting Separate Single Crystal-to-Single Crystal Polymerization/Depolymerization and Spin Crossover Transitions. Inorg. Chem. 2016, 55, 5853–5861. [Google Scholar] [CrossRef]
- Ovcharenko, V.I.; Maryunina, K.Y.; Fokin, S.V.; Tretyakov, E.V.; Romanenko, G.V.; Ikorskii, V.N. Spin transitions in non-classical systems. Russ. Chem. Bull. 2004, 53, 2406–2427. [Google Scholar] [CrossRef]
- Lanfranc de Panthou, F.; Belorizky, E.; Calemczuk, R.; Luneau, D.; Marcenat, C.; Ressouche, E.; Turek, P.; Rey, P. A New Type of Thermally Induced Spin Transition Associated with an Equatorial ↔Axial Conversion in a Copper(II)–Nitroxide Cluster. J. Am. Chem. Soc. 1995, 117, 11247–11253. [Google Scholar] [CrossRef]
- Lanfranc de Panthou, F.; Luneau, D.; Musin, R.; Öhrström, L.; Grand, A.; Turek, P.; Rey, P. Spin-Transition and Ferromagnetic Interactions in Copper(II) Complexes of a 3-Pyridyl-Substituted Imino Nitroxide. Dependence of the Magnetic Properties upon Crystal Packing. Inorg. Chem. 1996, 35, 3484–3491. [Google Scholar] [CrossRef]
- Luneau, D.; Rey, P.; Laugier, J.; Fries, P.; Caneschi, A.; Gatteschi, D.; Sessoli, R. Nitrogen-bonded copper(II)-imino nitroxide complexes exhibiting large ferromagnetic interactions. J. Am. Chem Soc. 1991, 113, 1245–1251. [Google Scholar] [CrossRef]
- Luneau, D.; Rey, P.; Laugier, J.; Belorizky, E.; Cogne, A. Ferromagnetic behavior of nickel(II)-imino nitroxide derivatives. Inorg. Chem. 1992, 31, 3578–3584. [Google Scholar] [CrossRef]
- Kahn, O.; Prins, R.; Reedijk, J.; Thompson, J.S. Orbital symmetries and magnetic interaction between copper(II) ions and the o-semiquinone radical. Magnetic studies of (di-2-pyridylamine)(3,5-di-tert-butyl-o-semiquinonato)copper(II) perchlorate and bis(bis(3,5-di-tert-butyl-o-semiquinonato)copper(II)). Inorg. Chem. 1987, 26, 3557–3561. [Google Scholar] [CrossRef]
- Luneau, D.; Romero, F.M.; Ziessel, R. Nitronyl nitroxide biradicals as tetradentate chelates: Unusually large metal—nitroxide ferromagnetic interactions. Inorg. Chem. 1998, 37, 5078–5087. [Google Scholar] [CrossRef]
- Francese, G.; Romero, F.M.; Neels, A.; Stoeckli-Evans, H.; Decurtins, S. Crystal structures and magnetic properties of metal complexes bearing four nitronyl nitroxide moieties in the same coordination sphere. Inorg. Chem. 2000, 39, 2087–2095. [Google Scholar] [CrossRef]
- Coronado, E.; Gimenez-Saiz, C.; Romero, F.M.; Tarazon, A. Metal complexes of a picolinate-based nitronyl nitroxide free radical. Inorg. Chem. 2009, 48, 2205–2214. [Google Scholar] [CrossRef]
- Osanai, K.; Okazawa, A.; Nogami, T.; Ishida, T. Strong Ferromagnetic Exchange Couplings in Copper(II) and Nickel(II) Complexes with a Paramagnetic Tridentate Chelate Ligand, 2,2′-Bipyridin-6-yl tert-Butyl Nitroxide. J. Am. Chem. Soc. 2006, 128, 14008–14009. [Google Scholar] [CrossRef]
- Okazawa, A.; Nogami, T.; Ishida, T. tert-Butyl 2-Pyridyl Nitroxide Available as a Paramagnetic Chelate Ligand for Strongly Exchange-Coupled Metal−Radical Compounds. Chem. Mater. 2007, 19, 2733–2735. [Google Scholar] [CrossRef]
- Okazawa, A.; Nagaichi, Y.; Nogami, T.; Ishida, T. Magneto-structure relationship in copper(II) and nickel(II) complexes chelated with stable tert-butyl 5-phenyl-2-pyridyl nitroxide and related radicals. Inorg. Chem. 2008, 47, 8859–8868. [Google Scholar] [CrossRef]
- Okazawa, A.; Nogami, T.; Ishida, T. Strong intramolecular ferromagnetic couplings in nickel(II) and copper(II) complexes chelated with tert-butyl 5-methoxy-2-pyridyl nitroxide. Polyhedron 2009, 28, 1917–1921. [Google Scholar] [CrossRef]
- Kyoden, Y.; Homma, Y.; Ishida, T. High-Spin and Incomplete Spin-Crossover Polymorphs in Doubly Chelated [Ni(L)2Br2] (L = tert-Butyl 5-Phenyl-2-pyridyl Nitroxide). Inorg. Chem. 2019, 58, 10743–10755. [Google Scholar] [CrossRef]
- Chopa, A.B.; Silbestri, G.F.; Lockhart, M.T. Strategies for the synthesis of bi-and triarylic materials starting from commercially available phenols. J. Organomet. Chem. 2005, 690, 3865–3877. [Google Scholar] [CrossRef]
- Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42–55. [Google Scholar] [CrossRef]
- Agilent. CrysAlisPRO, Oxford Diffraction; Agilent Technologies UK Ltd.: Yarnton, UK, 2011. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Bain, G.A.; Berry, J.F. Diamagnetic corrections and Pascal’s constants. J. Chem. Educ. 2008, 85, 532–536. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Noodleman, L.; Norman, J.G., Jr. The Xα valence bond theory of weak electronic coupling. Application to the low-lying states of Mo2Cl84−. J. Chem. Phys. 1979, 70, 4903–4906. [Google Scholar] [CrossRef]
- Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimers. J. Chem. Phys. 1981, 74, 5737–5743. [Google Scholar] [CrossRef]
- Foresman, J.B.; Frisch, Æ. Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian, 3rd ed.; Gaussian Inc.: Wallingford, CT, USA, 1996. [Google Scholar]
- Yamaguchi, K.; Toyoda, Y.; Fueno, T. A generalized MO (GMO) approach to unstable molecules with quasi-degenerate electronic states: Ab initio GMO calculations of intramolecular effective exchange integrals and designing of organic magnetic polymers. Synth. Met. 1987, 19, 81–86. [Google Scholar] [CrossRef]
- Soda, T.; Kitagawa, Y.; Onishi, T.; Takano, Y.; Shigeta, Y.; Nagao, H.; Yoshioka, Y.; Yamaguchi, K. Ab initio computations of effective exchange integrals for H–H, H–He–H and Mn2O2 complex: Comparison of broken-symmetry approaches. Chem. Phys. Lett. 2000, 319, 223–230. [Google Scholar] [CrossRef]
- Okazawa, A. Magneto-Structural Relationship on Strong Exchange Interactions between Chelating Nitroxide Radical and Transition-Metal Spins. IOP Conf. Ser. Mater. Sci. Eng. 2017, 202, 012002. [Google Scholar] [CrossRef]
- Tao, J.; Wei, R.J.; Huang, R.B.; Zheng, L.S. Polymorphism in spin-crossover systems. Chem. Soc. Rev. 2012, 41, 703–737. [Google Scholar] [CrossRef]
- Liu, W.T.; Li, J.Y.; Ni, Z.P.; Bao, X.; Ou, Y.C.; Leng, J.D.; Liu, J.-L.; Tong, M.L. Incomplete spin crossover versus antiferromagnetic behavior exhibited in three-dimensional porous Fe(II)-bis(tetrazolate) frameworks. Cryst. Growth Des. 2012, 12, 1482–1488. [Google Scholar] [CrossRef]
- van Vleck, J.H. The Theory of Electric and Magnetic Susceptibility; Oxford University Press: Oxford, UK, 1932. [Google Scholar]
- Gruber, S.J.; Harris, C.M.; Sinn, E. Metal complexes as ligands. VI. Antiferromagnetic interactions in trinuclear complexes containing similar and dissimilar metals. J. Chem. Phys. 1968, 49, 2183–2191. [Google Scholar] [CrossRef]
- Kahn, O. Molecular Magnetism; VCH: New York, NY, USA, 1993; pp. 53–69. [Google Scholar]
- Boca, R. (Ed.) Theoretical Foundations of Molecular Magnetism: Current Methods in Inorganic Chemistry; Elsevier: Amsterdam, The Netherlands, 1999; Volume 1, pp. 541–563. [Google Scholar]
- Okazawa, A.; Hashizume, D.; Ishida, T. Ferro- and Antiferromagnetic Coupling Switch Accompanied by Twist Deformation around the Copper(II) and Nitroxide Coordination Bond. J. Am. Chem. Soc. 2010, 132, 11516–11524. [Google Scholar] [CrossRef]
- Iida, D.; Kyoden, Y.; Ishida, T. Spin-Transition-Like Behavior in [Cu(pyNO)X2] (pyNO = tert-Butyl 2-Pyridyl Nitroxide): 113 K Hysteresis for X = Cl and Incomplete Crossover for X = Br. Inorg. Chem. 2025, 64, 10219–10227. [Google Scholar] [CrossRef]
- Okazawa, A.; Ishida, T. Spin-Transition-Like Behavior on One Side in a Nitroxide-Copper(II)-Nitroxide Triad System. Inorg. Chem. 2010, 49, 10144–10147. [Google Scholar] [CrossRef]
- Homma, Y.; Ishida, T. A new S = 0 ⇄ S = 2 “Spin-crossover” scenario found in a Nickel(II) Bis(nitroxide) system. Chem. Mater. 2018, 30, 1835–1838. [Google Scholar] [CrossRef]
- Mondal, D.; Majee, M.C.; Bhattacharya, K.; Long, J.; Larionova, J.; Khusniyarov, M.M.; Chaudhury, M. Crossover from Antiferromagnetic to Ferromagnetic Exchange Coupling in a New Family of Bis-(μ-phenoxido)dicopper(II) Complexes: A Comprehensive Magneto–Structural Correlation by Experimental and Theoretical Study. ACS Omega 2019, 4, 10558–10570. [Google Scholar] [CrossRef]
- Seth, P.; Figuerola, A.; Jover, J.; Ruiz, E.; Ghosh, A. Ferro- to Antiferromagnetic Crossover Angle in Diphenoxido- and Carboxylato-Bridged Trinuclear NiII2–MnII Complexes: Experimental Observations and Theoretical Rationalization. Inorg. Chem. 2014, 53, 9296–9305. [Google Scholar] [CrossRef]
- Lee, T.; Straus, D.B.; Devlin, K.P.; Gui, X.; Louka, P.; Xie, W.; Cava, R.J. Antiferromagnetic to ferromagnetic coupling crossover in hybrid nickel chain perovskites. Inorg. Chem. 2022, 61, 10486–10492. [Google Scholar] [CrossRef]
- McConnell, H.M. Ferromagnetism in Solid Free Radicals. J. Chem. Phys. 1963, 39, 1910. [Google Scholar] [CrossRef]
- Carrington, A.; dos Santos-Veiga, J. Electron spin resonance spectra of nitrogen heterocyclic radical ions. Mol. Phys. 1962, 5, 21–29. [Google Scholar] [CrossRef]
- Brown, P.J.; Capiomont, A.; Gillon, B.; Schweizer, J. Experimental spin density in nitroxides: A polarized neutron study of the tanol suberate. Mol. Phys. 1983, 48, 753–761. [Google Scholar] [CrossRef]
- Kyoden, Y.; Ishida, T. A Hidden Coordination-Bond Torsional Deformation as a Sign of Possible Spin Transition in Nickel(II)-Bis(nitroxide) Compounds. Molecules 2020, 25, 3790. [Google Scholar] [CrossRef]
T/K | 90 | 300 |
---|---|---|
Formula, formula weight | C42H42Br2N4NiO2, 853.32 | |
Crystal system | orthorhombic | |
Space group | Pnna | |
a/Å | 9.8907(6) | 10.1957(6) |
b/Å | 28.9625(13) | 29.2241(12) |
c/Å | 14.3574(7) | 14.3493(6) |
V/Å3 | 4112.8(4) | 4275.5(4) |
Z | 4 | 4 |
dcalcd/g·cm−3 | 1.378 | 1.326 |
μ (MoKα)/mm−1 | 2.453 | 2.360 |
No. of unique reflections | 23 447 | 24 950 |
R(F) (I > 2σ(I)) a | 0.0696 | 0.0484 |
wR(F2) (all reflections) b | 0.1608 | 0.1325 |
Goodness-of-fit parameter | 1.079 | 0.995 |
CCDC reference | 2 447 889 | 2 447 890 |
geometry | ||
d(Ni1-O1)/Å | 2.003(8), 2.131(8) c | 2.032(3) |
d(Ni1-N2)/Å | 2.058(4) | 2.061(2) |
d(O1-N1)/Å | 1.392(8), 1.344(8) c | 1.274(4) |
d(N1-C12py)/Å | 1.399(7) | 1.408(4) |
θ(Ni1-O1-N1)/deg | 111.9(5), 107.1(5) c | 117.0(2) |
θ(O1-Ni1-N2)/deg | 74.4(3), 78.6(2) c | 76.51(10 |
ϕ(Ni1-O1-N1-C12py) /deg | −46.9(8), 26.1(11) c | −10.6(5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsui, M.; Ishida, T. Solid-State Transformation (Stotal = 0, 1, and 2) in a Ni2+ Chelate with Two tert-Butyl 5-(p-Biphenylyl)-2-pyridyl Nitroxides. Materials 2025, 18, 2793. https://doi.org/10.3390/ma18122793
Mitsui M, Ishida T. Solid-State Transformation (Stotal = 0, 1, and 2) in a Ni2+ Chelate with Two tert-Butyl 5-(p-Biphenylyl)-2-pyridyl Nitroxides. Materials. 2025; 18(12):2793. https://doi.org/10.3390/ma18122793
Chicago/Turabian StyleMitsui, Masataka, and Takayuki Ishida. 2025. "Solid-State Transformation (Stotal = 0, 1, and 2) in a Ni2+ Chelate with Two tert-Butyl 5-(p-Biphenylyl)-2-pyridyl Nitroxides" Materials 18, no. 12: 2793. https://doi.org/10.3390/ma18122793
APA StyleMitsui, M., & Ishida, T. (2025). Solid-State Transformation (Stotal = 0, 1, and 2) in a Ni2+ Chelate with Two tert-Butyl 5-(p-Biphenylyl)-2-pyridyl Nitroxides. Materials, 18(12), 2793. https://doi.org/10.3390/ma18122793