An Overview of Biopolymer-Based Graphene Nanocomposites for Biotechnological Applications
Abstract
1. Introduction
- Reduction of GO—converting GO into rGO removes oxygen-containing functional groups, improving thermal stability.
- Surface functionalization—coating GO with polymers, metal oxides or other stabilizing agents can enhance heat resistance.
- Doping with elements—introducing elements like nitrogen, boron, or phosphorus can strengthen GO’s thermal properties.
- Crosslinking—using crosslinking agents to bond GO sheets together improves structural integrity under heat.
- Composite formation—embedding GO into materials like ceramics or metal matrices can prevent decomposition at high temperatures.
- Controlled synthesis—optimizing oxidation and exfoliation processes can yield more stable GO structures.
2. Graphene and GO: Properties and Synthetic+ Approaches
3. Preparation of Graphene-/GO-Based Nanocomposites
4. Biopolymers in Graphene-/GO-Based Nanocomposites
4.1. Polysaccharide-Based Graphene Bio-Nanocomposites
4.2. Protein-Based Graphene Bio-Nanocomposites
4.3. Other Biodegradable Polymers in Graphene-/GO-Based Bio-Nanocomposites
5. Biological Applications of Graphene-Based Bio-Nanocomposites
5.1. Drug Delivery Systems
5.2. Tissue Engineering
5.3. Antimicrobial Activity
5.4. Wound-Healing Applications
5.5. Food Industry Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Binaymotlagh, R.; Chronopoulou, L.; Hajareh Haghighi, F.; Fratoddi, I.; Palocci, C. Peptide-Based Hydrogels: New Materials for Biosensing and Biomedical Applications. Materials 2022, 15, 5871. [Google Scholar] [CrossRef] [PubMed]
- Hajareh Haghighi, F.; Binaymotlagh, R.; Fratoddi, I.; Chronopoulou, L.; Palocci, C. Peptide-Hydrogel Nanocomposites for Anti-Cancer Drug Delivery. Gels 2023, 9, 953. [Google Scholar] [CrossRef] [PubMed]
- Binaymotlagh, R.; Hajareh Haghighi, F.; Chronopoulou, L.; Palocci, C. Liposome–Hydrogel Composites for Controlled Drug Delivery Applications. Gels 2024, 10, 284. [Google Scholar] [CrossRef] [PubMed]
- Chronopoulou, L.; Di Nitto, A.; Papi, M.; Parolini, O.; Falconi, M.; Teti, G.; Muttini, A.; Lattanzi, W.; Palmieri, V.; Ciasca, G.; et al. Biosynthesis and Physico-Chemical Characterization of High Performing Peptide Hydrogels@Graphene Oxide Composites. Colloids Surf. B Biointerfaces 2021, 207, 111989. [Google Scholar] [CrossRef]
- Mittal, V.; Chaudhry, A.U.; Luckachan, G.E. Biopolymer—Thermally Reduced Graphene Nanocomposites: Structural Characterization and Properties. Mater. Chem. Phys. 2014, 147, 319–332. [Google Scholar] [CrossRef]
- Tounici, A.; Martín-Martínez, J.M. Influence of the Surface Chemistry of Graphene Oxide on the Structure–Property Relationship of Waterborne Poly(urethane urea) Adhesive. Materials 2021, 14, 4377. [Google Scholar] [CrossRef]
- Karki, N.; Tiwari, H.; Tewari, C.; Rana, A.; Pandey, N.; Basak, S.; Sahoo, N.G. Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications. J. Mater. Chem. B 2020, 8, 8116–8148. [Google Scholar] [CrossRef]
- Laraba, S.R.; Luo, W.; Rezzoug, A.; Zahra, Q.U.A.; Zhang, S.; Wu, B.; Chen, W.; Xiao, L.; Yang, Y.; Wei, J.; et al. Graphene-based composites for biomedical applications. Green Chem. Lett. Rev. 2022, 15, 724–748. [Google Scholar] [CrossRef]
- Singh, J.; Jindal, N.; Kumar, V.; Singh, K. Role of green chemistry in synthesis and modification of graphene oxide and its application: A review study. Chem. Phys. Impact 2023, 6, 100185. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, T.; Bao, H.; Li, L. Green Fabrication of Chitosan Films Reinforced with Parallel Aligned Graphene Oxide. Carbohydr. Polym. 2010, 83, 1908–1915. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.-H. Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers 2021, 13, 4198. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Yoon, S.J.; Jeon, I.-Y. Graphene/Polymer Nanocomposites: Preparation, Mechanical Properties, and Application. Polymers 2022, 14, 4733. [Google Scholar] [CrossRef] [PubMed]
- Rouf, T.B.; Kokini, J.L. Biodegradable Biopolymer–Graphene Nanocomposites. J. Mater. Sci. 2016, 51, 9915–9945. [Google Scholar] [CrossRef]
- Tariq, W.; Ali, F.; Arslan, C.; Nasir, A.; Gillani, S.H.; Rehman, A. Synthesis and Applications of Graphene and Graphene-Based Nanocomposites: Conventional to Artificial Intelligence Approaches. Front. Environ. Chem. 2022, 3, 890408. [Google Scholar] [CrossRef]
- Barra, A.; Santos, J.D.C.; Silva, M.R.F.; Nunes, C.; Ruiz-Hitzky, E.; Gonçalves, I.; Yildirim, S.; Ferreira, P.; Marques, P.A.A.P. Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications. Nanomaterials 2020, 10, 2077. [Google Scholar] [CrossRef]
- Meneses, J.; van de Kemp, T.; Costa-Almeida, R.; Pereira, R.; Magalhães, F.D.; Castilho, M.; Pinto, A.M. Fabrication of Polymer/Graphene Biocomposites for Tissue Engineering. Polymers 2022, 14, 1038. [Google Scholar] [CrossRef]
- Asim, N.; Su’ait, M.S.; Badiei, M.; Mohammad, M.; Akhtaruzzaman, M.; Rajabi, A.; Amin, N.; Ghazali, M.J. Perspectives in Biopolymer/Graphene-Based Composite Application: Advances, Challenges, and Recommendations. Nanotechnol. Rev. 2022, 11, 1525–1554. [Google Scholar] [CrossRef]
- Teixeira-Santos, R.; Belo, S.; Vieira, R.; Mergulhão, F.J.M.; Gomes, L.C. Graphene-Based Composites for Biomedical Applications: Surface Modification for Enhanced Antimicrobial Activity and Biocompatibility. Biomolecules 2023, 13, 1571. [Google Scholar] [CrossRef]
- Kausar, A.; Ahmad, I.; Eisa, M.H.; Maaza, M.; Khan, H. Manufacturing Strategies for Graphene Derivative Nanocomposites—Current Status and Fruitions. Nanomanufacturing 2023, 3, 1–19. [Google Scholar] [CrossRef]
- Maio, A.; Pibiri, I.; Morreale, M.; Mantia, F.P.L.; Scaffaro, R. An Overview of Functionalized Graphene Nanomaterials for Advanced Applications. Nanomaterials 2021, 11, 1717. [Google Scholar] [CrossRef]
- Mashhadzadeh, A.H.; Mashhadzadeh, A.H.; Golman, B.; Spitas, C.; Faroughi, S.A.; Kostas, K.V. Recent advancements in mechanical properties of Graphene-Enhanced Polymer nanocomposites: Progress, challenges, and pathways forward. J. Mol. Graph. Model. 2024, 135, 108908. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Klopocinska, A.; Horvat, K.; Abdel Hamid, Z. Graphene-Based Nanocomposites: Synthesis, Mechanical Properties, and Characterizations. Polymers 2021, 13, 2869. [Google Scholar] [CrossRef] [PubMed]
- Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-Based Polymer Nanocomposites. Polymer 2010, 52, 5–25. [Google Scholar] [CrossRef]
- Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the Functional Modification of Graphene/Graphene Oxide: R Review. RSC Adv. 2020, 10, 15328–15345. [Google Scholar] [CrossRef]
- Sabet, M. Advanced Graphene-Polymer Composites: Synthesis, Properties, and Applications in Electronics and Optoelectronics. J. Mater. Sci. 2025, 60, 6807–6849. [Google Scholar] [CrossRef]
- Rossa, V.; Ferreira, L.E.M.; Da Costa Vasconcelos, S.; Shimabukuro, E.T.T.; Da Costa Madriaga, V.G.; Carvalho, A.P.; Pergher, S.B.C.; De Carvalho Da Silva, F.; Ferreira, V.F.; Conte, C.A.; et al. Nanocomposites Based on the Graphene Family for Food Packaging: Historical Perspective, Preparation Methods, and Properties. RSC Adv. 2022, 12, 14084–14111. [Google Scholar] [CrossRef]
- Liang, K.; Spiesz, E.M.; Schmieden, D.T.; Xu, A.-W.; Meyer, A.S.; Aubin-Tam, M.-E. Bioproduced Polymers Self-Assemble with Graphene Oxide into Nanocomposite Films with Enhanced Mechanical Performance. ACS Nano 2020, 14, 14731–14739. [Google Scholar] [CrossRef]
- Bayoumy, A.M.; Ibrahim, M.A.; Osman, A.; Abdelmoneim, A. Interaction of Biopolymers with Graphene for Bio-Electronic Applications. Opt. Quantum Electron. 2023, 55, 622. [Google Scholar] [CrossRef]
- Chen, W.; Yang, T.; Dong, L.; Elmasry, A.; Song, J.; Deng, N.; Elmarakbi, A.; Liu, T.; Lv, H.B.; Fu, Y.Q. Advances in Graphene Reinforced Metal Matrix Nanocomposites: Mechanisms, Processing, Modelling, Properties and Applications. Nanotechnol. Precis. Eng. 2020, 3, 189–210. [Google Scholar] [CrossRef]
- Alves, Z.; Ferreira, N.M.; Mendo, S.; Ferreira, P.; Nunes, C. Design of Alginate-Based Bionanocomposites with Electrical Conductivity for Active Food Packaging. Int. J. Mol. Sci. 2021, 22, 9943. [Google Scholar] [CrossRef]
- Aldosari, H. Graphene Reinforced Polymer Matrix Nanocomposites: Fabrication method, properties and applications. In Graphene-A Wonder Material for Scientists and Engineers; IntechOpen Ebooks: London, UK, 2022. [Google Scholar] [CrossRef]
- Azizi-Lalabadi, M.; Jafari, S.M. Bio-Nanocomposites of Graphene with Biopolymers; Fabrication, Properties, and Applications. Adv. Colloid Interface Sci. 2021, 292, 102416. [Google Scholar] [CrossRef] [PubMed]
- Bauld, R.; Choi, D.-Y.W.; Bazylewski, P.; Divigalpitiya, R.; Fanchini, G. Thermo-Optical Characterization and Thermal Properties of Graphene–Polymer Composites: A Review. J. Mat. Chem. C 2017, 6, 2901–2914. [Google Scholar] [CrossRef]
- Zheng, C.; Yue, Y.; Gan, L.; Xu, X.; Mei, C.; Han, J. Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels. Nanomaterials 2019, 9, 937. [Google Scholar] [CrossRef]
- Ramezani, G.; Stiharu, I.; van de Ven, T.G.M.; Nerguizian, V. Optimizing Graphene Oxide Content in Cellulose Matrices: A Comprehensive Review on Enhancing the Structural and Functional Performance of Composites. Encyclopedia 2024, 4, 1827–1856. [Google Scholar] [CrossRef]
- Mostovoy, A.; Shcherbakov, A.; Yakovlev, A.; Arzamastsev, S.; Lopukhova, M. Reinforced Epoxy Composites Modified with Functionalized Graphene Oxide. Polymers 2022, 14, 338. [Google Scholar] [CrossRef]
- Hama, R.; Ulziibayar, A.; Reinhardt, J.W.; Watanabe, T.; Kelly, J.; Shinoka, T. Recent Developments in Biopolymer-Based Hydrogels for Tissue Engineering Applications. Biomolecules 2023, 13, 280. [Google Scholar] [CrossRef]
- Elhaes, H.; Ibrahim, A.; Osman, O.; Ibrahim, M.A. Molecular Modeling Analysis for Functionalized Graphene/Sodium Alginate Composite. Sci. Rep. 2024, 14, 14825. [Google Scholar] [CrossRef]
- Hou, R.; Zhu, W.; Yue, Y.; Feng, J.; Ishag, A.; Zhang, B.; Sun, Y. Recent Advances in the Environmental Application of Graphene-based Composites. Environ. Sci. Nano 2024, 11, 2302–2323. [Google Scholar] [CrossRef]
- Maity, S.K.; Tyagi, U.; Kumar, R.; Kumar, K.; Sheoran, N.; Singh, S.; Kumar, G. Graphene-Enhanced Polymer Composites: A State-of-the-Art Perspective on Applications. FlatChem 2024, 49, 100797. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, H.; Cheng, H.-M.; Ruoff, R.S. Mass Production and Industrial Applications of Graphene Materials. Nat. Sci. Rev. 2017, 5, 90–101. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’ko, Y.K.; et al. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef]
- Eigler, S.; Hirsch, A. Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists. Angew. Chem. Int. Ed. 2014, 53, 7720–7738. [Google Scholar] [CrossRef]
- Li, D.; Muller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotechnol. 2008, 3, 101–105. [Google Scholar] [CrossRef]
- Das, P.; Ibrahim, S.; Chakraborty, K.; Ghosh, S.; Pal, T. Stepwise Reduction of Graphene Oxide and Studies on Defect-Controlled Physical Properties. Sci. Rep. 2024, 14, 294. [Google Scholar] [CrossRef]
- Lashkari, P.; Divigalpitiya, R.; Hrymak, A.N. Thermoset/Graphene Polymer Composites—A Review of Processing and Properties. Can. J. Chem. Eng. 2023, 101, 5045–5058. [Google Scholar] [CrossRef]
- Brodie, B.C. On the Atomic Weight of Graphite. Phil. Trans. R. Soc. Lond. 1859, 149, 249–259. [Google Scholar] [CrossRef]
- Staudenmaier, L. Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Cheng, H.M. The Reduction of Graphene Oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Chang, S.-J.; Hyun, M.S.; Myung, S.; Kang, M.-A.; Yoo, J.H.; Lee, K.G.; Choi, B.G.; Cho, Y.; Lee, G.; Park, T.J. Graphene Growth from Reduced Graphene Oxide by Chemical Vapour Deposition: Seeded Growth Accompanied by Restoration. Sci. Rep. 2016, 6, 22653. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, P.; Wang, X.; Wang, Z.; Liu, D.; Yang, B.; Cao, W. CVD Gowth of Large Area and Uniform Graphene on Tilted Copper Foil for High Performance Flexible Transparent Conductive Film. J. Mater. Chem. 2012, 22, 18283. [Google Scholar] [CrossRef]
- De Heer, W.A.; Berger, C.; Wu, X.; First, P.N.; Conrad, E.H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M.L.; et al. Epitaxial Graphene. Solid State Commun. 2007, 143, 92–100. [Google Scholar] [CrossRef]
- Tomai, T.; Nakayasu, Y.; Okamura, Y.; Ishiguro, S.; Tamura, N.; Katahira, S.; Honma, I. Bottom-up Synthesis of Graphene via Hydrothermal Cathodic Reduction. Carbon 2020, 158, 131–136. [Google Scholar] [CrossRef]
- Coroş, M.; Pogăcean, F.; Măgeruşan, L.; Socaci, C.; Pruneanu, S. A Brief Overview on Synthesis and Applications of Graphene and Graphene-Based Nanomaterials. Front. Mater. Sci. 2019, 13, 23–32. [Google Scholar] [CrossRef]
- Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/Polymer Nanocomposites. Macromolecules 2010, 43, 6515–6530. [Google Scholar] [CrossRef]
- Kamali, A.R. Green Production of Carbon Nanomaterials in Molten Salts and Applications; Springer Nature: Dordrecht, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Qian, F.; Deng, J.; Dong, Y.; Xu, C.; Hu, L.; Fu, G.; Chang, P.; Xie, Y.; Sun, J. Transfer-Free CVD Growth of High-Quality Wafer-Scale Graphene at 300 °C for Device Mass Fabrication. ACS Appl. Mater. Interfaces 2022, 14, 53174–53182. [Google Scholar] [CrossRef]
- Chen, J.H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed]
- Polo-Mendoza, R.; Navarro-Donado, T.; Ortega-Martinez, D.; Turbay, E.; Martinez-Arguelles, G.; Peñabaena-Niebles, R. Properties and Characterization Techniques of Graphene Modified Asphalt Binders. Nanomaterials 2023, 13, 955. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, Y.; Su, Z.; Wei, G. Recent Advances in the Synthesis and Applications of Graphene–Polymer Nanocomposites. Poly. Chem. 2015, 6, 6107–6124. [Google Scholar] [CrossRef]
- Peng, L.; Peng, X.; Liu, B.; Wu, C.; Xie, Y.; Yu, G. Ultrathin Two-Dimensional MNO2/Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors. Nano Lett. 2013, 13, 2151–2157. [Google Scholar] [CrossRef]
- Tarhini, A.; Tehrani-Bagha, A.R. Advances in Preparation Methods and Conductivity Properties of Graphene-Based Polymer Composites. Appl. Compos. Mater. 2023, 30, 1737–1762. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M. Graphene-Based Polymer Nanocomposites: Recent Advances. Polymers 2022, 14, 2102. [Google Scholar] [CrossRef]
- Guo, Y.; Peng, F.; Wang, H.; Huang, F.; Meng, F.; Hui, D.; Zhou, Z. Intercalation Polymerization Approach for Preparing Graphene/Polymer Composites. Polymers 2018, 10, 61. [Google Scholar] [CrossRef]
- Toto, E.; Laurenzi, S.; Santonicola, M.G. Recent Trends in Graphene/Polymer Nanocomposites for Sensing Devices: Synthesis and Applications in Environmental and Human Health Monitoring. Polymers 2022, 14, 1030. [Google Scholar] [CrossRef]
- Ghasemi, A.; Liao, Y.; Li, Z.; Xia, W.; Gao, W. Crystallization and Melting of Polymer Chains on Graphene and Graphene Oxide. Nanoscale 2023, 15, 12235–12244. [Google Scholar] [CrossRef]
- Wang, Y.; Di, S.; Yu, J.; Wang, L.; Li, Z. Recent Advances of Graphene–Biomacromolecule Nanocomposites in Medical Applications. J. Mater. Chem. B 2022, 11, 500–518. [Google Scholar] [CrossRef] [PubMed]
- Díez-Pascual, A.M. Development of Graphene-Based Polymeric Nanocomposites: A Brief Overview. Polymers 2021, 13, 2978. [Google Scholar] [CrossRef] [PubMed]
- Shearer, C.J.; Cherevan, A.; Eder, D. Application and Future Challenges of Functional Nanocarbon Hybrids. Adv. Mater. 2014, 26, 2295–2318. [Google Scholar] [CrossRef]
- Mammeri, F.; Bourhis, E.L.; Rozes, L.; Sanchez, C. Mechanical Properties of Hybrid Organic–Inorganic Materials. J. Mater. Chem. 2005, 15, 3787–3811. [Google Scholar] [CrossRef]
- Assad, H.; Fatma, I.; Kumar, A. An Overview of the Application of Graphene-Based Materials in Anticorrosive Coatings. Mater. Lett. 2022, 330, 133287. [Google Scholar] [CrossRef]
- Wu, S.; Peng, S.; Wang, C.H. Multifunctional Polymer Nanocomposites Reinforced by Aligned Carbon Nanomaterials. Polymers 2018, 10, 542. [Google Scholar] [CrossRef]
- Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and Their Nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Dehnou, K.H.; Norouzi, G.S.; Majidipour, M. A Review: Studying the Effect of Graphene Nanoparticles on Mechanical, Physical and Thermal Properties of Polylactic Acid Polymer. RSC Adv. 2023, 13, 3976–4006. [Google Scholar] [CrossRef]
- Villalobos, L.F.; Van Goethem, C.; Hsu, K.-J.; Li, S.; Moradi, M.; Zhao, K.; Dakhchoune, M.; Huang, S.; Shen, Y.; Oveisi, E.; et al. Bottom-Up Synthesis of Graphene Films Hosting Atom-Thick Molecular-Sieving Apertures. Proc. Natl. Acad. Sci. USA 2021, 118, e2022201118. [Google Scholar] [CrossRef]
- Qamar, S.; Ramzan, N.; Aleem, W. Graphene Dispersion, Functionalization Techniques and Applications: A Review. Synth. Met. 2024, 307, 117697. [Google Scholar] [CrossRef]
- Ramachandrarao, M.; Khan, S.H.; Abdullah, K. Carbon nanotubes and nanofibers–reinforcement to carbon fiber composites–synthesis, characterizations and applications: A review. Compos. Part C Open Access 2025, 16, 100551. [Google Scholar] [CrossRef]
- Orellana, J.; Araya-Hermosilla, E.; Pucci, A.; Araya-Hermosilla, R. Polymer-Assisted Graphite Exfoliation: Advancing Nanostructure Preparation and Multifunctional Composites. Polymers 2024, 16, 2273. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zeng, F.; Wei, D.; Wang, Y. Manipulating the Interfacial Mechanical Properties of Polymer-Grafted Graphene Reinforced Polymer Nanocomposites via Coarse-Grained Molecular Dynamics Simulation. J. Phy. Chem. B 2025, 129, 2607–2620. [Google Scholar] [CrossRef] [PubMed]
- Yasir, A.T.; Alshaibi, N.; Ndame, N.; Ben Youssef, H.; Ba-Abbad, M.M.; Benamor, A. Synthesis of Novel Graphene Oxide-Chitosan-Silicon Dioxide Nanocomposite Embedded in Polysulfone Membrane for Oily Water Treatment. Water Conserv. Sci. Eng. 2024, 9, 79. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Song, L.; Yang, H.; Xing, W.; Lu, H. In Situ Polymerization of Graphene Nanosheets and Polyurethane with Enhanced Mechanical and Thermal Properties. J. Mater. Chem. 2011, 21, 4356–4363. [Google Scholar] [CrossRef]
- Ávila-Orta, C.A.; Corral, F.S.; Fonseca-Florido, H.A.; Aguilar, F.I.E.; Rosales, S.G.S.; Padilla, J.M.M.; Morones, P.G.; Tavizón, S.F.; Hernández-Hernández, E. Starch-Graphene Oxide Bionanocomposites Prepared through Melt Mixing. J. Appl. Polym. Sci. 2017, 134, 46037. [Google Scholar] [CrossRef]
- He, P.; Yang, M.; Lei, Y.; Guo, L.; Wang, Y.; Wei, G. Solvent-Evaporation-Induced Synthesis of Graphene Oxide/Peptide Nanofiber (GO/PNF) Hybrid Membranes Doped with Silver Nanoparticles for Antibacterial Application. Polymers 2023, 15, 1321. [Google Scholar] [CrossRef]
- Gong, Y.; Yu, Y.; Kang, H.; Chen, X.; Liu, H.; Zhang, Y.; Sun, Y.; Song, H. Synthesis and Characterization of Graphene Oxide/Chitosan Composite Aerogels with High Mechanical Performance. Polymers 2019, 11, 777. [Google Scholar] [CrossRef]
- Cojocaru, E.; Ghitman, J.; Biru, E.I.; Pircalabioru, G.G.; Vasile, E.; Iovu, H. Synthesis and Characterization of Electrospun Composite Scaffolds Based on Chitosan-Carboxylated Graphene Oxide with Potential Biomedical Applications. Materials 2021, 14, 2535. [Google Scholar] [CrossRef]
- Weng, S.X.; Yousefi, N.; Tufenkji, N. Self-Assembly of Ultralarge Graphene Oxide Nanosheets and Alginate into Layered Nanocomposites for Robust Packaging Materials. ACS Appl. Nano Mater. 2019, 2, 1431–1444. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Wang, Y.; Li, J.; Su, Z.; Wei, G. Alternate Layer-by-Layer Assembly of Graphene Oxide Nanosheets and Fibrinogen Nanofibers on a Silicon Substrate for a Biomimetic Three-Dimensional Hydroxyapatite Scaffold. J. Mater. Chem. B 2014, 2, 7360–7368. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Yan, L.; Chen, W.; Li, W. Preparation of Chitosan/Graphene Oxide Composite Film with Enhanced Mechanical Strength in the Wet State. Carbohydr. Polym. 2011, 83, 653–658. [Google Scholar] [CrossRef]
- Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides: Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine—A Review of Current Applications and Upcoming Potentialities. J. Polym. Environ. 2021, 29, 2359–2371. [Google Scholar] [CrossRef] [PubMed]
- Aguila-Toledo, E.; Maldonado-Magnere, S.; Yazdani-Pedram, M.; Bascuñan-Heredia, A.; Dahrouch, M.R.; Molina, F.; Santana, M.H.; Verdejo, R.; Lopez-Manchado, M.A.; Aguilar-Bolados, H. Fluorosilicone Composites with Functionalized Graphene Oxide for Advanced Applications. ACS Appl. Poly. Mater. 2023, 5, 7755–7765. [Google Scholar] [CrossRef]
- Anwer, A.H.; Ahtesham, A.; Shoeb, M.; Mashkoor, F.; Ansari, M.Z.; Zhu, S.; Jeong, C. State-of-the-Art Advances in Nanocomposite and Bio-Nanocomposite Polymeric Materials: A Comprehensive Review. Adv. Colloid Interface Sci. 2023, 318, 102955. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, L.M. Chemical Structural and Chain Conformational Characterization of Some Bioactive Polysaccharides Isolated from Natural Sources. Carbohydr. Polym. 2009, 76, 349–361. [Google Scholar] [CrossRef]
- Pan, L.; Ban, J.; Lu, S.; Chen, G.; Yang, J.; Luo, Q.; Wu, L.; Yu, J. Improving Thermal and Mechanical Properties of Epoxy Composites by Using Functionalized Graphene. RSC Adv. 2015, 5, 60596–60607. [Google Scholar] [CrossRef]
- Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial Application of Cellulose Nano-Composites-A Review. Biotechnol. Rep. 2019, 21, e00316. [Google Scholar] [CrossRef]
- Dai, J.; Wang, G.; Ma, L.; Wu, C. Study on the Surface Energies and Dispersibility of Graphene Oxide and Its Derivatives. J. Mater. Sci. 2015, 50, 3895–3907. [Google Scholar] [CrossRef]
- Ma, T.; Chang, P.R.; Zheng, P.; Ma, X. The Composites Based on Plasticized Starch and Graphene Oxide/Reduced Graphene Oxide. Carbohydr. Polym. 2013, 94, 63–70. [Google Scholar] [CrossRef]
- Mishra, R.; Manral, A. Graphene Functionalized Starch Biopolymer Nanocomposites: Fabrication, Characterization, and Applications. In Composites Science and Technology; Springer: Singapore, 2020; pp. 173–189. [Google Scholar] [CrossRef]
- Zheng, P.; Ma, T.; Ma, X. Fabrication and Properties of Starch-Grafted Graphene Nanosheet/Plasticized-Starch Composites. Ind. Eng. Chem. Res. 2013, 52, 14201–14207. [Google Scholar] [CrossRef]
- Li, R.; Liu, C.; Ma, J. Studies on the Properties of Graphene Oxide-Reinforced Starch Biocomposites. Carbohydr. Polym. 2011, 84, 631–636. [Google Scholar] [CrossRef]
- Peregrino, P.P.; Cavallari, M.R.; Fonseca, F.J.; Moreira, S.G.C.; Sales, M.J.A.; Paterno, L.G. Starch-Mediated Immobilization, Photochemical Reduction, and Gas Sensitivity of Graphene Oxide Films. ACS Omega 2020, 5, 5001–5012. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, F.; Hesaraki, S.; Houshmand, B. The Physical, Mechanical, and Biological Properties of Silk Fibroin/Chitosan/Reduced Graphene Oxide Composite Membranes for Guided Bone Regeneration. J. Biomater. Sci. Polym. Ed. 2019, 30, 1779–1802. [Google Scholar] [CrossRef]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of Different Factors Affecting Antimicrobial Properties of Chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef]
- Barra, A.; Ferreira, N.M.; Martins, M.A.; Lazar, O.; Pantazi, A.; Jderu, A.A.; Neumayer, S.M.; Rodriguez, B.J.; Enăchescu, M.; Ferreira, P.; et al. Eco-Friendly Preparation of Electrically Conductive Chitosan-Reduced Graphene Oxide Flexible Bionanocomposites for Food Packaging and Biological Applications. Compos. Sci. Technol. 2019, 173, 53–60. [Google Scholar] [CrossRef]
- Wang, X.; Bai, H.; Yao, Z.; Liu, A.; Shi, G. Electrically Conductive and Mechanically Strong Biomimetic Chitosan/Reduced Graphene Oxide Composite Films. J. Mater. Chem. 2010, 20, 9032–9036. [Google Scholar] [CrossRef]
- Dehnad, D.; Emam-Djomeh, Z.; Mirzaei, H.; Jafari, S.-M.; Dadashi, S. Optimization of Physical and Mechanical Properties for Chitosan–Nanocellulose Biocomposites. Carbohydr. Polym. 2014, 105, 222–228. [Google Scholar] [CrossRef]
- Cheng, J.-S.; Du, J.; Zhu, W. Facile Synthesis of Three-Dimensional Chitosan–Graphene Mesostructures for Reactive Black 5 Removal. Carbohydr. Polym. 2012, 88, 61–67. [Google Scholar] [CrossRef]
- Kafy, A.; Akther, A.; Shishir, M.I.; Kim, J. Cellulose/Graphene Oxide Composite for Electrode Materials of Flexible Energy Devices. Proc. SPIE 2017, 10167, 101670Q. [Google Scholar] [CrossRef]
- Chen, Y.; Pötschke, P.; Pionteck, J.; Voit, B.; Qi, H. Smart Cellulose/Graphene Composites Fabricated by In Situ Chemical Reduction of Graphene Oxide for Multiple Sensing Applications. J. Mater. Chem. A 2018, 6, 7777–7785. [Google Scholar] [CrossRef]
- Zhan, Y.; Xiong, C.; Yang, J.; Shi, Z.; Yang, Q. Flexible Cellulose Nanofibril/Pristine Graphene Nanocomposite Films with High Electrical Conductivity. Compos. A Appl. Sci. Manuf. 2019, 119, 119–126. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Zhang, X.; Li, B.; Luo, X.; Liu, S. Clarification of GO Acted as a Barrier Against the Crack Propagation of the Cellulose Composite Films. Compos. Sci. Technol. 2014, 104, 52–58. [Google Scholar] [CrossRef]
- Cheng, Y.; Feng, B.; Yang, X.; Yang, P.; Ding, Y.; Chen, Y.; Fei, J. Electrochemical Biosensing Platform Based on Carboxymethyl Cellulose Functionalized Reduced Graphene Oxide and Hemoglobin Hybrid Nanocomposite Film. Sens. Actuators B 2013, 182, 288–293. [Google Scholar] [CrossRef]
- Valentin, T.M.; Leggett, S.E.; Chen, P.-Y.; Sodhi, J.K.; Stephens, L.H.; McClintock, H.D.; Sim, J.Y.; Wong, I.Y. Stereolithographic Printing of Ionically-Crosslinked Alginate Hydrogels for Degradable Biomaterials and Microfluidics. Lab Chip 2017, 17, 3474–3488. [Google Scholar] [CrossRef]
- Kiprono, S.J.; Ullah, M.W.; Yang, G. Surface Engineering of Microbial Cells: Strategies and Applications. Eng. Sci. 2018, 1, 33–45. [Google Scholar] [CrossRef]
- Golafshan, N.; Rezahasani, R.; Esfahani, M.T.; Kharaziha, M.; Khorasani, S. Nanohybrid Hydrogels of Laponite: PVA–Alginate as a Potential Wound Healing Material. Carbohydr. Polym. 2017, 176, 392–401. [Google Scholar] [CrossRef]
- Rani, P.; Mishra, S.; Sen, G. Microwave Based Synthesis of Polymethyl Methacrylate Grafted Sodium Alginate: Its Application as Flocculant. Carbohydr. Polym. 2013, 91, 686–692. [Google Scholar] [CrossRef]
- Kumar, A.; Lee, Y.; Kim, D.; Rao, K.M.; Kim, J.; Park, S.; Haider, A.; Lee, D.H.; Han, S.S. Effect of Crosslinking Functionality on Microstructure, Mechanical Properties, and In Vitro Cytocompatibility of Cellulose Nanocrystals Reinforced Poly(Vinyl Alcohol)/Sodium Alginate Hybrid Scaffolds. Int. J. Biol. Macromol. 2017, 95, 96–105. [Google Scholar] [CrossRef]
- Bahadori-Haghighi, S.; Ghayour, R.; Sheikhi, M.H. Design and Analysis of Low Loss Plasmonic Waveguide and Directional Coupler Based on Pattern-Free Suspended Graphene Sheets. Carbon 2018, 129, 653–660. [Google Scholar] [CrossRef]
- Zhao, Z.; Bai, P.; Li, L.; Li, J.; Wu, L.; Huo, P.; Tan, L. The Reaction Thermodynamics During Plating Al on Graphene. Materials 2019, 12, 330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, P.; Zhang, Z.; Wang, X.; Tang, J.; Liu, H.; Shao, Q.; Ding, T.; Umar, A.; Guo, Z. Solvent-Free Graphene Liquids: Promising Candidates for Lubricants Without the Base Oil. J. Colloid Interface Sci. 2019, 542, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.; Kansara, V.; Ray, D.; Aswal, V.K.; Jha, P.K.; Bahadur, P.; Tiwari, S. Slow Degrading Hyaluronic Acid Hydrogel Reinforced with Cationized Graphene Nanosheets. Int. J. Biol. Macromol. 2019, 141, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Ionita, M.; Pandele, M.A.; Iovu, H. Sodium Alginate/Graphene Oxide Composite Films with Enhanced Thermal and Mechanical Properties. Carbohydr. Polym. 2013, 94, 339–344. [Google Scholar] [CrossRef]
- Qian, Y.; Qiu, X.; Zhu, S. Lignin: A Nature-Inspired Sun Blocker for Broad-Spectrum Sunscreens. Green Chem. 2015, 17, 320–324. [Google Scholar] [CrossRef]
- Ali, A.A.; Vohra, M.I.; Nadeem, A.; Al-Anzi, B.S.; Iqbal, M.; Memon, A.A.; Jatoi, A.H.; Akhtar, J.; Yang, J.; Thebo, K.H. Highly Stable, Ecofriendly Graphene-Enhanced Polymer Membranes for Water Purification. ACS Appl. Polym. Mater. 2024, 6, 4747–4755. [Google Scholar] [CrossRef]
- Dessbesell, L.; Paleologou, M.; Leitch, M.; Pulkki, R.; Xu, C. Global Lignin Supply Overview and Kraft Lignin Potential as an Alternative for Petroleum-Based Polymers. Renew. Sustain. Energy Rev. 2020, 123, 109768. [Google Scholar] [CrossRef]
- Ma, C.; Kim, T.-H.; Liu, K.; Ma, M.-G.; Choi, S.-E.; Si, C. Multifunctional Lignin-Based composite materials for emerging applications. Front. Bioeng. Biotechnol. 2021, 9, 708976. [Google Scholar] [CrossRef]
- Vasile, C.; Baican, M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers 2023, 15, 3177. [Google Scholar] [CrossRef]
- Lyu, Z.; Zheng, Y.; Zhou, H.; Dai, L. Lignin-Based Hydrogels for Biological Application. Pap. Biomater. 2023, 8, 37–52. [Google Scholar] [CrossRef]
- Widjaja, L.K.; Bora, M.; Chan, P.N.P.H.; Lipik, V.; Wong, T.T.L.; Venkatraman, S.S. Hyaluronic Acid-Based Nanocomposite Hydrogels for Ocular Drug Delivery Applications. J. Biomed. Mater. Res. A 2014, 102, 3056–3065. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Ai, L.; Bai, H.; Liu, X. Synthesis of pH-Responsive Photocrosslinked Hyaluronic Acid-Based Hydrogels for Drug Delivery. J. Polym. Sci. Part A 2012, 50, 3507–3516. [Google Scholar] [CrossRef]
- Kaya, D.; Kucukada, K.; Alemdar, A. Modeling the Drug Release from Reduced Graphene Oxide-Reinforced Hyaluronic Acid/Gelatin/Poly(Ethylene Oxide) Polymeric Films. Carbohydr. Polym. 2019, 215, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.G.; Prim, R.E.; Kang, E.; Jeong, S.H. One-pot Synthesis of Dopamine-Conjugated Hyaluronic Acid/Polydopamine Nanocomplexes to Control Protein Drug Release. Int. J. Pharm. 2018, 542, 288–296. [Google Scholar] [CrossRef]
- Contardi, M.; Russo, D.; Suarato, G.; Heredia-Guerrero, J.A.; Ceseracciu, L.; Penna, I.; Margaroli, N.; Summa, M.; Spanò, R.; Tassistro, G.; et al. Polyvinylpyrrolidone/Hyaluronic Acid-Based Bilayer Constructs for Sequential Delivery of Cutaneous Antiseptic and Antibiotic. Chem. Eng. J. 2019, 358, 912–923. [Google Scholar] [CrossRef]
- Montanari, E.; D’Arrigo, G.; Di Meo, C.; Virga, A.; Coviello, T.; Passariello, C.; Matricardi, P. Chasing Bacteria within the Cells Using Levofloxacin-Loaded Hyaluronic Acid Nanohydrogels. Eur. J. Pharm. Biopharm. 2014, 87, 518–523. [Google Scholar] [CrossRef]
- Pérez-Álvarez, L.; Ruiz-Rubio, L.; Azúa, I.; Benito, V.; Bilbao, A.; Vilas-Vilela, J.L. Development of Multiactive Antibacterial Multilayers of Hyaluronic Acid and Chitosan onto Poly(Ethylene Terephthalate). Eur. Polym. J. 2019, 112, 31–37. [Google Scholar] [CrossRef]
- Bayer, I.S. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020, 25, 2649. [Google Scholar] [CrossRef]
- Yang, Z.; Hemar, Y.; Hilliou, L.; Gilbert, E.P.; McGillivray, D.J.; Williams, M.A.K.; Chaieb, S. Nonlinear Behavior of Gelatin Networks Reveals a Hierarchical Structure. Biomacromolecules 2016, 17, 590–600. [Google Scholar] [CrossRef]
- Zhang, Z.; Ortiz, O.; Goyal, R.; Kohn, J. Biodegradable Polymers. In Biodegradable Polymers, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Lv, L.C.; Huang, Q.Y.; Ding, W.; Xiao, X.H.; Zhang, H.Y.; Xiong, L.X. Fish Gelatin: The Novel Potential Applications. J. Funct. Foods 2019, 63, 103581. [Google Scholar] [CrossRef]
- Ahmad, T.; Ismail, A.; Ahmad, S.A.; Khalil, K.A.; Kumar, Y.; Adeyemi, K.D.; Sazili, A.Q. Recent Advances on the Role of Process Variables Affecting Gelatin Yield and Characteristics with Special Reference to Enzymatic Extraction: A Review. Food Hydrocoll. 2017, 63, 85–96. [Google Scholar] [CrossRef]
- Afshar, S.; Baniasadi, H. Investigation the Effect of Graphene Oxide and Gelatin/Starch Weight Ratio on the Properties of Starch/Gelatin/GO Nanocomposite Films: The RSM Study. Int. J. Biol. Macromol. 2018, 109, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Jin, S.; Li, J.; Chen, H. Improvement in Antibacterial and Functional Properties of Mussel-Inspired Cellulose Nanofibrils/Gelatin Nanocomposites Incorporated with Graphene Oxide for Active Packaging. Ind. Crop. Prod. 2019, 132, 197–212. [Google Scholar] [CrossRef]
- Wan, C.; Frydrych, M.; Chen, B. Strong and Bioactive Gelatin-Graphene Oxide Nanocomposites. Soft Matter 2011, 7, 6159–6166. [Google Scholar] [CrossRef]
- Nor Adilah, A.; Gun Hean, C.; Nur Hanani, Z.A. Incorporation of Graphene Oxide to Enhance Fish Gelatin as Bio-Packaging Material. Food Packag. Shelf Life 2021, 28, 100679. [Google Scholar] [CrossRef]
- Nassira, H.; Sanchez-Ferrer, A.; Adamcik, J.; Handschin, S.; Mahdavi, H.; Taheri Qazvini, N.; Mezzenga, R. Gelatin-Graphene Nanocomposites with Ultralow Electrical Percolation Threshold. Adv. Mater. 2016, 28, 6914–6920. [Google Scholar] [CrossRef]
- Piao, Y.; Chen, B. Synthesis and Mechanical Properties of Double Cross-Linked Gelatin-Graphene Oxide Hydrogels. Int. J. Biol. Macromol. 2017, 101, 791–798. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z.; Liu, Y.; Li, N.; Wang, W.; Gao, J. Preparation of Reduced Graphene Oxide/Gelatin Composite Films with Reinforced Mechanical Strength. Mater. Res. Bull. 2012, 47, 2245–2251. [Google Scholar] [CrossRef]
- Khan, Q.A.; Shaur, A.; Khan, T.A.; Joya, Y.F.; Awan, M. Characterization of Reduced Graphene Oxide Produced through a Modified Hoffman Method. Cogent Chem. 2017, 3, 1298980. [Google Scholar] [CrossRef]
- Satapathy, M.K.; Manga, Y.B.; Ostrikov, K.K.; Chiang, W.-H.; Pandey, A.; Lekha, R.; Nyambat, B.; Chuang, E.-Y.; Chen, C.-H. Microplasma Cross-Linked Graphene Oxide-Gelatin Hydrogel for Cartilage Reconstructive Surgery. ACS Appl. Mater. Interfaces 2019, 12, 86–95. [Google Scholar] [CrossRef]
- Choi, J.S.; Meghani, N. Impact of Surface Modification in BSA Nanoparticles for Uptake in Cancer Cells. Colloids Surf. B Biointerfaces 2016, 145, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Damiati, S.; Scheberl, A.; Zayni, S.; Damiati, S.A.; Schuster, B.; Kompella, U.B. Albumin-Bound Nanodiscs as Delivery Vehicle Candidates: Development and Characterization. Biophys. Chem. 2019, 251, 106178. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Long, X.; Yang, Z.; Lu, N.; Peng, Y.Y. Formation of a Bovine Serum Albumin Diligand Complex with Rutin and Single-Walled Carbon Nanotubes for the Reduction of Cytotoxicity. Biophys. Chem. 2020, 256, 106268. [Google Scholar] [CrossRef] [PubMed]
- Nan, Z.; Hao, C.; Ye, X.; Feng, Y.; Sun, R. Interaction of Graphene Oxide with Bovine Serum Albumin: A Fluorescence Quenching Study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 210, 348–354. [Google Scholar] [CrossRef]
- Simšíková, M. Interaction of Graphene Oxide with Albumins: Effect of Size, pH, and Temperature. Arch. Biochem. Biophys. 2016, 593, 69–79. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Z.; Wang, Y.; Fei, Z.; Cao, J. Changing the Activities and Structures of Bovine Serum Albumin Bound to Graphene Oxide. Appl. Surf. Sci. 2018, 427, 1019–1029. [Google Scholar] [CrossRef]
- Kuchlyan, J.; Kundu, N.; Banik, D.; Roy, A.; Sarkar, N. Spectroscopy and Fluorescence Lifetime Imaging Microscopy to Probe the Interaction of Bovine Serum Albumin with Graphene Oxide. Langmuir 2015, 31, 13793–13801. [Google Scholar] [CrossRef]
- Bapli, A.; Chatterjee, A.; Gautam, R.K.; Pandit, S.; Jana, R.; Seth, D. Interaction of a Hydrophilic Molecule with Bovine Serum Albumin: A Combined Multispectroscopic, Microscopic and Isothermal Calorimetric Study in the Presence of Graphene Oxide. J. Mol. Liq. 2021, 323, 114618. [Google Scholar] [CrossRef]
- Wu, C.; He, Q.; Zhu, A.; Yang, H.; Liu, Y. Probing the Protein Conformation and Adsorption Behaviors in Nanographene Oxide–Protein Complexes. J. Nanosci. Nanotechnol. 2014, 14, 2591–2598. [Google Scholar] [CrossRef]
- Liu, X.; Sun, B.; Xu, C.; Zhang, T.; Zhang, Y.; Zhu, L. Intrinsic Mechanisms for the Inhibition Effect of Graphene Oxide on the Catalysis Activity of Alpha Amylase. J. Hazard. Mater. 2023, 453, 131389. [Google Scholar] [CrossRef]
- Mojumdar, S.; Moresoli, C.; Simon, L.; Legge, R. Edible Wheat Gluten (WG) Protein Films: Preparation, Thermal, Mechanical and Spectral Properties. J. Therm. Anal. Calorim. 2011, 104, 929–936. [Google Scholar] [CrossRef]
- Thammahiwes, S.; Riyajan, S.-A.; Kaewtatip, K. Preparation and Properties of Wheat Gluten Based Bioplastics with Fish Scale. J. Cereal Sci. 2017, 75, 186–191. [Google Scholar] [CrossRef]
- Gupta, P.; Nayak, K.K. Characteristics of Protein-Based Biopolymer and its Application. Polym. Eng. Sci. 2015, 55, 485–498. [Google Scholar] [CrossRef]
- Lee, D.B.; Shchipunov, Y.; Ha, C.-S. Fabrication of Biodegradable Wheat Gluten/Chitosan Blend Membranes. Sci. Adv. Mater. 2014, 6, 2459–2464. [Google Scholar] [CrossRef]
- Nesic, A.R.; Seslija, S.I. The Influence of Nanofillers on Physical–Chemical Properties of Polysaccharide-Based Film Intended for Food Packaging. In Food Packaging; Elsevier: Amsterdam, The Netherlands, 2017; pp. 637–697. [Google Scholar]
- Madhumitha, G.; Fowsiya, J.; Mohana Roopan, S.; Thakur, V.K. Recent Advances in Starch–Clay Nanocomposites. Int. J. Polym. Anal. Charact. 2018, 23, 331–345. [Google Scholar] [CrossRef]
- Ahmed, T.; Shahid, M.; Azeem, F.; Rasul, I.; Shah, A.A.; Noman, M.; Hameed, A.; Manzoor, N.; Manzoor, I.; Muhammad, S. Biodegradation of Plastics: Current Scenario and Future Prospects for Environmental Safety. Environ. Sci. Pollut. Res. 2018, 25, 7287–7298. [Google Scholar] [CrossRef]
- Alwarappan, S.; Kumar, A. Graphene-Based Materials: Science and Technology; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Chen, D.; Feng, H.; Li, J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112, 6027–6053. [Google Scholar] [CrossRef]
- Emadi, F.; Amini, A.; Gholami, A.; Ghasemi, Y. Functionalized Graphene Oxide with Chitosan for Protein Nanocarriers to Protect Against Enzymatic Cleavage and Retain Collagenase Activity. Sci. Rep. 2017, 7, 42258. [Google Scholar] [CrossRef]
- Gautam, S.; Sharma, B.; Jain, P. Green Natural Protein Isolate Based Composites and Nanocomposites: A Review. Polym. Test. 2020, 99, 106626. [Google Scholar] [CrossRef]
- Song, F.; Tang, D.-L.; Wang, X.-L.; Wang, Y.-Z. Biodegradable Soy Protein Isolate-Based Materials: A Review. Biomacromolecules 2011, 12, 3369–3380. [Google Scholar] [CrossRef]
- Liu, J.; Su, D.; Yao, J.; Huang, Y.; Shao, Z.; Chen, X. Soy Protein-Based Polyethylenimine Hydrogel and its High Selectivity for Copper Ion Removal in Wastewater Treatment. J. Mater. Chem. A 2017, 5, 4163–4171. [Google Scholar] [CrossRef]
- Tian, H.; Guo, G.; Xiang, A.; Zhong, W.-H. Intermolecular Interactions and Microstructure of Glycerol-Plasticized Soy Protein Materials at Molecular and Nanometer Levels. Polym. Test. 2018, 67, 197–204. [Google Scholar] [CrossRef]
- Lee, J.E.; Kim, K.M. Characteristics of Soy Protein Isolate-Montmorillonite Composite Films. J. Appl. Polym. Sci. 2010, 118, 2257–2263. [Google Scholar] [CrossRef]
- Zhuang, Y.; Yu, F.; Ma, J.; Chen, J. Facile Synthesis of Three-Dimensional Graphene–Soy Protein Aerogel Composites for Tetracycline Adsorption. Desalin. Water Treat. 2016, 57, 9510–9519. [Google Scholar] [CrossRef]
- Liu, J.; Fu, S.; Yuan, B.; Li, Y.; Deng, Z. Toward a Universal “Adhesive Nanosheet” for the Assembly of Multiple Nanoparticles Based on a Protein-Induced Reduction/Decoration of Graphene Oxide. J. Am. Chem. Soc. 2010, 132, 7279–7281. [Google Scholar] [CrossRef]
- Elsawy, M.A.; Kim, K.-H.; Park, J.-W.; Deep, A. Hydrolytic Degradation of Polylactic Acid (PLA) and its Composites. Renew. Sustain. Energy Rev. 2017, 79, 1346–1352. [Google Scholar] [CrossRef]
- Cao, Y.; Feng, J.; Wu, P. Preparation of Organically Dispersible Graphene Nanosheet Powders Through a Lyophilization Method and Their Poly(Lactic Acid) Composites. Carbon 2010, 48, 3834–3839. [Google Scholar] [CrossRef]
- Geng, L.-H.; Peng, X.-F.; Jing, X.; Li, L.-W.; Huang, A.; Xu, B.-P.; Chen, B.-Y.; Mi, H.-Y. Investigation of Poly(L-Lactic Acid)/Graphene Oxide Composites Crystallization and Nanopore Foaming Behaviors via Supercritical Carbon Dioxide Low Temperature Foaming. J. Mater. Res. 2016, 31, 348. [Google Scholar] [CrossRef]
- Pinto, A.M.; Cabral, J.; Tanaka, D.A.P.; Mendes, A.M.; Magalhães, F.D. Effect of Incorporation of Graphene Oxide and Graphene Nanoplatelets on Mechanical and Gas Permeability Properties of Poly(Lactic Scid) Films. Polym. Int. 2013, 62, 33–40. [Google Scholar] [CrossRef]
- Li, W.; Xu, Z.; Chen, L.; Shan, M.; Tian, X.; Yang, C.; Lv, H.; Qian, X. A Facile Method to Produce Graphene Oxide-g-Poly(L-Lactic Acid) as an Promising Reinforcement for PLLA Nanocomposites. Chem. Eng. J. 2013, 237, 291–299. [Google Scholar] [CrossRef]
- Hasheminejad, K.; Montazeri, A. Enhanced Interfacial Characteristics in PLA/Graphene Composites Through Numerically-Designed Interface Treatment. Appl. Surf. Sci. 2020, 502, 144150. [Google Scholar] [CrossRef]
- Pandey, A.; Singh, J.; Singh, M.; Singh, G.; Parmar, A.S.; Chaudhary, S. Graphene Oxide/Polylactic Acid Composites with Enhanced Electrical and Mechanical Properties for 3D-Printing Materials. J. Mol. Struct. 2025, 1329, 141420. [Google Scholar] [CrossRef]
- D’Souza, A.A.; Shegokar, R. Polyethylene Glycol (PEG): A Versatile Polymer for Pharmaceutical Applications. Expert Opin. Drug Deliv. 2016, 13, 1257–1275. [Google Scholar] [CrossRef] [PubMed]
- Wenande, E.; Garvey, L.H. Immediate-type Hypersensitivity to Polyethylene Glycols: A Review. Clin. Exp. Allergy 2016, 46, 907–922. [Google Scholar] [CrossRef]
- Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(Ethylene Glycol) in Drug Delivery: Pros and Cons as well as Potential Alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288–6308. [Google Scholar] [CrossRef]
- Jang, H.-J.; Shin, C.Y.; Kim, K.-B. Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use. Toxicol. Res. 2015, 31, 105–136. [Google Scholar] [CrossRef]
- Wen, H.; Dong, C.; Dong, H.; Shen, A.; Xia, W.; Cai, X.; Song, Y.; Li, X.; Li, Y.; Shi, D. Engineered Redox-Responsive PEG Detachment Mechanism in PEGylated Nano-Graphene Oxide for Intracellular Drug Delivery. Small 2012, 8, 760–769. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, T.; Tao, J.G.; Wan, G.; Zhao, H.X. Co-Delivery of Paclitaxel and Indocyanine Green by PEGylated Graphene Oxide: A Potential Integrated Nanoplatform for Tumor Theranostics. RSC Adv. 2016, 6, 15460–15468. [Google Scholar] [CrossRef]
- Mainardes, R.M.; Silva, L.P. Drug Delivery Systems: Past, Present, and Future. Curr. Drug Targets 2004, 5, 449–455. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Shuai, Y.; Cui, X.; Nie, L. Controlled Release of Anticancer Drug Using Graphene Oxide as a Drug-Binding Effector in Konjac Glucomannan/Sodium Alginate Hydrogels. Colloids Surf. B Biointerfaces 2014, 113, 223–229. [Google Scholar] [CrossRef]
- Ahmad, U.; Sohail, M.; Ahmad, M.; Minhas, M.U.; Khan, S.; Hussain, Z.; Kousar, M.; Mohsin, S.; Abbasi, M.; Shah, S.A.; et al. Chitosan Based Thermosensitive Injectable Hydrogels for Controlled Delivery of Loxoprofen: Development, Characterization and In-Vivo Evaluation. Int. J. Biol. Macromol. 2019, 129, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Elgaied-Lamouchi, D.; Descamps, N.; Lefevre, P.; Rambur, I.; Pierquin, J.-Y.; Siepmann, F.; Siepmann, J.; Muschert, S. Starch-Based Controlled Release Matrix Tablets: Impact of the Type of Starch. J. Drug Deliv. Sci. Technol. 2020, 61, 102152. [Google Scholar] [CrossRef]
- Liu, M.; Fan, J.; Wang, K.; He, Z. Synthesis, Characterization, and Evaluation of Phosphated Cross-Linked Konjac Glucomannan Hydrogels for Colon-Targeted Drug Delivery. Drug Deliv. 2007, 14, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Mahanta, A.K.; Senapati, S.; Paliwal, P.; Krishnamurthy, S.; Hemalatha, S.; Maiti, P. Nanoparticle-Induced Controlled Drug Delivery Using Chitosan-Based Hydrogel and Scaffold: Application to Bone Regeneration. Mol. Pharm. 2018, 16, 327–338. [Google Scholar] [CrossRef]
- Dadou, S.M.; El-Barghouthi, M.I.; Antonijevic, M.D.; Chowdhry, B.Z.; Badwan, A.A. Elucidation of the Controlled-Release Behavior of Metoprolol Succinate from Directly Compressed Xanthan Gum/Chitosan Polymers: Computational and Experimental Studies. ACS Biomater. Sci. Eng. 2019, 6, 21–37. [Google Scholar] [CrossRef]
- Kim, J.; Cote, L.J.; Kim, F.; Yuan, W.; Shull, K.R.; Huang, J. Graphene Oxide Sheets at Interfaces. J. Am. Chem. Soc. 2010, 132, 8180–8186. [Google Scholar] [CrossRef]
- Maturavongsadit, P.; Wu, W.; Fan, J.; Roninson, I.B.; Cui, T.; Wang, Q. Graphene-Incorporated Hyaluronic Acid-Based Hydrogel as a Controlled Senexin A Delivery System. Biomater. Transl. 2022, 3, 152–161. [Google Scholar] [CrossRef]
- Sittisanguanphan, N.; Paradee, N.; Sirivat, A. Hyaluronic Acid and Graphene Oxide-Incorporated Hyaluronic Acid Hydrogels for Electrically Stimulated Release of Anticancer Tamoxifen Citrate. J. Pharm. Sci. 2021, 111, 1633–1641. [Google Scholar] [CrossRef]
- Islam, F.; Khan, F.A.; Khan, N.M.; Ahmad, S.; Alsaiari, A.A.; Almehmadi, M.; Ahmad, N.; Ul-Haq, Z.; Jan, A.K.; Allahyani, M.; et al. PEGylated Graphene Oxide as a Nanodrug Delivery Vehicle for Podophyllotoxin (GO/PEG/PTOX) and In Vitro α-Amylase/α-Glucosidase Inhibition Activities. ACS Omega 2023, 8, 20550–20560. [Google Scholar] [CrossRef]
- Jihad, M.A.; Noori, F.T.M.; Jabir, M.S.; Albukhaty, S.; AlMalki, F.A.; Alyamani, A.A. Polyethylene Glycol Functionalized Graphene Oxide Nanoparticles Loaded with Nigella Sativa Extract: A Smart Antibacterial Therapeutic Drug Delivery System. Molecules 2021, 26, 3067. [Google Scholar] [CrossRef]
- Marsell, R.; Einhorn, T.A. The Biology of Fracture Healing. Injury 2011, 42, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiari, S.S.E.; Bakhsheshi-Rad, H.R.; Karbasi, S.; Tavakoli, M.; Tabrizi, S.A.H.; Ismail, A.F.; Seifalian, A.; RamaKrishna, S.; Berto, F. Poly(Methyl Methacrylate) Bone Cement, its Rise, Growth, Downfall, and Future. Polym. Int. 2021, 70, 1182–1201. [Google Scholar] [CrossRef]
- Jang, J.-W.; Min, K.-E.; Kim, C.; Shin, J.; Lee, J.; Yi, S. Review: Scaffold Characteristics, Fabrication Methods, and Biomaterials for Bone Tissue Engineering. Int. J. Precis. Eng. Manuf. 2023, 24, 511–529. [Google Scholar] [CrossRef]
- Tavakoli, M.; Emadi, R.; Salehi, H.; Labbaf, S.; Varshosaz, J. Incorporation of Graphene Oxide as a Coupling Agent in a 3D Printed Polylactic Acid/Hardystonite Nanocomposite Scaffold for Bone Tissue Regeneration Applications. Int. J. Biol. Macromol. 2023, 253, 126510. [Google Scholar] [CrossRef]
- Akbari, H.; Askari, E.; Naghib, S.M.; Salehi, Z. Bovine Serum Albumin-Functionalized Graphene-Decorated Strontium as a Potent Complex Nanoparticle for Bone Tissue Engineering. Sci. Rep. 2022, 12, 12336. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. Poly(Propylene Fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering. ACS Appl. Mater. Interfaces 2016, 8, 17902–17914. [Google Scholar] [CrossRef]
- Noh, M.; Kim, S.-H.; Kim, J.; Lee, J.-R.; Jeong, G.-J.; Yoon, J.-K.; Kang, S.; Bhang, S.H.; Yoon, H.H.; Lee, J.-C.; et al. Graphene Oxide Reinforced Hydrogels for Osteogenic Differentiation of Human Adipose-Derived Stem Cells. RSC Adv. 2017, 7, 20779–20788. [Google Scholar] [CrossRef]
- Kim, H.D.; Kim, J.; Koh, R.H.; Shim, J.; Lee, J.-C.; Kim, T.-I.; Hwang, N.S. Enhanced Osteogenic Commitment of Human Mesenchymal Stem Cells on Polyethylene Glycol-Based Cryogel with Graphene Oxide Substrate. ACS Biomater. Sci. Eng. 2017, 3, 2470–2479. [Google Scholar] [CrossRef]
- Smith, A.S.T.; Yoo, H.; Yi, H.; Ahn, E.H.; Lee, J.H.; Shao, G.; Nagornyak, E.; Laflamme, M.A.; Murry, C.E.; Kim, D.-H. Micro- and Nano-Patterned Conductive Graphene–PEG Hybrid Scaffolds for Cardiac Tissue Engineering. Chem. Commun. 2017, 53, 7412–7415. [Google Scholar] [CrossRef]
- Chu, J.; Shi, P.; Yan, W.; Fu, J.; Yang, Z.; He, C.; Deng, X.; Liu, H. PEGylated Graphene Oxide-Mediated Quercetin-Modified Collagen Hybrid Scaffold for Enhancement of MSCs Differentiation Potential and Diabetic Wound Healing. Nanoscale 2018, 10, 9547–9560. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, L.; Shi, Q.; Li, J.; Lv, Y.; Song, C. Research Progress on Graphene Oxide (GO)/Chitosan (CS) Multifunctional Nanocomposites for Drug Delivery. Inorganics 2025, 13, 98. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Phys. Chem. C 2008, 112, 17554–17558. [Google Scholar] [CrossRef]
- Alessandri, S.; Ieri, F.; Romani, A. Minor Polar Compounds in Extra Virgin Olive Oil: Correlation Between HPLC-DAD-MS and the Folin-Ciocalteu Spectrophotometric Method. J. Agric. Food Chem. 2014, 62, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Konwar, A.; Kalita, S.; Kotoky, J.; Chowdhury, D. Chitosan–Iron Oxide Coated Graphene Oxide Nanocomposite Hydrogel: A Robust and Soft Antimicrobial Biofilm. ACS Appl. Mater. Interfaces 2016, 8, 20625–20634. [Google Scholar] [CrossRef]
- Majidi, H.J.; Babaei, A.; Bafrani, Z.A.; Shahrampour, D.; Zabihi, E.; Jafari, S.M. Investigating the Best Strategy to Diminish the Toxicity and Enhance the Antibacterial Activity of Graphene Oxide by Chitosan Addition. Carbohydr. Polym. 2019, 225, 115220. [Google Scholar] [CrossRef]
- Huang, X.; Bao, X.; Liu, Y.; Wang, Z.; Hu, Q. Catechol-Functional Chitosan/Silver Nanoparticle Composite as a Highly Effective Antibacterial Agent with Species-Specific Mechanisms. Sci. Rep. 2017, 7, 1860. [Google Scholar] [CrossRef]
- Xu, W.; Xie, W.; Huang, X.; Chen, X.; Huang, N.; Wang, X.; Liu, J. The Graphene Oxide and Chitosan Biopolymer Loads TiO2 for Antibacterial and Preservative Research. Food Chem. 2016, 221, 267–277. [Google Scholar] [CrossRef]
- Uo, J.; Bian, Y.-Y.; Zhu, K.-X.; Guo, X.-N.; Peng, W.; Zhou, H.-M. Reducing Phytate Content in Wheat Bran by Directly Removing the Aleurone Cell Content with Teeth Roller Mill and Ultrasonic Cleaner. J. Cereal Sci. 2015, 64, 133–138. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano 2010, 4, 5731–5736. [Google Scholar] [CrossRef]
- Grande, C.D.; Mangadlao, J.; Fan, J.; De Leon, A.; Delgado-Ospina, J.; Rojas, J.G.; Rodrigues, D.F.; Advincula, R. Chitosan Cross-Linked Graphene Oxide Nanocomposite Films with Antimicrobial Activity for Application in the Food Industry. Macromol. Symp. 2017, 374, 1600114. [Google Scholar] [CrossRef]
- Krystyjan, M.; Khachatryan, G.; Khachatryan, K.; Konieczna-Molenda, A.; Grzesiakowska, A.; Kuchta-Gładysz, M.; Kawecka, A.; Grzebieniarz, W.; Nowak, N. The Functional and Application Possibilities of Starch/Chitosan Polymer Composites Modified by Graphene Oxide. Int. J. Mol. Sci. 2022, 23, 5956. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Hamedi, H.; Tonelli, A.E.; King, M.W. Chitosan/Graphene Oxide Composite Films and Their Biomedical and Drug Delivery Applications: A Review. Appl. Sci. 2021, 11, 7776. [Google Scholar] [CrossRef]
- Mahmoudi, N.; Ostadhossein, F.; Simchi, A. Physicochemical and Antibacterial Properties of Chitosan-Polyvinylpyrrolidone Films Containing Self-Organized Graphene Oxide Nanolayers. J. Appl. Polym. Sci. 2016, 133, 43194. [Google Scholar] [CrossRef]
- Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int. J. Adv. Res. 2016, 4, 411–427. [Google Scholar] [PubMed]
- Jafari, J.; Emami, S.H.; Samadikuchaksaraei, A.; Bahar, M.A.; Gorjipour, F. Electrospun Chitosan–Gelatin Nanofiberous Scaffold: Fabrication and In Vitro Evaluation. Bio-Med. Mater. Eng. 2011, 21, 99–112. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, X.; Zhang, D. Electrospun Chitosan/Poly (Vinyl Alcohol)/Graphene Oxide Nanofibrous Membrane with Ciprofloxacin Antibiotic Drug for Potential Wound Dressing Application. Int. J. Mol. Sci. 2019, 20, 4395. [Google Scholar] [CrossRef]
- Reyes-Guzmán, V.L.; Villarreal-Gómez, L.J.; Vázquez-Mora, R.; Méndez-Ramírez, Y.I.; Paz-González, J.A.; Zizumbo-López, A.; Borbón, H.; Lizarraga-Medina, E.G.; Cornejo-Bravo, J.M.; Pérez-González, G.L.; et al. Integrating an Antimicrobial Nanocomposite to Bioactive Electrospun Fibers for Improved Wound Dressing Materials. Sci. Rep. 2024, 14, 25118. [Google Scholar] [CrossRef]
- Adetunji, C.O.; Ogundolie, F.A.; Mathew, J.T.; Inobeme, A.; Titilayo, O.; Olaniyan, O.T.; Ijabadeniyi, O.A.; Ajiboye, M.D.; Ajayi, O.O.; Dauda, W.; et al. Graphene-Based Nanomaterials for Targeted Drug Delivery and Tissue Engineering; Elsevier Ebooks: Amsterdam, The Netherlands, 2022; pp. 277–288. [Google Scholar]
- Terzopoulou, Z.; Kyzas, G.Z.; Bikiaris, D.N. Recent Advances in Nanocomposite Materials of Graphene Derivatives with Polysaccharides. Materials 2015, 8, 652–683. [Google Scholar] [CrossRef]
- Chung, C.; Kim, Y.K.; Shin, D.; Ryoo, S.R.; Hong, B.H.; Min, D.H. Biomedical Applications of Graphene and Graphene Oxide. Acc. Chem. Res. 2013, 46, 2211–2224. [Google Scholar] [CrossRef]
- Ionita, M.; Crica, L.E.; Tiainen, H.; Haugen, H.J.; Vasile, E.; Dinescu, S.; Costache, M.; Iovu, H. Gelatin–Poly (Vinyl Alcohol) Porous Biocomposites Reinforced with Graphene Oxide as Biomaterials. J. Mater. Chem. B 2016, 4, 282–291. [Google Scholar] [CrossRef]
- Mahmoudi, N.; Eslahi, N.; Mehdipour, A.; Mohammadi, M.; Akbari, M.; Samadikuchaksaraei, A.; Simchi, A. Temporary Skin Grafts Based on Hybrid Graphene Oxide-Natural Biopolymer Nanofibers as Effective Wound Healing Substitutes: Pre-Clinical and Pathological Studies in Animal Models. J. Mater. Sci. Mater. Med. 2017, 28, 73. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lei, P.; Shan, Y.; Zhang, D. Preparation and Characterization of Antibacterial Electrospun Chitosan/Poly (Vinyl Alcohol)/Graphene Oxide Composite Nanofibrous Membrane. Appl. Surf. Sci. 2017, 435, 832–840. [Google Scholar] [CrossRef]
- Lu, B.; Li, T.; Zhao, H.; Li, X.; Gao, C.; Zhang, S.; Xie, E. Graphene-Based Composite Materials Beneficial to Wound Healing. Nanoscale 2012, 4, 2978. [Google Scholar] [CrossRef] [PubMed]
Method | Process Used | Advantages | Disadvantages | ||
---|---|---|---|---|---|
Top-Down | Oxidation (GO synthesis) | Brodie’s Method | KClO3, HNO3 | High Oxidation Efficiency: Produces highly oxidized GO with a well-defined structure. Controlled Functionalization: Allows for precise tuning of oxygen-containing functional groups. Historical Significance: One of the foundational methods for GO synthesis, providing insights into oxidation mechanisms. | Harsh Reaction Conditions: Requires strong oxidizers (KClO3 and HNO3), which pose safety risks. Environmental Concerns: Generates hazardous waste, including nitrogen oxides (NOx), which contribute to pollution. Lower Yield: Compared to modern methods like Hummers’ Method, Brodie’s approach is less efficient in terms of GO production. Time-Consuming: The reaction process is slow, requiring multiple oxidation steps. |
Staudenmaier’s Method | KClO3, H2SO4, HNO3 | Higher Oxidation Efficiency: Compared to Brodie’s method, Staudenmaier’s approach achieves greater oxidation, leading to better exfoliation of GO. Improved Yield: The addition of sulfuric acid enhances the oxidation process, resulting in higher GO production. Controlled Functionalization: Produces oxygen-rich GO, which can be useful for surface modifications and chemical applications. | Harsh Reaction Conditions: Requires strong acids and oxidizers, posing safety risks during handling. Environmental Concerns: Generates hazardous waste, including nitrogen oxides (NOx), which contribute to pollution. Lower Electrical Conductivity: Due to high oxygen content, GO produced by this method may require additional reduction steps to restore conductivity. | ||
Hummers’ Method | KMnO4, H2SO4, NaNO3 | Efficient Oxidation: Produces highly oxidized GO with a well-defined structure. Scalability: Suitable for bulk production, making it viable for industrial applications. Safer Than Older Methods: Developed as an improvement over Staudenmaier’s method, reducing explosive risks. Controlled Functionalization: Allows for precise tuning of oxygen-containing functional groups. | Environmental Concerns: Generates hazardous waste, including nitrogen oxides (NOx), which contribute to pollution. Strong Acid Usage: Requires high concentrations of H2SO4, posing corrosive and handling risks. Residual Functional Groups: It may leave oxygen-containing groups, affecting electrical conductivity. Post-Treatment Required: Additional thermal or chemical reduction may be needed to obtain high-quality rGO. | ||
Modified Hummers | KMnO4, H2SO4, H3PO4 | Eco-Friendly Approach: Eliminates NaNO3, reducing the production of hazardous nitrogen oxides (NOx). Higher Oxidation Efficiency: Optimized reagent ratios improve GO yield and oxidation levels. Better Layer Separation: Produces thin-layer GO with improved dispersion and exfoliation. Scalability: Suitable for bulk production, making it viable for industrial applications. | Strong Acid Usage: Still requires high concentrations of H2SO4, posing corrosive and handling risks. Residual Functional Groups: It may leave oxygen-containing groups, affecting electrical conductivity. Post-Treatment Required: Additional thermal or chemical reduction may be needed to obtain high-quality rGO. | ||
Exfoliation (graphene synthesis) | Scotch Tape Method | mechanical exfoliation | High-Quality Graphene: Produces single-layer graphene with minimal defects, making it ideal for fundamental research. Simple and Low-Cost: Requires no complex equipment—just graphite and adhesive tape Preserves Intrinsic Properties: Maintains graphene’s electronic and mechanical properties without introducing chemical impurities. | Not Scalable: The process is manual and time-consuming, making it unsuitable for large-scale production. Low Yield: Produces small graphene flakes, limiting its use in industrial applications. Irregular Flake Size: The exfoliated graphene layers vary in size and thickness, requiring additional processing. | |
Liquid-Phase Exfoliation (LPE) | sonication | Scalability: LPE allows for large-scale production, making it suitable for industrial applications. Cost-Effective: Compared to CVD, LPE is more economical, as it uses readily available solvents and equipment. Versatile Solvent Choices: Various solvents, including water, ethanol, and NMP (N-methyl-2-pyrrolidone), can be used to optimize graphene dispersion. Solution-Based Processing: Enables easy integration into inks, coatings, and composites, facilitating applications in electronics and energy storage. | Structural Defects: The exfoliation process can introduce defects, affecting electronic and mechanical properties. Limited Control Over Layer Thickness: Unlike CVD, LPE may result in non-uniform graphene layers, requiring post-processing. Solvent Residue Issues: Some solvents may leave residual impurities, affecting graphene quality. Energy Consumption: Ultrasonication requires high energy inputs, which can impact efficiency at larger scales. | ||
Chemically Reduced GO | reduction of GO | Scalability: Chemical reduction allows for large-scale production, making it suitable for industrial applications. Cost-Effective: Compared to methods like CVD, this approach is more economical. Versatile Reducing Agents: Various chemicals, such as hydrazine, ascorbic acid and sodium borohydride, can be used to tailor graphene properties. Solution-Based Processing: Enables easy dispersion in solvents, facilitating integration into composites and coatings. | Residual Functional Groups: The reduction process often leaves behind oxygen-containing groups, affecting electrical conductivity. Structural Defects: Chemically reduced GO tends to have higher defect density, impacting mechanical and electronic properties. Environmental and Safety Concerns: Some reducing agents, like hydrazine, are toxic and hazardous, requiring careful handling. Incomplete Reduction: Achieving fully reduced graphene is challenging, often requiring additional thermal or electrochemical treatments. | ||
Bottom-Up | Graphene synthesis | Chemical Vapor Deposition (CVD) | carbon gas decomposition | High Purity and Quality: Produces graphene with low defect density, making it ideal for electronic applications. Scalability: Can be used for large-area graphene growth, suitable for industrial production. Precise Control: Allows for fine-tuning of thickness, layer number and crystallinity by adjusting deposition parameters. Versatile Substrates: Works with various substrates, including copper, nickel and silicon carbide, enabling diverse applications. | High Temperature Requirements: Typically requires 900–1100 °C, increasing energy consumption. Complex Setup: Requires specialized equipment and vacuum systems, making it costly. Limited Substrate Compatibility: Some materials may not withstand the high temperatures needed for graphene growth. Transfer Challenges: Graphene grown on metal substrates often requires transfer processes, which can introduce defects. |
Pyrolysis of Organic Precursors | thermal decomposition of organics | Scalability: Pyrolysis allows for large-scale production of graphene, making it suitable for industrial applications. Versatile Precursors: A wide range of organic materials (e.g., polymers, biomass, hydrocarbons) can be used, enabling customized graphene properties. Cost-Effective: Compared to methods like CVD, pyrolysis can be more economical, especially when using biomass-derived precursors. Environmentally Friendly Options: Using biomass waste as a precursor promotes sustainable graphene synthesis. | Structural Defects: Pyrolysis often produces graphene with defects, affecting its electronic and mechanical properties. Limited Control Over Layer Thickness: Unlike CVD, pyrolysis may result in non-uniform graphene layers, requiring post-processing. High Temperatures Required: The process typically operates at 600–1200 °C, increasing energy consumption. Purity Issues: Residual impurities from organic precursors can affect graphene quality, necessitating additional purification steps. | ||
Epitaxial Growth on SiC | high-temperature sublimation | Direct Growth on a Semiconductor: Graphene forms directly on a semiconducting or semi-insulating substrate, eliminating the need for transfer steps. Large-Area Graphene: The graphene sheet can be as large as the SiC substrate, making it suitable for device fabrication. High Electronic Quality: Produces graphene with low defect density and high carrier mobility, ideal for high-frequency electronics. Stable and Controllable Process: Growth conditions can be optimized to achieve uniform thickness and layer control. | High Temperature Requirement: Requires annealing at temperatures above 1650 °C, which increases energy costs. Limited Scalability: While suitable for research and specialized applications, large-scale industrial production remains challenging. Substrate Influence: The SiC substrate affects graphene’s electronic properties, requiring additional processing steps to modify its behavior. Expensive Material: High-quality SiC substrates are costly, making this method less economically viable compared to other graphene synthesis techniques. |
Method | Biopolymer–Graphene Nanocomposites | Biopolymer–GO-Based Nanocomposites | Advantages | Disadvantages |
---|---|---|---|---|
Solution intercalation [1] | Graphene is dispersed in a biopolymer solution and cast into films. | GO dispersed in biopolymer solution and reduced to rGO if needed. | Simple, cost-effective and good control over film thickness. | Requires effective dispersion of graphene, solvent evaporation can be slow. |
In situ polymerization [2] | Graphene is mixed with monomers or pre-polymers, followed by polymerization. | GO is incorporated and polymer chains graft onto GO. | Stronger interaction between filler and polymer; customizable properties. | A complex process: it requires precise control over reaction conditions. |
Melt intercalation [3] | Graphene is mixed with molten biopolymer in an extruder. | GO can be pre-treated and then blended with molten biopolymer. | High throughput; suitable for thermoplastic biopolymers; uniform distribution. | Difficulty dispersing graphene uniformly, need high temperatures. |
Solvent evaporation/film formation [86] | Graphene dispersed in biopolymer solution and solvent evaporated to form films. | GO dispersed and then reduced to rGO during film formation. | Simple, easy to scale, good for thin-film fabrication. | Solvent evaporation may be slow, needs effective dispersion of graphene. |
Hydrothermal/solvothermal [4] | Graphene and biopolymer treated under high pressure and temperature. | GO reduced in situ during hydrothermal or solvothermal process. | High-quality nanocomposites, uniform dispersion, controlled reduction of GO. | Requires high pressure and temperature, complex setup. |
Electrospinning [5] | Graphene mixed with polymer solution and electrospun into nanofibers. | GO dispersed and then electrospun and reduced if needed. | High surface area, customizable fiber properties, good for nanofibers. | High-cost equipment and difficulty in achieving uniform dispersion. |
Self-assembly [6] | Graphene is dispersed and assembled through non-covalent interactions. | GO self-assembles with biopolymer; can form layered structures. | Low-cost, no need for solvents, can form complex nanostructures. | Slow process, may be difficult to control for large-scale production. |
Layer-by-layer (LbL) assembly [7] | Graphene and biopolymer are alternately deposited to form multilayered films. | GO layers are assembled with biopolymer layers. | High precision, allows for control over nanocomposite architecture. | Requires careful control over layer deposition, can be time-consuming. |
Physical blending [8] | Graphene mixed with biopolymer using mechanical methods. | GO physically blended into biopolymer. | Simple, fast, low-cost process, scalable. | Poor dispersion of graphene, potential for poor interface bonding. |
Composite | Application | Reference | |
---|---|---|---|
Bone tissue engineering | PEG-GO-Propylene fumarate | Bone tissue engineering | [204] |
GO-PEGDA hydrogels | Osteogenesis of human adipose-derived stem cells (hADSCs) | [205] | |
GO-incorporated PEGDA cryogels | Osteogenic commitment of human tonsil-derived MSCs (hTMSCs) | [206] | |
Cardiac tissue engineering | GO-PEG hybrid scaffold | Neonatal rat ventricular myocytes (NRVMs) | [207] |
Skin tissue engineering | ADM-GO-PEG/Que hybrid scaffolds | Diabetic wounds | [208] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binaymotlagh, R.; Chronopoulou, L.; Palocci, C. An Overview of Biopolymer-Based Graphene Nanocomposites for Biotechnological Applications. Materials 2025, 18, 2978. https://doi.org/10.3390/ma18132978
Binaymotlagh R, Chronopoulou L, Palocci C. An Overview of Biopolymer-Based Graphene Nanocomposites for Biotechnological Applications. Materials. 2025; 18(13):2978. https://doi.org/10.3390/ma18132978
Chicago/Turabian StyleBinaymotlagh, Roya, Laura Chronopoulou, and Cleofe Palocci. 2025. "An Overview of Biopolymer-Based Graphene Nanocomposites for Biotechnological Applications" Materials 18, no. 13: 2978. https://doi.org/10.3390/ma18132978
APA StyleBinaymotlagh, R., Chronopoulou, L., & Palocci, C. (2025). An Overview of Biopolymer-Based Graphene Nanocomposites for Biotechnological Applications. Materials, 18(13), 2978. https://doi.org/10.3390/ma18132978