Tensile Deformation and Transverse Strain Behavior of Carbon Black-UHMWPE Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Manufacturing Process
2.2. Material Testing Process
2.3. Prediction of Material Deformation Using Conservation of Volume
2.4. Calculating Effect of Volumetric Opening in the Material
2.5. Other Calculations
2.6. Quantifying Necking Behavior
2.7. Scanning Electron Microscopy
2.8. Statistical Analysis
3. Results and Discussion
3.1. Transverse Dimensional Changes as a Function of Strain
3.2. Volumetric Changes as a Function of Strain and Filler Concentration
3.3. Necking Behavior
3.4. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malito, L.G.; Arevalo, S.; Kozak, A.; Spiegelberg, S.; Bellare, A.; Pruitt, L. Material properties of ultra-high molecular weight polyethylene: Comparison of tension, compression, nanomechanics and microstructure across clinical formulations. J. Mech. Behav. Biomed. Mater. 2018, 83, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.C.; Ho, S.P.; LaBerge, M. Conductive composite of UHMWPE and CB as a dynamic contact analysis sensor. Tribol. Int. 2006, 39, 1327–1335. [Google Scholar] [CrossRef]
- Pang, H.; Xu, L.; Yan, D.-X.; Li, Z.-M. Conductive polymer composites with segregated structures. Prog. Polym. Sci. 2014, 39, 1908–1933. [Google Scholar] [CrossRef]
- Grunlan, J.C.; Gerberich, W.W.; Francis, L.F. Lowering the percolation threshold of conductive composites using particulate polymer microstructure. J. Appl. Polym. Sci. 2001, 80, 692–705. [Google Scholar] [CrossRef]
- Al-Saleh, M.H. Electrical and electromagnetic interference shielding characteristics of GNP/UHMWPE composites. J. Phys. D Appl. Phys. 2016, 49, 195302. [Google Scholar] [CrossRef]
- Shiyanova, K.A.; Gudkov, M.V.; Gorenberg, A.Y.; Rabchinskii, M.K.; Smirnov, D.A.; Shapetina, M.A.; Gurinovich, T.D.; Goncharuk, G.P.; Kirilenko, D.A.; Bazhenov, S.L.; et al. Segregated Network Polymer Composites with High Electrical Conductivity and Well Mechanical Properties based on PVC, P(VDF-TFE), UHMWPE, and rGO. ACS Omega 2020, 5, 25148–25155. [Google Scholar] [CrossRef]
- Cheng, H.; Cao, C.; Zhang, Q.; Wang, Y.; Liu, Y.; Huang, B.; Sun, X.-L.; Guo, Y.; Xiao, L.; Chen, Q.; et al. Enhancement of Electromagnetic Interference Shielding Performance and Wear Resistance of the UHMWPE/PP Blend by Constructing a Segregated Hybrid Conductive Carbon Black–Polymer Network. ACS Omega 2021, 6, 15078–15088. [Google Scholar] [CrossRef]
- Cheng, H.; Sun, X.; Huang, B.; Xiao, L.; Chen, Q.; Cao, C.; Qian, Q. Endowing Acceptable Mechanical Properties of Segregated Conductive Polymer Composites with Enhanced Filler-Matrix Interfacial Interactions by Incorporating High Specific Surface Area Nanosized Carbon Black. Nanomaterials 2021, 11, 2074. [Google Scholar] [CrossRef]
- Xu, H.; Yu, D.; Cui, J.; Shi, Z.; Song, D.; Miao, C. The Hypervelocity Impact Behavior and Energy Absorption Evaluation of Fabric. Polymers 2023, 15, 1547. [Google Scholar] [CrossRef]
- Hasan, R.; Pande, S.; Bhalerao, P. Mechanical and biocompatibility properties of UHMWPE–HNT composite for joint replacement applications. Bull. Mater. Sci. 2024, 47, 134. [Google Scholar] [CrossRef]
- Joshi, A.; Mishra, A.; Saxena, V.K. Impact response and energy absorption mechanisms of UHMWPE fabric and composites in ballistic applications: A comprehensive review. Compos. Part A Appl. Sci. Manuf. 2024, 185, 108314. [Google Scholar] [CrossRef]
- Chen, L.; Cao, M.; Fang, Q. Ballistic performance of ultra-high molecular weight polyethylene laminate with different thickness. Int. J. Impact Eng. 2021, 156, 103931. [Google Scholar] [CrossRef]
- Pundhir, N.; Pathak, H.; Zafar, S. Ballistic impact performance of ultra-high molecular weight polyethylene (UHMWPE) composite armour. Sādhanā 2021, 46, 194. [Google Scholar] [CrossRef]
- Asgedom, G.; Yeneneh, K.; Tilahun, G.; Negash, B. Numerical and experimental analysis of body armor polymer penetration resistance against 7.62 mm bullet. Heliyon 2025, 11, e41286. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S. UHMWPE Biomaterials Handbook, 3rd ed.; Elsevier: Burlington, MA, USA, 2016. [Google Scholar]
- Bracco, P.; Bellare, A.; Bistolfi, A.; Affatato, S. Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review. Materials 2017, 10, 791. [Google Scholar] [CrossRef]
- Sharma, V.; Chowdhury, S.; Keshavan, N.; Basu, B. Six decades of UHMWPE in reconstructive surgery. Int. Mater. Rev. 2023, 68, 46–81. [Google Scholar] [CrossRef]
- Prado-Novoa, M.; Perez-Sanchez, L.; Estebanez, B.; Moreno-Vegas, S.; Perez-Blanca, A. Influence of Loading Conditions on the Mechanical Performance of Multifilament Coreless UHMWPE Sutures Used in Orthopaedic Surgery. Materials 2022, 15, 2573. [Google Scholar] [CrossRef]
- Force Fiber Suture by Teleflex Medical OEMTeleflex Medical. Available online: https://www.teleflexmedicaloem.com/suture-and-fiber-technologies-2/force-fiber-black/ (accessed on 15 April 2025).
- DSM Biomedical, Inc. Dyneema Purity: Black Fiber. 2020. Available online: https://www.dsm.com/content/dam/dsm/biomedical/en_us/documents/document-dyneema-purity-black-fiber-2020.pdf (accessed on 15 April 2025).
- Listing of Color Additives Subject to Certification; D&C Black No. 4, Federal Register. Available online: https://www.federalregister.gov/documents/2018/06/07/2018-12218/listing-of-color-additives-subject-to-certification-dandc-black-no-4 (accessed on 7 August 2023).
- Bilir, M.Z.; Gürcüm, B.H. Ballistic wearable electronic vest design. J. Ind. Text. 2018, 47, 1769–1790. [Google Scholar] [CrossRef]
- Alam, K.; Ali, M. Ballistic Body Armor Damage Sensing System and Related Methods. US Patent US10302399B2, 28 May 2019. Available online: https://patents.google.com/patent/US10302399B2/en?oq=US-10302399 (accessed on 15 April 2025).
- Zhou, J.; Wang, S.; Zhang, J.; Liu, S.; Wang, W.; Yuan, F.; Gong, X. Intelligent body armor: Advanced Kevlar based integrated energy devices for personal safeguarding. Compos. Part A Appl. Sci. Manuf. 2022, 161, 107083. [Google Scholar] [CrossRef]
- Albert, S.A.V.; Bruney, P.F.; Matthews, R.; Kunstmanas, L.R. Ballistic Impact Detection System. French Patent WO2006085935A2, 17 August 2006. Available online: https://patents.google.com/patent/WO2006085935A2/en (accessed on 12 May 2025).
- An, B.W.; Shin, J.H.; Kim, S.-Y.; Kim, J.; Ji, S.; Park, J.; Lee, Y.; Jang, J.; Park, Y.-G.; Cho, E.; et al. Smart Sensor Systems for Wearable Electronic Devices. Polymers 2017, 9, 303. [Google Scholar] [CrossRef]
- Safaee, M.M.; Deviren, V.; Dalle Ore, C.; Scheer, J.K.; Lau, D.; Osorio, J.A.; Nicholls, F.; Ames, C.P. Ligament augmentation for prevention of proximal junctional kyphosis and proximal junctional failure in adult spinal deformity. J. Neurosurg. Spine 2018, 28, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Velásquez-García, L.F. Monolithic FFF-Printed, Biocompatible, Biodegradable, Dielectric-Conductive Microsystems. J. Microelectromechanical Syst. 2017, 26, 1356–1370. [Google Scholar] [CrossRef]
- Aleksandrova, M.; Mateev, V.; Iliev, I. Behavior of Polymer Electrode PEDOT:PSS/Graphene on Flexible Substrate for Wearable Biosensor at Different Loading Modes. Nanomaterials 2024, 14, 1357. [Google Scholar] [CrossRef]
- Sobieraj, M.C.; Rimnac, C.M. Ultra high molecular weight polyethylene: Mechanics, morphology, and clinical behavior. J. Mech. Behav. Biomed. Mater. 2009, 2, 433–443. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, D.-J.; Zhang, L.-Y.; Liu, B. How to Realize Volume Conservation During Finite Plastic Deformation. J. Appl. Mech. 2017, 84. [Google Scholar] [CrossRef]
- Simo, J.C.; Taylor, R.L.; Pister, K.S. Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 1985, 51, 177–208. [Google Scholar] [CrossRef]
- Roylance, D. 6.1: Yield and Plastic Flow. In Mechanics of Materials (Roylance); LibreTexts: Davis, CA, USA, 2020; Available online: https://eng.libretexts.org/Bookshelves/Mechanical_Engineering/Mechanics_of_Materials_(Roylance)/06%3A_Yield_and_Fracture/6.01%3A_Yield_and_Plastic_Flow (accessed on 20 April 2025).
- Reinitz, S.D.; Engler, A.J.; Carlson, E.M.; Van Citters, D.W. Equal channel angular extrusion of ultra-high molecular weight polyethylene. Mater. Sci. Eng. C 2016, 67, 623–628. [Google Scholar] [CrossRef]
- Favreau, H.J.; Miroshnichenko, K.I.; Solberg, P.C.; Tsukrov, I.I.; Van Citters, D.W. Shear enhancement of mechanical and microstructural properties of synthetic graphite and ultra-high molecular weight polyethylene carbon composites. J. Appl. Polym. Sci. 2022, 139, 52175. [Google Scholar] [CrossRef]
- Favreau, H. Microstructural and Mechanical Property Characterization of Ultra-High Molecular Weight Polyethylene and its Composites Subjected to Equal Channel Angular Pressing. Doctoral Dissertation, Dartmouth College, Hanover, NH, USA, 2022. [Google Scholar]
- Gil, D.; Hugard, S.; Grindy, S.; Borodinov, N.; Ovchinnikova, O.S.; Muratoglu, O.K.; Bedair, H.; Oral, E. Structural and antibacterial properties of NSAID-loaded ultra-high molecular weight polyethylene. Materialia 2020, 12, 100662. [Google Scholar] [CrossRef]
- Gupta, A.; Tripathi, G.; Lahiri, D.; Balani, K. Compression Molded Ultra High Molecular Weight Polyethylene–Hydroxyapatite–Aluminum Oxide–Carbon Nanotube Hybrid Composites for Hard Tissue Replacement. J. Mater. Sci. Technol. 2013, 29, 514–522. [Google Scholar] [CrossRef]
- Mallick, S.; Sahoo, J.K.; Mallik, P.K.; Patnaik, S.C. Processing and Characterization of Compression Molded Multifunctional UHMWPE-CaTiO3 Composite. Mater. Today Proc. 2020, 33, 5290–5294. [Google Scholar] [CrossRef]
- Colby, R. Equivalent Plastic Strain for the Hill’s Yield Criterion under General Three-Dimensional Loading; Massachusetts Institute of Technology: Cambridge, MA, USA, 2013; Available online: https://dspace.mit.edu/bitstream/handle/1721.1/83690/863164511-MIT.pdf?sequence=2&isAllowed=y (accessed on 20 April 2025).
- Starkova, O.; Aniskevich, A. Poisson’s ratio and the incompressibility relation for various strain measures with the example of a silica-filled SBR rubber in uniaxial tension tests. Polym. Test. 2010, 29, 310–318. [Google Scholar] [CrossRef]
- Greaves, G.N.; Greer, A.L.; Lakes, R.S.; Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 2011, 10, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Liu, X.; Tan, X. Chapter 14–Hydraulic Fracturing. In Petroleum Production Engineering, 2nd ed.; Guo, B., Liu, X., Tan, X., Eds.; Gulf Professional Publishing: Boston, MA, USA, 2017; pp. 389–501. ISBN 978-0-12-809374-0. [Google Scholar]
- Buklovskiy, S.; Miroshnichenko, K.; Tsukrov, I.; Thomson, R.J.; Solberg, P.C.; Van Citters, D.W. Mesoscale models for effective elastic properties of carbon-black/ultra-high-molecular-weight-polyethylene nanocomposites. Int. J. Eng. Sci. 2024, 205, 104159. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, J.W.; Neale, K.W. Neck propagation. J. Mech. Phys. Solids 1983, 31, 405–426. [Google Scholar] [CrossRef]
- Wu, P.D.; van der Giessen, E. On neck propagation in amorphous glassy polymers under plane strain tension. Int. J. Plast. 1995, 11, 211–235. [Google Scholar] [CrossRef]
Neat | 2.5 wt.% | 5 wt.% | 7.5 wt.% | 10 wt.% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Nom. Strain | t | w | t | w | t | w | t | w | t | w |
0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
10% | 1.0% | 0.8% | 0.0% | 0.8% | −0.1% | 0.7% | 0.3% | 0.3% | −0.9% | 1.2% |
20% | 1.1% | 1.1% | 0.5% | 1.1% | 0.2% | 1.1% | 0.9% | 0.8% | 0.0% | 1.2% |
30% | 1.1% | 1.2% | 1.2% | 1.4% | 0.5% | 1.4% | 1.0% | 1.1% | 0.5% | 1.5% |
40% | 1.5% | 1.4% | 1.0% | 1.5% | 0.4% | 1.5% | 1.5% | 1.5% | 1.2% | 2.2% |
50% | 1.6% | 1.8% | 1.1% | 1.7% | 0.8% | 1.6% | 2.2% | 1.9% | 1.7% | 2.6% |
60% | 2.0% | 1.7% | 0.3% | 1.9% | 0.9% | 2.1% | 2.7% | 2.2% | 2.0% | 2.8% |
70% | 1.9% | 1.7% | 0.5% | 2.1% | 1.1% | 2.3% | 2.4% | 2.3% | 3.0% | 3.3% |
80% | 2.4% | 1.9% | 0.0% | 2.7% | 1.3% | 2.4% | 2.4% | 2.8% | 2.4% | 3.7% |
90% | 2.3% | 2.2% | 0.3% | 2.5% | 1.2% | 2.8% | 2.7% | 3.2% | 3.0% | 4.6% |
100% | 2.1% | 2.2% | 0.6% | 2.3% | 1.5% | 2.8% | 3.1% | 3.5% | 3.5% | 4.5% |
150% | 3.4% | 3.2% | 1.6% | 3.4% | 2.2% | 4.0% | 4.0% | 5.1% | 4.5% | 6.0% |
200% | 4.3% | 3.9% | 2.6% | 4.1% | 3.1% | 5.0% | 5.2% | 6.5% | 5.7% | 7.6% |
250% | 5.1% | 4.9% | 3.4% | 5.2% | 3.9% | 6.2% | 6.1% | 8.2% | 6.9% | 9.4% |
300% | 6.1% | 6.0% | 4.6% | 6.6% | 5.1% | 7.7% | 7.3% | 9.2% | 8.5% | 9.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solberg, P.C.; Van Citters, D.W. Tensile Deformation and Transverse Strain Behavior of Carbon Black-UHMWPE Composites. Materials 2025, 18, 2542. https://doi.org/10.3390/ma18112542
Solberg PC, Van Citters DW. Tensile Deformation and Transverse Strain Behavior of Carbon Black-UHMWPE Composites. Materials. 2025; 18(11):2542. https://doi.org/10.3390/ma18112542
Chicago/Turabian StyleSolberg, Peder C., and Douglas W. Van Citters. 2025. "Tensile Deformation and Transverse Strain Behavior of Carbon Black-UHMWPE Composites" Materials 18, no. 11: 2542. https://doi.org/10.3390/ma18112542
APA StyleSolberg, P. C., & Van Citters, D. W. (2025). Tensile Deformation and Transverse Strain Behavior of Carbon Black-UHMWPE Composites. Materials, 18(11), 2542. https://doi.org/10.3390/ma18112542