You are currently viewing a new version of our website. To view the old version click .

Materials

Materials is an international peer-reviewed, open access journal on materials science and engineering published semimonthly online by MDPI.
The Portuguese Materials Society (SPM)Spanish Materials Society (SOCIEMAT), Manufacturing Engineering Society (MES) and Chinese Society of Micro-Nano Technology (CSMNT) are affiliated with Materials and their members receive discounts on the article processing charges.
Indexed in PubMed | Quartile Ranking JCR - Q2 (Metallurgy and Metallurgical Engineering | Physics, Applied | Physics, Condensed Matter)

All Articles (53,904)

GH2132, an Ni–Cr–Fe-based superalloy for aero-engine components, exhibits hot workability that is highly sensitive to processing parameters. The hot deformation behavior of GH2132 alloy was investigated via isothermal compression (Gleeble-3500-GTC) over 850–1100 °C and 0.001–10 s−1, combined with optical microscopy and EBSD characterization. A strain-compensated Arrhenius-type hyperbolic-sine model was established, achieving high predictive accuracy (R2 = 0.9916; AARE = 3.86%) with an average activation energy Q = 446.2 kJ·mol−1. Flow stress decreases with increasing temperature and increases with strain rate, while microstructural softening transitions from dynamic recovery to complete dynamic recrystallization at higher temperatures and lower strain rates. Three-dimensional power-dissipation and hot-processing maps (Dynamic Materials Model) delineate safe domains and instability regions, identifying an optimal window of 1000–1100 °C at 0.001–0.01 s−1 and instability at 850–900 °C with 0.01–0.1 s−1. These results provide guidance for selecting parameters for hot deformation behavior during thermomechanical processing of GH2132.

16 December 2025

Initial microstructure of GH2132 superalloy.

In this study, thin molybdenum nitride (MoNx) layers were directly synthesized on molybdenum foil via thermal treatment under an NH3 atmosphere, and their phase evolution, structural characteristics, and electrochemical performance were investigated. The thickness and morphology of the MoNx layers were controlled by varying ammonolysis time and temperature, while subsequent annealing in N2 converted the nitride layer into MoO2. Meanwhile, oxidation in air yielded crystalline MoO3 layers. X-ray diffraction and X-ray photoelectron spectroscopy confirmed progressive oxidation of molybdenum, with Mo 3d binding energies increasing in the sequence of Mo < MoNx < MoO2 < MoO3, consistent with their nominal oxidation states. Electrochemical characterization revealed that both MoNx/Mo and MoO2/Mo electrodes exhibit notable pseudocapacitive behavior in 0.5 M H2SO4 electrolyte, with areal specific capacitances reaching up to 520 mF cm−2 at 10 mV s−1. Increasing layer thickness led to enhanced capacitance, likely due to an increase in the electrochemically accessible surface area and the extension of ion diffusion pathways. MoO2-coated samples showed stronger faradaic contribution and superior rate capability compared to MoNx counterparts, along with a gradual shift from predominantly electric double-layer capacitance toward hybrid pseudocapacitive charge storage mechanisms.

16 December 2025

Transformation of molybdenum foil to molybdenum nitrides and oxides.

This study systematically investigates the key parameters governing the mechanical performance of fly ash-based geopolymer across paste, mortar, and concrete scales. Comprehensive mechanical testing, combined with SEM and MIP analyses, elucidated the relationships between activator composition, pore structure, and strength development. A key innovation is the development of a cross-scale quantitative framework linking mortar strength to concrete compressive strength, enabling preliminary predictive capability across material scales. Grey relational analysis identified curing temperature as the most influential factor, followed by SiO2/Na2O and H2O/Na2O ratios. Thermal curing accelerates strength development and temperatures of 70~80 °C markedly enhance reaction rates. Both compressive and flexural/splitting tensile strengths increase and then decrease with NaOH concentration or sodium silicate modulus, with optimal performance at 24~26% NaOH and SiO2/Na2O ratio of 1.2~1.4, while increasing H2O/Na2O reduces strength nearly linearly, constrained by workability. Concrete compressive strength rises with coarse aggregate content up to 60~70% before declining. SEM and MIP confirm that optimal activator formulations produce a dense, homogeneous gel matrix with lower porosity and fewer unreacted particles. Strong square-root correlations between compressive and tensile-related strengths were observed across all material systems. Overall, this work establishes a quantitative foundation for geopolymer mix design and provides actionable guidance for developing high-performance, low-carbon geopolymer concrete.

16 December 2025

Particle size distribution of FA and GGBFS.

Silicone rubber from decommissioned composite insulators has become one of the major environmental challenges in the power industry due to its non-degradable nature. Therefore, the recycling and reuse of silicone rubber are of great environmental and economic significance. In this work, a method for preparing silica microspheres based on stepwise pyrolysis combined with post-treatment particle size fractionation is proposed. First, highly spherical silica microspheres were obtained by stepwise pyrolysis. Subsequently, glass fiber membrane filtration and aga-rose gel electrophoresis were employed as post-treatment methods to achieve particle size fractionation and enhanced uniformity. The results indicate that the post-treated silica microspheres exhibit high uniformity, high sphericity, and good dispersibility. This method significantly improves the structural uniformity and microscopic characteristics of the microspheres, making them promising high-value fillers for epoxy resin insulation modification. Comparative analysis with commercial nanosilica used as epoxy fillers shows that the recycled and fractionated silica microspheres achieve comparable improvements in breakdown strength and dielectric performance, confirming their potential for recycling and reuse in high-voltage insulation and electronic packaging applications.

16 December 2025

The thermal decomposition process of silicone rubber in retired composite insulators and the recovered products [12].

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Advances in Computation and Modeling of Materials Mechanics
Reprint

Advances in Computation and Modeling of Materials Mechanics

Editors: Hai Huang, Abduljabar Alsayoud, Yucheng Lan
Recent Researches in Polymer and Plastic Processing
Reprint

Recent Researches in Polymer and Plastic Processing

Editors: Joanna Izdebska-Podsiadły

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Materials - ISSN 1996-1944