Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 1780 KB  
Review
A Review on Wearable Product Design and Applications
by Prodromos Minaoglou, Nikolaos Efkolidis, Athanasios Manavis and Panagiotis Kyratsis
Machines 2024, 12(1), 62; https://doi.org/10.3390/machines12010062 - 16 Jan 2024
Cited by 17 | Viewed by 8113
Abstract
In recent years, the rapid advancement of technology has caused an increase in the development of wearable products. These are portable devices that can be worn by people. The main goal of these products is to improve the quality of life as they [...] Read more.
In recent years, the rapid advancement of technology has caused an increase in the development of wearable products. These are portable devices that can be worn by people. The main goal of these products is to improve the quality of life as they focus on the safety, assistance and entertainment of their users. The introduction of many new technologies has allowed these products to evolve into many different fields with multiple uses. The way in which the design of wearable products/devices is approached requires the study and recording of multiple factors so that the final device is functional and efficient for its user. The current research presents an in-depth overview of research studies dealing with the development, design and manufacturing of wearable products/devices and applications/systems in general. More specifically, in this review, a comprehensive classification of wearable products/devices in various sectors and applications was carried out, resulting in the creation of eight different categories. A total of 161 studies from the last 13 years were analyzed and commented on. The findings of this review show that the use of new technologies such as 3D scanning and 3D printing are essential tools for the development of wearable products. In addition, many studies observed the use of various sensors through which multiple signals and data could be recorded. Finally, through the eight categories that the research studies were divided into, two main conclusions emerged. The first conclusion is that 3D printing is a method that was used the most in research. The second conclusion is that most research directions concern the safety of users by using sensors and recording anthropometric dimensions. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: "Smart Manufacturing")
Show Figures

Figure 1

17 pages, 4577 KB  
Article
An Experimental and Numerical Study of the Laser Ablation of Bronze
by Esmaeil Ghadiri Zahrani, Vasiliki E. Alexopoulou, Emmanouil L. Papazoglou, Bahman Azarhoushang and Angelos Markopoulos
Machines 2024, 12(1), 63; https://doi.org/10.3390/machines12010063 - 16 Jan 2024
Cited by 5 | Viewed by 2077
Abstract
The use of lasers in various precise material removal processes has emerged as a viable and efficient alternative to traditional mechanical methods. However, the laser ablation of materials is a complex, multi-parameter process where scanning paths need to be repeated multiple times. This [...] Read more.
The use of lasers in various precise material removal processes has emerged as a viable and efficient alternative to traditional mechanical methods. However, the laser ablation of materials is a complex, multi-parameter process where scanning paths need to be repeated multiple times. This repetition causes changes in the absorption and temperature distribution along the scanning path, thereby affecting the accuracy of the ablation. Therefore, it is crucial to thoroughly study these phenomena. This article presents an experimental and numerical study on the laser ablation of bronze (DIN: 1705) in a multi-track ablation process. Specifically, six consecutive passes using a ns laser at three different energy densities were conducted. After each pass, measurements of the ablation depth and pile-up height were taken at three distinct points along the track (start, middle, and end) to evaluate the efficiency and quality of the process. To gain a deeper understanding of the underlying physical mechanisms, a numerical simulation model based on the Finite Element Method (FEM) was developed. The effective absorptivity was defined through reverse engineering, and the material’s cooling rates were also estimated. This study’s findings provide significant insights into the influence of machining parameters on the ablation process and its progression with varying numbers of consecutive repetitions. A primarily linear correlation was deduced between the ablation depth, energy density, and number of repetitions, while the relationship with the pile-up height appeared to be more ambiguous and nonlinear. The estimated cooling rates ranged from 106 to 1010 [K/s]. Additionally, a heat accumulation phenomenon and a gradual temperature increase resulting from consecutive laser scans were also observed. A good agreement between the simulation results and experiments for the ablation depths was observed. Full article
Show Figures

Figure 1

25 pages, 25756 KB  
Article
Analysis of the Control Characteristics of the Electro-Hydraulic Vibration System Based on the Single-Neuron Control Algorithm
by Wenang Jia, Zeji Chen, Tongzhong Chen and Sheng Li
Machines 2024, 12(1), 58; https://doi.org/10.3390/machines12010058 - 12 Jan 2024
Cited by 1 | Viewed by 2031
Abstract
This paper proposes an electro-hydraulic vibration control system based on the single-neuron PID algorithm, which improves the operating frequency of the electro-hydraulic fatigue testing machine and the control accuracy of the load force. Through mathematical modeling of the electro-hydraulic vibration system (EVS), a [...] Read more.
This paper proposes an electro-hydraulic vibration control system based on the single-neuron PID algorithm, which improves the operating frequency of the electro-hydraulic fatigue testing machine and the control accuracy of the load force. Through mathematical modeling of the electro-hydraulic vibration system (EVS), a MATLAB/Simulink simulation, and experimental testing, this study systematically analyzes the output waveform of the EVS as well as the closed-loop situation of load force amplitude and offset under the action of the single-neuron PID algorithm. The results show that: the EVS with a 2D vibration valve as the core, which can control the movement of the spool in the two-degrees-of-freedom direction, can realize the output of an approximate sinusoidal load force waveform from 0 to 800 Hz. The system controlled by the single-neuron PID algorithm is less complex to operate than the traditional PID algorithm. It also has a short rise time for the output load force amplitude curve and a maximum control error of only 1.2%. Furthermore, it exhibits a rapid closed-loop response to the load force offset. The range variability of the load force is measured to be 1.43%. A new scheme for the design of EVS is provided in this study, which broadens the application range of electro-hydraulic fatigue testing machines. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

29 pages, 24569 KB  
Article
New Method for Precise Measurement of Clamping Plate Deformations on Forming Presses
by Georg Ivanov, Thomas Burkhardt, Lars Penter and Steffen Ihlenfeldt
Machines 2024, 12(1), 40; https://doi.org/10.3390/machines12010040 - 5 Jan 2024
Viewed by 2055
Abstract
The deformation of press bolster plates under load can significantly impact the quality of manufactured workpieces. Consequently, press manufacturers are usually obliged to provide the metric proof of the permissible deformation values during the press commissioning process. Unfortunately, the existing measurement methods for [...] Read more.
The deformation of press bolster plates under load can significantly impact the quality of manufactured workpieces. Consequently, press manufacturers are usually obliged to provide the metric proof of the permissible deformation values during the press commissioning process. Unfortunately, the existing measurement methods for determining bolster plate deformations present flaws in the measurement accuracy, the application flexibility, the metrological effort, and other aspects. These issues have been addressed through the development of a new measurement method using multiple inclination profiles on the surface of the measured object. Based on the difference in the inclination between the unloaded and loaded states, the method approximates the inclination surface and calculates the deformation of the measured object through integration. The measurement method was first used for commissioning tests of forming presses. A comparison with the results obtained with a measurement frame equipped with high-resolution measurement probes demonstrates an accuracy of the new method of less than 20 µm. Full article
Show Figures

Figure 1

22 pages, 8263 KB  
Article
Research on the Hobbing Processing Method of Marine Beveloid Gear
by Jianmin Wen, Haoyu Yao, Hui Li and Bindi You
Machines 2024, 12(1), 35; https://doi.org/10.3390/machines12010035 - 4 Jan 2024
Cited by 2 | Viewed by 2719
Abstract
Due to the particular structure of the beveloid gear, it cannot be directly hobbed by an ordinary gear hobbing machine. The existing processing method is complex and has a high cost. Therefore, the mass production and industrialization of beveloid gears are limited. To [...] Read more.
Due to the particular structure of the beveloid gear, it cannot be directly hobbed by an ordinary gear hobbing machine. The existing processing method is complex and has a high cost. Therefore, the mass production and industrialization of beveloid gears are limited. To improve the machining efficiency and accuracy of processing beveloid gears, we proposed a hobbing method via the modification of ordinary hobbing machines. At first, we completed the derivation and calculation of the relevant processing parameters of the beveloid gear based on the study of the structural characteristics of the beveloid gear and the principle of hobbing machining. Then, we proposed and designed a beveloid gear hobbing method, and the modification of the ordinary hobbing machine was completed by using a hanging wheel mechanism in synchronous belt type. Finally, we completed the actual hobbing of the beveloid gear, and the feasibility of the proposed method was verified. After that, we analyzed the machining error of the trial-produced beveloid gear; the results showed that the accuracy of the trial-produced beveloid gear met the 6-level standard, which also verified the accuracy of the proposed method. Full article
(This article belongs to the Special Issue Advancements in Mechanical Power Transmission and Its Elements)
Show Figures

Figure 1

20 pages, 9439 KB  
Article
Novel Design of Variable Stiffness Pneumatic Flexible Shaft Coupling: Determining the Mathematical-Physical Model and Potential Benefits
by Peter Kaššay, Robert Grega, Matej Urbanský, Jozef Krajňák, Matúš Kačír and Lucia Žuľová
Machines 2024, 12(1), 28; https://doi.org/10.3390/machines12010028 - 31 Dec 2023
Cited by 3 | Viewed by 2734
Abstract
Presently, mechanical system vibroisolation is becoming increasingly important. One of the new approaches is semi-active vibroisolation using elements capable of changing a selected mechanical property. These include, among others, pneumatic flexible shaft couplings capable of changing torsional stiffness during operation. The main goal [...] Read more.
Presently, mechanical system vibroisolation is becoming increasingly important. One of the new approaches is semi-active vibroisolation using elements capable of changing a selected mechanical property. These include, among others, pneumatic flexible shaft couplings capable of changing torsional stiffness during operation. The main goal of the article is to examine the potential advantages of a newly patented pneumatic coupling over a current type with the same pneumatic element arrangement. For comparison, parameters determinable from static load characteristics were selected. These parameters are maximum twist angle and torque, average torsional stiffness, and the percentage of torque transmitted by the bellows rubber shell. In all cases, the new coupling had better properties. Since the prototype of the new coupling has not yet been produced, its parameters were determined from its mathematical-physical model. The article contains a full procedure to obtain the static load characteristic of a new coupling type, beginning with the determination of air bellows force/height and volume/height characteristics, then optimum sizes of coupling with regards to the operating range of elements, the dependency of element height on the coupling’s twist angle, and finally the computation of the static load characteristic considering isothermal gas compression. The presented procedure can be applied to any pneumatic bellows where the force/height characteristics of different pressures are given. Full article
(This article belongs to the Special Issue Research on Rotor Dynamics and Vibration Control)
Show Figures

Figure 1

17 pages, 4925 KB  
Article
Design and Control of Autonomous Flying Excavator
by Arif Zaman and Jaho Seo
Machines 2024, 12(1), 23; https://doi.org/10.3390/machines12010023 - 29 Dec 2023
Cited by 3 | Viewed by 2993
Abstract
This study presents a drone-based excavation platform prototype with the key objectives of balancing stability during excavation, sensing, and digging the soil pile autonomously without human intervention. The whole platform was first designed in CAD software, and then each part of the excavator [...] Read more.
This study presents a drone-based excavation platform prototype with the key objectives of balancing stability during excavation, sensing, and digging the soil pile autonomously without human intervention. The whole platform was first designed in CAD software, and then each part of the excavator assembly was 3D printed by using PLA filament. The physical system was then combined with numerous electronic components and linked to various software applications for a drone to perform autonomous excavations. Pixhawk Orange Cube served as the main controller for the drone, while Nvidia Jetson Nano was used for processing data and controlling the tip of the bucket at a specified location for the autonomous excavator. Two scenarios were considered to validate the functionality of the developed platform. In the first scenario, the drone flies independently to a construction site, lands, senses the soil, excavates it, and then travels to another location specified by the mission to deposit the soil. Full article
(This article belongs to the Special Issue Control and Mechanical System Engineering)
Show Figures

Figure 1

25 pages, 9757 KB  
Article
Redesign of a Disc-on-Disc Computer Numerical Control Tribometer for a Wide-Range and Shudder-Resistant Operation
by Matija Hoić, Mario Hrgetić, Nenad Kranjčević, Joško Deur and Andreas Tissot
Machines 2024, 12(1), 14; https://doi.org/10.3390/machines12010014 - 26 Dec 2023
Cited by 1 | Viewed by 2006
Abstract
The paper presents a redesign of the custom disc-on-disc-type tribometer intended for the experimental characterization of the friction and wear of automotive dry clutch friction lining. The redesign is aimed at expanding the operating range at which the machine is not sensitive to [...] Read more.
The paper presents a redesign of the custom disc-on-disc-type tribometer intended for the experimental characterization of the friction and wear of automotive dry clutch friction lining. The redesign is aimed at expanding the operating range at which the machine is not sensitive to shudder vibrations. This is achieved through a set of hardware and software upgrade measures. First, the natural frequency of the normal load-generation linear axis of the machine is increased by enlarging its bending stiffness and reducing the suspended mass. The former is realized by replacing the single, two-axial force/torque piezoelectric sensor with a set of three three-axial piezoelectric force sensors, adding a set of stiff linear guides, and reducing the lengths of the cantilevers of lateral forces acting on the linear axis guide system. The latter is accomplished by reducing the overall dimensions of the cooling disc and redesigning the thermal insulation components. The shudder sensitivity resistance is further reduced through individual normal force-readings-based adjustment of parallelism between friction contact surfaces and the increase in the stiffness of eccentrically positioned water-cooling pipes. Finally, the stability of the coefficient of friction and, consequently, the wear process are boosted by adjusting the control routines to minimize the circumferential and/or radial temperature gradients. These adjustments include the introduction of a clutch lock-up interval at the end of the clutch closing cycle, a minimum cooling delay inserted between two closing cycles, and maximum normal force demand of the clutch torque controller. The performance gain of the upgraded tribometer is demonstrated through a study of the dry clutch friction plate static wear experimental characterization for a wide range of operating conditions. Full article
(This article belongs to the Special Issue Advances in Vehicle Brake and Clutch Systems)
Show Figures

Figure 1

21 pages, 11951 KB  
Article
A Control Architecture for Developing Reactive Hybrid Remotely Operated Underwater Vehicles
by Fernando Gómez-Bravo, Alejandro Garrocho-Cruz, Olga Marín-Cañas, Inmaculada Pulido-Calvo, Juan Carlos Gutierrez-Estrada and Antonio Peregrín-Rubio
Machines 2024, 12(1), 1; https://doi.org/10.3390/machines12010001 - 19 Dec 2023
Cited by 2 | Viewed by 2673
Abstract
This article introduces a control architecture designed for the development of Hybrid Remotely Operated Underwater Vehicles. The term ”Hybrid” characterizes Remotely Operated systems capable of autonomously executing specific operations. The presented architecture maintains teleoperation capabilities while enabling two fully autonomous applications. The approach [...] Read more.
This article introduces a control architecture designed for the development of Hybrid Remotely Operated Underwater Vehicles. The term ”Hybrid” characterizes Remotely Operated systems capable of autonomously executing specific operations. The presented architecture maintains teleoperation capabilities while enabling two fully autonomous applications. The approach emphasizes the implementation of reactive navigation by exclusively utilizing data from a Mechanical Scanned Imaging Sonar for control decisions. This mandates the control system to solely react to data derived from the vehicle’s environment, without considering other positioning information or state estimation. The study involves transforming a small-scale commercial Remotely Operated Underwater Vehicle into a hybrid system without structural modifications, and details the development of an intermediate Operational Control Layer responsible for sensor data processing and task execution control. Two practical applications, inspired by tasks common in natural or open-water aquaculture farms, are explored: one for conducting transects, facilitating monitoring and maintenance operations, and another for navigating toward an object for inspection purposes. Experimental results validate the feasibility and effectiveness of the authors’ hypotheses. This approach expands the potential applications of underwater vehicles and facilitates the development of Hybrid Remotely Operated Underwater Vehicles, enabling the execution of autonomous reactive tasks. Full article
(This article belongs to the Special Issue Mobile Robotics: Mathematics, Models and Methods)
Show Figures

Figure 1

23 pages, 7443 KB  
Article
A Technique for Bearing Fault Diagnosis Using Novel Wavelet Packet Transform-Based Signal Representation and Informative Factor LDA
by Andrei S. Maliuk, Zahoor Ahmad and Jong-Myon Kim
Machines 2023, 11(12), 1080; https://doi.org/10.3390/machines11121080 - 11 Dec 2023
Cited by 12 | Viewed by 3563
Abstract
This paper proposes a new method for bearing fault diagnosis using wavelet packet transform (WPT)-based signal representation and informative factor linear discriminant analysis (IF-LDA). Time–frequency domain approaches for analyzing bearing vibration signals have gained wide acceptance due to their effectiveness in extracting information [...] Read more.
This paper proposes a new method for bearing fault diagnosis using wavelet packet transform (WPT)-based signal representation and informative factor linear discriminant analysis (IF-LDA). Time–frequency domain approaches for analyzing bearing vibration signals have gained wide acceptance due to their effectiveness in extracting information related to bearing health. WPT is a prominent method in this category, offering a balanced approach between short-time Fourier transform and empirical mode decomposition. However, the existing methods for bearing fault diagnosis often overlook the limitations of WPT regarding its dependence on the mother wavelet parameters for feature extraction. This work addresses this issue by introducing a novel signal representation method that employs WPT with a new rule for selecting the mother wavelet based on the power spectrum energy-to-entropy ratio of the reconstructed coefficients and a combination of the nodes from different WPT trees. Furthermore, an IF-LDA feature preprocessing technique is proposed, resulting in a highly sensitive set of features for bearing condition assessment. The k-nearest neighbors algorithm is employed as the classifier, and the proposed method is evaluated using datasets from Paderborn and Case Western Reserve universities. The performance of the proposed method demonstrates its effectiveness in bearing fault diagnosis, surpassing existing techniques in terms of fault identification and diagnosis performance. Full article
(This article belongs to the Special Issue New Advances in Rotating Machinery)
Show Figures

Figure 1

18 pages, 6413 KB  
Article
Modal Balancing of Warped Rotors without Trial Runs Using the Numerical Assembly Technique
by Georg Quinz, Gregor Überwimmer, Michael Klanner and Katrin Ellermann
Machines 2023, 11(12), 1073; https://doi.org/10.3390/machines11121073 - 7 Dec 2023
Cited by 3 | Viewed by 1878
Abstract
The increasing use of high-speed machinery leads to a growing demand for efficient balancing methods for flexible rotors. Conventional balancing methods are costly and time-consuming since they require multiple trial runs. For this reason, recent research focuses on model-based balancing methods, which substitute [...] Read more.
The increasing use of high-speed machinery leads to a growing demand for efficient balancing methods for flexible rotors. Conventional balancing methods are costly and time-consuming since they require multiple trial runs. For this reason, recent research focuses on model-based balancing methods, which substitute measurements with simulations. This work presents and examines a model-based modal balancing method, which utilizes the Numerical Assembly Technique (NAT) for the in situ balancing of warped rotors with flexible behaviour. NAT is a successive modification of discrete–continuous modelling that leads to analytical harmonic solutions and is very computationally efficient. In this version of NAT, internal damping is also included with a viscoelastic material model using fractional time derivatives. The modal balancing procedure is adapted to handle measurements outside of the critical speeds and the effect of the pre-bend on the rotor. The accuracy of the simulations is shown by comparing measured mode shapes and eigenvalues with values calculated with NAT. Furthermore, the first two modes of a rotor test bed are successfully balanced without trial runs. Full article
(This article belongs to the Special Issue New Advances in Rotating Machinery)
Show Figures

Figure 1

17 pages, 6264 KB  
Article
ROMI: Design and Experimental Evaluation of a Linear Delta Robotic System for High-Precision Applications
by Xiaoyu Huang, Elizabeth Rendon-Morales and Rodrigo Aviles-Espinosa
Machines 2023, 11(12), 1072; https://doi.org/10.3390/machines11121072 - 6 Dec 2023
Cited by 6 | Viewed by 3228
Abstract
In this paper, the design and experimental evaluation of a parallel robotic system based on a linear delta geometry is presented. The design considers the requirements for high-precision applications including workspace, motion resolution, and payload. The entire design process includes robot kinematics, control, [...] Read more.
In this paper, the design and experimental evaluation of a parallel robotic system based on a linear delta geometry is presented. The design considers the requirements for high-precision applications including workspace, motion resolution, and payload. The entire design process includes robot kinematics, control, and optimization, resulting in the demonstration of a working device. The robot structure offers a versatile and simplified design when compared with state-of-the-art devices being able to be adapted to perform different tasks while keeping the advantages of high precision with reduced complexity. The presented robot prototype was constructed and evaluated experimentally through three proof-of-concept experiments mimicking tasks requiring high motion precision such as microsurgery, semiconductor testing, and optical device alignment. The obtained results in the three experimental scenarios validate that the here-proposed design can achieve an average motion precision of ~3.3 ± 0.3 μm with varying load conditions, thus confirming its potential to be used for high-precision tasks in industrial and medical settings. Full article
(This article belongs to the Special Issue New Trends in Robotics, Automation and Mechatronics)
Show Figures

Figure 1

22 pages, 10747 KB  
Article
Bioinspired Design for Lightweighting and Vibration Behavior Optimization in Large-Scale Aeronautical Tooling: A Comparative Study
by Ignacio Laraudogoitia Blanc, Christian Hamm, Maider García de Cortázar, Nils Kaiser, Oleksander Savysko and Franck Andrés Girot Mata
Machines 2023, 11(12), 1067; https://doi.org/10.3390/machines11121067 - 4 Dec 2023
Cited by 3 | Viewed by 2741
Abstract
A comparative study is presented, focusing on three different bioinspired design methodologies applied to a large-scale aeronautical tooling use case. The study aims to optimize the structure in terms of the first vibration mode, minimizing mass, and supporting operational loads. The development of [...] Read more.
A comparative study is presented, focusing on three different bioinspired design methodologies applied to a large-scale aeronautical tooling use case. The study aims to optimize the structure in terms of the first vibration mode, minimizing mass, and supporting operational loads. The development of lightweight metallic components is of great importance for industries such as aerospace, automotive, and energy harvesting, where weight reduction can lead to significant improvements in performance, efficiency, and sustainability. Bioinspired design offers a promising approach to achieving these goals. The study begins with an introduction to natural selection and various bioinspired concepts. It proceeds with a thorough review of the selected bioinspired design methodologies and tools, which are then applied to the chosen use case. The outcomes for each methodology were explored with respect to the design requirements. Subsequently, the most suitable design was selected according to the success criteria defined and its validation is explained. The manufacturing of this design was carried out using an advanced and novel approach specifically tailored to accommodate the large dimensions and complexity of the structure. Finally, modal testing was performed to validate the entire process, and the results obtained demonstrate the potential effectiveness of bioinspired design methodologies in achieving lightweighting and optimizing vibration modes for large-scale aeronautical tooling. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

17 pages, 4492 KB  
Article
Vibration Analysis for Fault Diagnosis in Induction Motors Using One-Dimensional Dilated Convolutional Neural Networks
by Xiaopeng Liu, Jianfeng Hong, Kang Zhao, Bingxiang Sun, Weige Zhang and Jiuchun Jiang
Machines 2023, 11(12), 1061; https://doi.org/10.3390/machines11121061 - 29 Nov 2023
Cited by 4 | Viewed by 4450
Abstract
Motor faults not only damage the motor body but also affect the entire production system. When the motor runs in a steady state, the characteristic frequency of the fault current is close to the fundamental frequency, so it is difficult to effectively extract [...] Read more.
Motor faults not only damage the motor body but also affect the entire production system. When the motor runs in a steady state, the characteristic frequency of the fault current is close to the fundamental frequency, so it is difficult to effectively extract the fault current components, such as the broken rotor bar. In this paper, according to the characteristics of electromagnetic force and vibration, when the rotor eccentricity and the broken bar occur, the vibration signal is used to analyze and diagnose the fault. Firstly, the frequency, order, and amplitude characteristics of electromagnetic force under rotor eccentricity and broken bar fault are analyzed. Then, the fault vibration acceleration value collected by a one-dimensional dilated convolution pair is extracted, and the SeLU activation function and residual connection are introduced to solve the problem of gradient disappearance and network degradation, and the fault motor model is established by combining average ensemble learning and SoftMax multi-classifier. Finally, experiments of normal rotor eccentricity and broken bar faults are carried out on 4-pole asynchronous motors. The experimental results show that the accuracy of the proposed method for motor fault detection can reach 99%, which meets the requirements of fault motor detection and is helpful for further application. Full article
(This article belongs to the Special Issue Application of Deep Learning in Intelligent Machines)
Show Figures

Figure 1

15 pages, 9284 KB  
Article
An Experimental Investigation into the Performance and Emission Characteristics of a Gasoline Direct Injection Engine Fueled with Isopropanol Gasoline Blends
by Simeon Iliev, Zdravko Ivanov, Radostin Dimitrov, Veselin Mihaylov, Daniel Ivanov, Stoyan Stoyanov and Slavena Atanasova
Machines 2023, 11(12), 1062; https://doi.org/10.3390/machines11121062 - 29 Nov 2023
Cited by 5 | Viewed by 3525
Abstract
Propanol isomers, which are oxygen-rich fuels, possess superior octane ratings and energy density in comparison to methanol and ethanol. Recently, due to advancements in fermentation techniques, these propanol isomers have garnered increased interest as additives for engines. They are being explored to decrease [...] Read more.
Propanol isomers, which are oxygen-rich fuels, possess superior octane ratings and energy density in comparison to methanol and ethanol. Recently, due to advancements in fermentation techniques, these propanol isomers have garnered increased interest as additives for engines. They are being explored to decrease emissions and reduce the usage of conventional fossil fuels. This study delves into this emerging field. One of the alternatives is the use of alcohol fuels in their pure state or as additives to traditional fuels. Alcohols, due to their higher volumetric energy density, are better fuels for spark ignition engines than hydrogen and biogas. Alcohol-blended fuels or alcohol fuels in their pure state may be used in gasoline engines to reduce exhaust emissions. The current research emphasizes the effect of isopropanol gasoline blends on the performance and emissions characteristics of a gasoline direct injection (GDI) engine. This investigation was conducted with different blends of isopropanol and gasoline (by volume: 10% isopropanol [IP10], 20% isopropanol [IP10], 30% isopropanol [IP30], 40% isopropanol [IP40], and 50% isopropanol [IP50]). The reviewed results showed that with increasing isopropanol in the fuel blends, engine brake power increased while BSFC decreased. In terms of emissions, with the increase in isopropanol in the fuel blends, CO and HC emissions decreased while CO2 and NOx emissions increased. Full article
(This article belongs to the Special Issue Advanced Engine Energy Saving Technology)
Show Figures

Figure 1

20 pages, 17150 KB  
Article
Microwave Frequency Offset Induced by Subsurface Damage in Abrasive-Machined Semiconductor Ceramic Waveguide
by Haoji Wang, Jinhua Wei, Bin Lin, Xiaoqi Cui, Hetian Hou, Zhiyuan Fu, Jianchun Ding and Tianyi Sui
Machines 2023, 11(12), 1057; https://doi.org/10.3390/machines11121057 - 28 Nov 2023
Viewed by 1805
Abstract
Ceramic waveguide components play a critical role in modern microwave semiconductor systems. For the first time, this work reports experimental results obtained when dielectric ceramics are abrasive-machined into waveguide components. This process will cause subsurface damage (SSD), resulting in a deviation in their [...] Read more.
Ceramic waveguide components play a critical role in modern microwave semiconductor systems. For the first time, this work reports experimental results obtained when dielectric ceramics are abrasive-machined into waveguide components. This process will cause subsurface damage (SSD), resulting in a deviation in their working frequency which can degrade the performance of the system. For a substrate-integrated waveguide (SIW) resonator working at 10.1 GHz, SSD with a depth of 89 um can cause a maximum frequency offset of 20.2%. For a mm wave component working at 70 GHz, the corresponding frequency offset could increase to 169%. Three resonator SIW filters with SSD are studied, and the results demonstrate that the frequency offset induced by SSD can reduce the pass rate of the filters from 95.4% to 0%. A theoretical analysis is performed to reveal the mechanism and to offer a quantitative estimation of the limiting range of the offset caused by SSD. Feasible methods for reducing the offset caused by SSD, such as structure design, processing optimization, and material reinforcement, are discussed. Full article
Show Figures

Figure 1

15 pages, 8408 KB  
Article
Analysis and Design of Small-Impact Magnetoelectric Generator
by Shaohua Niu, Bing Li, Bingyang Li, Pengfei Wang and Yuxi Song
Machines 2023, 11(12), 1040; https://doi.org/10.3390/machines11121040 - 22 Nov 2023
Cited by 3 | Viewed by 1983
Abstract
For projectile impact penetration experiment, batteries or capacitors are usually used as power sources for projectile-borne recording devices. However, these power sources are easy to fail under high impact. In this paper, a small-impact magnetoelectric generator is introduced, which converts impact force into [...] Read more.
For projectile impact penetration experiment, batteries or capacitors are usually used as power sources for projectile-borne recording devices. However, these power sources are easy to fail under high impact. In this paper, a small-impact magnetoelectric generator is introduced, which converts impact force into electrical energy to supply power for devices. The influence of generator structure on force–electricity conversion efficiency is analyzed. Based on the analysis, a small-impact magnetoelectric generator with double springs and two-part coils is designed. A hammer test is carried out on the generator. The test results show that this generator structure would achieve higher force–electricity conversion efficiency under small space. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

16 pages, 6173 KB  
Article
Melt Pool Monitoring and X-ray Computed Tomography-Informed Characterisation of Laser Powder Bed Additively Manufactured Silver–Diamond Composites
by John Robinson, Abul Arafat, Aaron Vance, Arun Arjunan and Ahmad Baroutaji
Machines 2023, 11(12), 1037; https://doi.org/10.3390/machines11121037 - 21 Nov 2023
Cited by 1 | Viewed by 2735
Abstract
In this study, silver (Ag) and silver–diamond (Ag-D) composites with varying diamond (D) content are fabricated using laser powder bed fusion (L-PBF) additive manufacturing (AM). The L-PBF process parameters and inert gas flow rate are optimised to control the build environment and the [...] Read more.
In this study, silver (Ag) and silver–diamond (Ag-D) composites with varying diamond (D) content are fabricated using laser powder bed fusion (L-PBF) additive manufacturing (AM). The L-PBF process parameters and inert gas flow rate are optimised to control the build environment and the laser energy density at the powder bed to enable the manufacture of Ag-D composites with 0.1%, 0.2% and 0.3% D content. The Ag and D powder morphology are characterised using scanning electron microscopy (SEM). Ag, Ag-D0.1%, Ag-D0.2% and Ag-D0.3% tensile samples are manufactured to assess the resultant density and tensile strength. In-process EOSTATE melt pool monitoring technology is utilised as a comparative tool to assess the density variations. This technique uses in-process melt pool detection to identify variations in the melt pool characteristics and potential defects and/or density deviations. The resultant morphology and associated defect distribution for each of the samples are characterised and reported using X-ray computed tomography (xCT) and 3D visualisation techniques. Young’s modulus, the failure strain and the ultimate tensile strength of the L-PBF Ag and Ag-D are reported. The melt pool monitoring results revealed in-process variations in the build direction, which was confirmed through xCT 3D visualisations. Additionally, the xCT analysis displayed density variations for all the Ag-D composites manufactured. The tensile results revealed that increasing the diamond content reduced Young’s modulus and the ultimate tensile strength. Full article
(This article belongs to the Special Issue Fundamentals and Applications of 3D Printing for Novel Materials)
Show Figures

Figure 1

27 pages, 11065 KB  
Article
Monitoring of Tool and Component Wear for Self-Adaptive Digital Twins: A Multi-Stage Approach through Anomaly Detection and Wear Cycle Analysis
by Robin Ströbel, Alexander Bott, Andreas Wortmann and Jürgen Fleischer
Machines 2023, 11(11), 1032; https://doi.org/10.3390/machines11111032 - 19 Nov 2023
Cited by 9 | Viewed by 2989
Abstract
In today’s manufacturing landscape, Digital Twins play a pivotal role in optimising processes and deriving actionable insights that extend beyond on-site calculations. These dynamic representations of systems demand real-time data on the actual state of machinery, rather than static images depicting idealized configurations. [...] Read more.
In today’s manufacturing landscape, Digital Twins play a pivotal role in optimising processes and deriving actionable insights that extend beyond on-site calculations. These dynamic representations of systems demand real-time data on the actual state of machinery, rather than static images depicting idealized configurations. This paper presents a novel approach for monitoring tool and component wear in CNC milling machines by segmenting and classifying individual machining cycles. The method assumes recurring sequences, even with a batch size of 1, and considers a progressive increase in tool wear between cycles. The algorithms effectively segment and classify cycles based on path length, spindle speed and cycle duration. The tool condition index for each cycle is determined by considering all axis signals, with upper and lower thresholds established for quantifying tool conditions. The same approach is adapted to predict component wear progression in machine tools, ensuring robust condition determination. A percentage-based component state description is achieved by comparing it to the corresponding Tool Condition Codes (TCC) range. This method provides a four-class estimation of the component state. The approach has demonstrated robustness in various validation cases. Full article
Show Figures

Figure 1

16 pages, 9283 KB  
Article
A Toolpath Planning Method for Optical Freeform Surface Ultra-Precision Turning Based on NURBS Surface Curvature
by Xuchu Wang, Qingshun Bai, Siyu Gao, Liang Zhao and Kai Cheng
Machines 2023, 11(11), 1017; https://doi.org/10.3390/machines11111017 - 9 Nov 2023
Cited by 6 | Viewed by 3198
Abstract
As the applications for freeform optical surfaces continue to grow, the need for high-precision machining methods is becoming more and more of a necessity. Different toolpath strategies for the ultra-high precision turning of freeform surfaces can have a significant impact on the quality [...] Read more.
As the applications for freeform optical surfaces continue to grow, the need for high-precision machining methods is becoming more and more of a necessity. Different toolpath strategies for the ultra-high precision turning of freeform surfaces can have a significant impact on the quality of the machined surfaces. This paper presents a novel toolpath planning method for ultra-precision slow tool servo diamond turning based on the curvature of freeform surfaces. The method analyzes the differential geometric properties of freeform surfaces by reconstructing NURBS freeform surfaces. A mathematical model is constructed based on the parameters of different positions of the freeform surface, toolpath parameters, and tool residual height. Appropriate toolpath parameters can be calculated to generate the optical freeform ultra-precision slow tool servo diamond turning toolpath. Compared with the toolpaths generated by the traditional Archimedes spiral method, the ultra-precision slow tool servo diamond turning toolpath planning method proposed in this paper can generate more uniform toolpaths on the freeform surfaces and keep the residual tool height within a small range. Full article
(This article belongs to the Special Issue Precision Engineering in Manufacturing: Challenges and Future)
Show Figures

Figure 1

15 pages, 3062 KB  
Article
An Improved Denoising Method for Fault Vibration Signals of Wind Turbine Gearbox Bearings
by Chaohai Zhang, Xu Zhang, Zufeng Xu, Wei Dai and Jie Lu
Machines 2023, 11(11), 1004; https://doi.org/10.3390/machines11111004 - 1 Nov 2023
Cited by 1 | Viewed by 1703
Abstract
Vibration monitoring (VM) is an important tool for fault diagnosis in key components of wind turbine gearboxes (WTGs). However, due to the influence of white noise and random interference, it is difficult to realize high-quality denoising of WTG-VM signals. To overcome this limitation, [...] Read more.
Vibration monitoring (VM) is an important tool for fault diagnosis in key components of wind turbine gearboxes (WTGs). However, due to the influence of white noise and random interference, it is difficult to realize high-quality denoising of WTG-VM signals. To overcome this limitation, a novel joint denoising method for fault WTG-VM signals is proposed in this article, which we have named EWTKC-SVD. First, the empirical wavelet transform (EWT) boundary exploration method is used to optimize frequency band allocation and obtain the multiple intrinsic mode functions (IMFs). Second, the sensitive IMFs are selected according to the calculated correlation coefficient and kurtosis index, avoiding IMF redundancy. Finally, the fault WTG-VM signals are obtained using SVD denoising. Using this approach, the proposed method realizes high-quality denoising of WTG-VM signals. Furthermore, it also effectively solves the existing problems of conventional methods, namely, inefficient IMF selection, high noise, false frequencies, mode mixing, and end effect. Finally, the effectiveness, superiority, and reliability of the proposed method are proved using simulation and practical case results. Full article
(This article belongs to the Special Issue Advanced Data Analytics in Intelligent Industry: Theory and Practice)
Show Figures

Figure 1

19 pages, 70985 KB  
Article
A Novel Tribometer and a Comprehensive Testing Method for Rolling-Sliding Conditions
by Pedro Amoroso, Aleks Vrček and Matthijn de Rooij
Machines 2023, 11(11), 993; https://doi.org/10.3390/machines11110993 - 26 Oct 2023
Cited by 5 | Viewed by 2501
Abstract
This study introduces a method based on fine torque control to evaluate traction in rolling—liding line contacts under small slide-to-roll ratios (SRRs). To accomplish this, we engineered an innovative testing machine—a two-roller tribometer capable of precisely applying resisting torques to one of the [...] Read more.
This study introduces a method based on fine torque control to evaluate traction in rolling—liding line contacts under small slide-to-roll ratios (SRRs). To accomplish this, we engineered an innovative testing machine—a two-roller tribometer capable of precisely applying resisting torques to one of the rollers. Two types of tests were designed and conducted to validate our method and showcase the capabilities of the novel test setup. The first type, named the “Traction Decay Test”, proved to be effective in evaluating changes in the SRR over time. The second, named the “Torque-Mode Traction Test”, demonstrated its effectiveness in achieving ultra-low SRRs, in the order of 0.01%. As a result, traction curves with high resolution in the low SRR domain were constructed. This advancement provides the means for gaining a deeper understanding of traction coefficients, wear behavior, and tribological performance at ultra-low SRRs across diverse applications. Full article
(This article belongs to the Section Friction and Tribology)
Show Figures

Figure 1

23 pages, 5139 KB  
Article
Detection of Inter-Turn Short Circuits in Induction Motors under the Start-Up Transient by Means of an Empirical Wavelet Transform and Self-Organizing Map
by Juan Jose Saucedo-Dorantes, Arturo Yosimar Jaen-Cuellar, Angel Perez-Cruz and David Alejandro Elvira-Ortiz
Machines 2023, 11(10), 958; https://doi.org/10.3390/machines11100958 - 14 Oct 2023
Cited by 11 | Viewed by 2502
Abstract
Due to the importance of induction motors in a wide variety of industrial processes, it is crucial to properly identify abnormal conditions in order to avoid unexpected stops. The inter-turn short circuit (ITSC) is a very common failure produced with electrical stresses and [...] Read more.
Due to the importance of induction motors in a wide variety of industrial processes, it is crucial to properly identify abnormal conditions in order to avoid unexpected stops. The inter-turn short circuit (ITSC) is a very common failure produced with electrical stresses and affects induction motors (IMs), leading to catastrophic damage. Therefore, this work proposes the use of the empirical wavelet transform to characterize the time frequency behavior of the IM combined with a self-organizing map (SOM) structure to perform an automatic detection and classification of different severities of ITSC. Since the amount of information obtained from the empirical wavelet transform is big, a genetic algorithm is implemented to select the modes that allow a reduction in the quantization error in the SOM. The proposed methodology is applied to a real IM during the start-up transient considering four different fundamental frequencies. The results prove that this technique is able to detect and classify three different fault severities regardless of the operation frequency. Full article
(This article belongs to the Special Issue Condition Monitoring and Fault Diagnosis of Induction Motors)
Show Figures

Figure 1

20 pages, 13286 KB  
Article
A Novel Exoskeleton Design and Numerical Characterization for Human Gait Assistance
by Cristian Copilusi, Marco Ceccarelli, Sorin Dumitru, Ionut Geonea, Alexandru Margine and Dorin Popescu
Machines 2023, 11(10), 925; https://doi.org/10.3390/machines11100925 - 26 Sep 2023
Cited by 8 | Viewed by 2776
Abstract
This paper addressed attention to the design of a new lower limb exoskeleton that can be used for human gait assistance as based on kinematic considerations. The designed leg exoskeleton had on its own structure a combination of three mechanism types, namely a [...] Read more.
This paper addressed attention to the design of a new lower limb exoskeleton that can be used for human gait assistance as based on kinematic considerations. The designed leg exoskeleton had on its own structure a combination of three mechanism types, namely a Chebyshev mechanism, a pantograph, and a Stephenson six-bar mechanism. The design core focused on inserting the Stephenson six-bar bar mechanism in order to obtain an imposed motion at the ankle joint level. Numerical simulations of the designed lower limb exoskeleton have been developed and the obtained results demonstrate the engineering feasibility of the proposed prototype, with a characterization of satisfactory operation performance. Full article
Show Figures

Figure 1

14 pages, 2309 KB  
Article
Reliability Assessment for a Spacecraft Landing Buffer Mechanism Based on Small Sample Data
by Ziang Li, Huimin Fu and Qiong Wu
Machines 2023, 11(9), 917; https://doi.org/10.3390/machines11090917 - 21 Sep 2023
Viewed by 1633
Abstract
The landing buffer mechanism (LBM) is a crucial component of aerospace landing explorations, determining the success of the entire mission. Reliability demonstration tests (RDTs) are required to ensure the LBM’s performance meets the design index. However, the RDTs of the LBM often encounter [...] Read more.
The landing buffer mechanism (LBM) is a crucial component of aerospace landing explorations, determining the success of the entire mission. Reliability demonstration tests (RDTs) are required to ensure the LBM’s performance meets the design index. However, the RDTs of the LBM often encounter limited samples and zero-failure data, making traditional binominal test programs and reliability assessment methods based on the maximum likelihood theory unsuitable. This paper introduces a novel small-sample test verification method for the LBM, which transforms traditional binominal tests into more informative metrological tests by measuring the buffer strokes of the LBM’s subsystems. Furthermore, a confidence limit theory for the product of subsystem reliability is developed in conjunction with the reliability series model of the LBM. This theory can use the measurement data of subsystems to assess the confidence limit of the LBM’s reliability. An actual engineering application demonstrates that the proposed method can effectively handle zero-failure data and verifies that the LBM’s reliability exceeds 0.9999 with a confidence of 0.9. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

22 pages, 7035 KB  
Article
An Adaptive Shift Schedule Design Method for Multi-Gear AMT Electric Vehicles Based on Dynamic Programming and Fuzzy Logical Control
by Xiaodong Liu, Juan Du, Xingqun Cheng, Yan Zhu and Jian Ma
Machines 2023, 11(9), 915; https://doi.org/10.3390/machines11090915 - 20 Sep 2023
Cited by 12 | Viewed by 2596
Abstract
This paper proposes an adaptive shift schedule design framework based on dynamic programming (DP) algorithm and fuzzy logical control to promote the shift schedule’s adaptability whilst improving the comprehensive performance of the multi-gear automated manual transmission (AMT) electric vehicles in real-time application. First, [...] Read more.
This paper proposes an adaptive shift schedule design framework based on dynamic programming (DP) algorithm and fuzzy logical control to promote the shift schedule’s adaptability whilst improving the comprehensive performance of the multi-gear automated manual transmission (AMT) electric vehicles in real-time application. First, the DP algorithm is employed to extract an offline optimal gear-shift schedule based on a set of driving conditions, including 11 groups of typical driving cycles. Second, a fuzzy logical controller is formulated considering the variation in the vehicle load and acceleration, where a velocity increment is exported online to adjust the gear-shift velocity of the predesigned DP-based schedule to develop a Fuzzy-DP shift schedule. In addition, multi-objective particle swarm optimization (MOPSO) is utilized to construct a comprehensive shift schedule by simultaneously considering the dynamic and economic performance of the vehicle. Then, the dynamic and economic shift schedules are deployed as the benchmark to examine the performance of the proposed shift schedule. Finally, the effectiveness of the Fuzzy-DP shift schedule is evaluated by comparison with others under various combined driving cycles (including vehicle load and velocity). The comparisons demonstrate the remarkable promotion in the adaptability of the Fuzzy-DP shift schedule in terms of acceleration time, energy-saving potential, and shift frequency. The most significant improvements in the dynamic, economic, and shift frequency can reach 8.86%, 10.12%, and 8.56%, respectively, in contrast to the MOPSO-based shift schedule. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

16 pages, 6374 KB  
Article
Application of TRIZ Innovation Method to In-Pipe Robot Design
by Qizhi Xie and Qiang Liu
Machines 2023, 11(9), 912; https://doi.org/10.3390/machines11090912 - 16 Sep 2023
Cited by 9 | Viewed by 3712
Abstract
The peristaltic in-pipe robot incorporates multiple actuators, and achieving precise cooperative control among these actuators poses significant complexity. To address these issues, the Theory of Inventive Problem Solving (TRIZ) is applied to identify and resolve physical and technical conflicts in the creative design [...] Read more.
The peristaltic in-pipe robot incorporates multiple actuators, and achieving precise cooperative control among these actuators poses significant complexity. To address these issues, the Theory of Inventive Problem Solving (TRIZ) is applied to identify and resolve physical and technical conflicts in the creative design process of peristaltic in-pipe robots. By highlighting the insights on and technical guidance offered by TRIZ’s inventive principles, this paper examines the method for realizing a single-motor-driven peristaltic in-pipe robot from a transmission perspective. By employing a combination of connecting rods, cam mechanisms, and gear systems, a one-DOF peristaltic in-pipe robot was devised. Subsequently, a prototype was constructed, and successful bidirectional motion tests were conducted within pipes. The findings highlight the efficacy of the TRIZ-based design approach in innovatively designing one-DOF in-pipe robots and the unnecessary employment of complex multi-drive cooperative control in peristaltic in-pipe robots. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

13 pages, 5619 KB  
Article
A Theoretical and Experimental Identification with Featured Structures for Crucial Position-Independent Geometric Errors in Ultra-Precision Machining
by Li Zhang and Shaojian Zhang
Machines 2023, 11(9), 909; https://doi.org/10.3390/machines11090909 - 14 Sep 2023
Cited by 1 | Viewed by 1481
Abstract
In ultra-precision machining (UPM), position-independent geometric errors (PIGEs), i.e., squareness errors, have a crucial impact upon the form accuracy of a machined surface. Accordingly, more research work has been conducted in PIGE identification, to improve the form accuracy. However, the general identification methods [...] Read more.
In ultra-precision machining (UPM), position-independent geometric errors (PIGEs), i.e., squareness errors, have a crucial impact upon the form accuracy of a machined surface. Accordingly, more research work has been conducted in PIGE identification, to improve the form accuracy. However, the general identification methods were developed without consideration of the specific squareness errors for crucial PIGEs under the form errors of the machining process. Therefore, a new method with featured structures was proposed, to identify crucial PIGEs in UPM. Firstly, a volumetric error model was developed for PIGEs, to discuss the relationship between squareness errors and their resulting machining form errors. Secondly, following the developed model, some featured structures have been proposed with their machining form errors, to significantly indicate crucial PIGEs. Finally, a series of UPM and measuring experiments were conducted for the featured structures, and then their machining form errors were measured and extracted with specific squareness errors for the identification of crucial PIGEs. The theoretical and experimental results revealed that the proposed method is simple and efficient with the featured structures to accurately identify crucial PIGEs in UPM. Significantly, the study offers a deep insight into high-quality fabrication in UPM. Full article
(This article belongs to the Special Issue Precision Engineering in Manufacturing: Challenges and Future)
Show Figures

Figure 1

19 pages, 3634 KB  
Article
Sustainable Energy Harvesting Mechanism with Flow-Induced Vibration
by Marvin H. Cheng, Yuejuan Li, Hugo E. Camargo and Ezzat G. Bakhoum
Machines 2023, 11(9), 902; https://doi.org/10.3390/machines11090902 - 11 Sep 2023
Viewed by 2340
Abstract
This study investigates the feasibility of utilizing a flow-induced vibration actuator as a potential energy source using piezoelectric energy harvesting. The focus is on exploring the behavior of piezo films configured as cantilever beams subjected to flow-induced vibration, which can be induced with [...] Read more.
This study investigates the feasibility of utilizing a flow-induced vibration actuator as a potential energy source using piezoelectric energy harvesting. The focus is on exploring the behavior of piezo films configured as cantilever beams subjected to flow-induced vibration, which can be induced with fluid or wind streams. The primary objective is to maximize the harvested energy from the vibrating structure. This paper develops theoretical models to analyze the resonant frequencies and energy-harvesting potential of the piezo films in the context of flow-induced vibration. Experimental validations are conducted to verify the theoretical predictions. The findings indicate that higher operating frequencies in the second mode offer improved energy harvesting efficiency compared with lower modes. With the strategic adjustment of resonant frequencies using attached masses on individual piezo films, the harvestable energy output of a single film can be significantly increased from less than 1 μW to approximately 18 μW. However, the phase differences among individual piezo films can impact frequency measurements, necessitating careful fine-tuning of the physical conditions of individual components. To optimize energy harvesting, this study emphasizes the importance of implementing efficient charging mechanisms. By identifying suitable environmental vibration sources, the required charging duration for a synthesized energy harvesting array can be reduced by 25% as well. Despite certain challenges, such as phase deviations and turbulence, this study demonstrates the promising potential of flow-induced vibration resonators as sustainable energy sources. This work lays the foundation for further advancements in energy harvesting technology, offering environmentally friendly and renewable energy solutions. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

15 pages, 7641 KB  
Article
Analysis of Cooling Characteristics of Permanent Magnet Synchronous Motor with Different Water Jacket Design Using Electromagnetic–Thermal Fluid Coupled Analysis and Design of Experiment
by Kyunghun Jeon, Myungwoo Park, Jongjin Park, Hongjun Choi, Ki-Deok Lee, Jeong-Jong Lee and Chang-Wan Kim
Machines 2023, 11(9), 903; https://doi.org/10.3390/machines11090903 - 11 Sep 2023
Cited by 4 | Viewed by 3505
Abstract
Electrical losses are converted into thermal energy in motors, which heats each component. It is a significant factor in decreasing motor mechanical performance. In this paper, the motor cooling characteristics were analyzed according to the design factors of the water jacket to investigate [...] Read more.
Electrical losses are converted into thermal energy in motors, which heats each component. It is a significant factor in decreasing motor mechanical performance. In this paper, the motor cooling characteristics were analyzed according to the design factors of the water jacket to investigate the cooling performance of a permanent magnet synchronous motor (PMSM). First, the electrical losses generated in PMSM were calculated using electromagnetic finite element (FE) analysis. Secondly, a 3D electromagnetic–thermal fluid coupled FE analysis was performed to analyze the temperature distribution inside the motor by applying electrical loss as the heat source. Finally, the motor cooling performance according to the design factors of the water jacket was statistically analyzed using the design of experiment (DOE) method. It was found that the mass flow rate of 0.02547 kg/s and six passes of the water jacket with one inlet and two outlets could be considered the optimum conditions in terms of the maximum motor temperature. Full article
(This article belongs to the Special Issue Electrical Machines in Electric Vehicles)
Show Figures

Figure 1

23 pages, 23243 KB  
Review
Advanced Manufacturability of Electrical Machine Architecture through 3D Printing Technology
by Ahmed Selema, Mohamed N. Ibrahim and Peter Sergeant
Machines 2023, 11(9), 900; https://doi.org/10.3390/machines11090900 - 10 Sep 2023
Cited by 12 | Viewed by 5213
Abstract
The rapid evolution of electric machines requires innovative approaches to boost performance, efficiency, and sustainability. Additive Manufacturing (AM) has emerged as a transformative technique, reshaping the landscape of electric machine components, ranging from magnetic materials to windings and extending to thermal management. In [...] Read more.
The rapid evolution of electric machines requires innovative approaches to boost performance, efficiency, and sustainability. Additive Manufacturing (AM) has emerged as a transformative technique, reshaping the landscape of electric machine components, ranging from magnetic materials to windings and extending to thermal management. In the area of magnetic materials, AM’s capacity to fabricate intricate structures optimizes magnetic flux dynamics, yielding advanced shape-profile cores and self-coating laminations for superior performance. In windings, AM’s prowess is evident through innovative concepts, effectively mitigating AC conduction effects while reducing weight. Furthermore, AM revolutionizes thermal management, as exemplified by 3D-printed ceramic heat exchangers, intricate cooling channels, and novel housing designs, all contributing to enhanced thermal efficiency and power density. The integration of AM not only transcends conventional manufacturing constraints but also promises to usher in an era of unprecedented electric machine innovation, addressing the intricate interplay of magnetic, winding, and thermal dynamics. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

19 pages, 27127 KB  
Article
A Study of Frequency Domain Reflectometry Technique for High-Voltage Rotating Machine Winding Condition Assessment
by Jialu Cheng, Yizhou Zhang, Hao Yun, Liang Wang and Nathaniel Taylor
Machines 2023, 11(9), 883; https://doi.org/10.3390/machines11090883 - 2 Sep 2023
Cited by 5 | Viewed by 2755
Abstract
Detecting and locating local degradations at an incipient stage is very important for mission-critical high-voltage rotating machines. One particular challenge in the existing testing techniques is that the characteristic of a local incipient defect is not prominent due to various factors such as [...] Read more.
Detecting and locating local degradations at an incipient stage is very important for mission-critical high-voltage rotating machines. One particular challenge in the existing testing techniques is that the characteristic of a local incipient defect is not prominent due to various factors such as averaging with the healthy remainder, attenuation in signal propagation, interference, and varied operating conditions. This paper proposes and investigates the frequency domain reflectometry (FDR) technique based on the scattering parameter measurement. The FDR result presents the object length, wave impedance, and reflections due to impedance discontinuity along the measured windings. Experiments were performed on two commercial coils with artificially created defects. These defects include turn-to-turn short, surface creepage, loose coils, insufficient end-winding spacing, and local overheating, which are commonly seen in practice. Two practical water pumps in the field were also selected for investigation. The study outcome shows that FDR can identify and locate structural and insulation degradation in both shielded and unshielded objects with good sensitivity. This makes FDR a complementary technique for machine fault diagnosis and aging assessment. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

30 pages, 11533 KB  
Article
Application of UAVs and Image Processing for Riverbank Inspection
by Chang-Hsun Chiang and Jih-Gau Juang
Machines 2023, 11(9), 876; https://doi.org/10.3390/machines11090876 - 1 Sep 2023
Cited by 7 | Viewed by 2247
Abstract
Many rivers are polluted by trash and garbage that can affect the environment. Riverbank inspection usually relies on workers of the environmental protection office, but sometimes the places are unreachable. This study applies unmanned aerial vehicles (UAVs) to perform the inspection task, which [...] Read more.
Many rivers are polluted by trash and garbage that can affect the environment. Riverbank inspection usually relies on workers of the environmental protection office, but sometimes the places are unreachable. This study applies unmanned aerial vehicles (UAVs) to perform the inspection task, which can significantly relieve labor work. Two UAVs are used to cover a wide area of riverside and capture riverbank images. The images from different UAVs are stitched using the scale-invariant feature transform (SIFT) algorithm. Static and dynamic image stitching are tested. Different you only look once (YOLO) algorithms are applied to identify riverbank garbage. Modified YOLO algorithms improve the accuracy of riverine waste identification, while the SIFT algorithm stitches the images obtained from the UAV cameras. Then, the stitching results and garbage data are sent to a video streaming server, allowing government officials to check waste information from the real-time multi-camera stitching images. The UAVs utilize 4G communication to transmit the video stream to the server. The transmission distance is long enough for this study, and the reliability is excellent in the test fields that are covered by the 4G communication network. In the automatic reconnection mechanism, we set the timeout to 1.8 s. The UAVs will automatically reconnect to the video streaming server if the disconnection time exceeds the timeout. Based on the energy provided by the onboard battery, the UAV can be operated for 20 min in a mission. The UAV inspection distance along a preplanned path is about 1 km at a speed of 1 m/s. The proposed UAV system can replace inspection labor, successfully identify riverside garbage, and transmit the related information and location on the map to the ground control center in real time. Full article
(This article belongs to the Special Issue Advanced Control of Unmanned Aerial Vehicles (UAV))
Show Figures

Figure 1

27 pages, 23202 KB  
Article
Circulating Current Control in Interleaved and Parallel Connected Power Converters
by Khalid Javed, Ruben De Croo, Lieven Vandevelde and Frederik De Belie
Machines 2023, 11(9), 878; https://doi.org/10.3390/machines11090878 - 1 Sep 2023
Cited by 4 | Viewed by 3701
Abstract
This article analyzes circulating current control in single-phase power electronic converters, focusing on two different topologies: interleaved and parallel configurations. The study involves a bridgeless interleaving topology with two boost converters for increased efficiency. A parallel connection is also examined for monitoring line [...] Read more.
This article analyzes circulating current control in single-phase power electronic converters, focusing on two different topologies: interleaved and parallel configurations. The study involves a bridgeless interleaving topology with two boost converters for increased efficiency. A parallel connection is also examined for monitoring line current, circulating currents, and power factor control. The article widely explains all current loops, including Common Mode Circulating Currents (CMCC) in the bridgeless interleaved topology and Differential Mode Circulating Currents (DMCC) in parallel-connected interleaved power converters. The proposed control scheme employs voltage and current control loops for output voltage and line current control and introduces CMCC and DMCC compensators to eliminate all types of circulating currents. An efficient Power Factor Correction (PFC) and output voltage control method is presented in this article. The effectiveness of the proposed schemes is validated through comparisons with modern control systems. The results are verified using Simulink/MATLAB and experimental setups with TI Instruments Piccolo prototypes and C2000 (TMS320F28035 microcontroller MCU) microcontrollers in parallel configurations. Full article
(This article belongs to the Special Issue Advanced Power Electronic Technologies in Electric Drive Systems)
Show Figures

Figure 1

19 pages, 6638 KB  
Article
Modeling and Optimization of Surface Integrity and Sliding Wear Resistance of Diamond-Burnished Holes in Austenitic Stainless Steel Cylinder Lines
by Galya Duncheva, Jordan Maximov, Angel Anchev, Vladimir Dunchev, Yaroslav Argirov and Svetlozar Velkov
Machines 2023, 11(9), 872; https://doi.org/10.3390/machines11090872 - 30 Aug 2023
Cited by 8 | Viewed by 1848
Abstract
This article outlines a technology for hole-finishing in short-length cylinder lines to improve wear resistance. The technology is based on an optimized diamond-burnishing (DB) process. The latter was implemented on conventional and CNC lathes, milling machines, and machining centers using a simple burnishing [...] Read more.
This article outlines a technology for hole-finishing in short-length cylinder lines to improve wear resistance. The technology is based on an optimized diamond-burnishing (DB) process. The latter was implemented on conventional and CNC lathes, milling machines, and machining centers using a simple burnishing device with an elastic beam. The material used in this study was AISI 321 austenitic stainless steel. The governing factors used were the radius of the diamond insert, burnishing force and feed rate. The objective functions relating to surface integrity characteristics were selected on the basis of their functional importance relative to the wear resistance of the processed hole surface: height and shape roughness parameters, surface microhardness, and surface residual axial and hoop stresses. The one-factor-at-a-time method (used to reduce the factor space), a planned experiment, and regression analyses were used. The multi-objective optimization tasks, which were defined for three diamond insert radius values of 2, 3, and 4 mm, were solved via the Pareto-optimal solutions approach available for a non-dominated sorting genetic algorithm (NSGA-II). Using the optimal values of the governing factors selected from the Pareto fronts, cylinder lines were processed. Samples were then cut from these cylinder lines for reciprocating sliding wear tests under two modes: dry friction and boundary lubrication friction. Additionally, wear test samples were cut from the cylinder line, which was finished with traditional grinding. A finite element simulation was then used to select an appropriate pressing force. The results obtained from the reciprocating sliding wear tests under both the dry and boundary lubrication friction regimes show that to minimize the wear on cylinder lines made of AISI 321 steel, DB with a diamond insert of radius 2 mm is the optimal finishing process. Full article
(This article belongs to the Special Issue Recent Advances in Surface Processing of Metals and Alloys)
Show Figures

Figure 1

20 pages, 3294 KB  
Article
Multiparameter Estimation-Based Sensorless Adaptive Direct Voltage MTPA Control for IPMSM Using Fuzzy Logic MRAS
by Alaref Elhaj, Mohamad Alzayed and Hicham Chaoui
Machines 2023, 11(9), 861; https://doi.org/10.3390/machines11090861 - 28 Aug 2023
Cited by 9 | Viewed by 2019
Abstract
This paper introduces a parameter-estimation-based sensorless adaptive direct voltage maximum torque per ampere (MTPA) control strategy for interior permanent magnet synchronous machines (IPMSMs). In direct voltage control, the motor’s electrical parameters, speed, and rotor position are of great significance. Thus, any mismatch in [...] Read more.
This paper introduces a parameter-estimation-based sensorless adaptive direct voltage maximum torque per ampere (MTPA) control strategy for interior permanent magnet synchronous machines (IPMSMs). In direct voltage control, the motor’s electrical parameters, speed, and rotor position are of great significance. Thus, any mismatch in these parameters or failure to acquire accurate speed or position information leads to a significant deviation in the MTPA trajectory, causing high current consumption and hence affecting the performance of the entire control system. In view of this problem, a fuzzy logic control-based cascaded model reference adaptive system (FLC-MRAS) is introduced to mitigate the effect of parameter variation on the tracking of the MTPA trajectory and to provide precise information about the rotor speed and position. The cascaded scheme consists of two parallel FLC-MRAS for speed and multiparameter estimation. The first MRAS is utilized to estimate motor speed and rotor position to achieve robust sensorless control. However, the speed estimator is highly dependent on time-varying motor parameters. Therefore, the second MRAS is designed to identify the quadratic inductance and permanent magnet flux and continuously update both the speed estimator and control scheme with the identified values to ensure accurate speed estimation and real-time MTPA trajectory tracking. Unlike conventional MRAS, which uses linear proportional-integral controllers (PI-MRAS), an FLC is adopted to replace the PI controllers, ensuring high estimation accuracy and enhancing the robustness of the control system against sudden changes in working conditions. The effectiveness of the proposed scheme is evaluated under different speed and torque conditions. Furthermore, a comparison against the conventional PI-MRAS is extensively investigated to highlight the superiority of the proposed scheme. The evaluation results and our quantitative assessment show the ability of the designed strategy to achieve high estimation accuracy, less oscillation, and a faster convergence rate under different working conditions. The quantitative assessment reveals that the FLC-MRAS can improve the estimation accuracy of speed, permanent magnet flux, and quadratic inductance by 19%, 55.8% and 44.55%, respectively. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

16 pages, 17947 KB  
Article
Experimental Study on the Effect of Microchannel Spacing and Fractal Angle on Bubble Growth Behavior
by Xianming Gao, Fangcai Lu, Wang Zhang and Wenxuan Yang
Machines 2023, 11(9), 862; https://doi.org/10.3390/machines11090862 - 28 Aug 2023
Viewed by 1666
Abstract
Bubble growth behavior significantly influences boiling heat transfer performance, and different microchannel structures and configurations affect bubble growth behavior. To explore the impact of microchannel structures and configurations on the growth behavior of boiling bubbles, two types of microchannel test plates were fabricated [...] Read more.
Bubble growth behavior significantly influences boiling heat transfer performance, and different microchannel structures and configurations affect bubble growth behavior. To explore the impact of microchannel structures and configurations on the growth behavior of boiling bubbles, two types of microchannel test plates were fabricated on copper substrates using laser machining technology. It was a parallel configuration plate with five different microchannel spacings and a blade vein configuration plate with four different fractal angles. The bubble growth behavior on these two types of surfaces was studied through visual experiments. The results show that smaller microchannel spacing leads to earlier bubble coalescence and departure times under the same degree of superheat. The 3.00 mm microchannel spacing is the critical interfering distance for the parallel configuration plates, while interference behavior occurs for the bubbles on the simulated vein configuration plates at any fractal angle. Furthermore, in different ranges of superheat, the bubble departure diameter increases with increasing superheat, and the frequency of bubble departure initially increases and then decreases with increasing superheat. This study provides experimental data support and design reference for the design of heat transfer plate structures. Full article
(This article belongs to the Section Micro/Nano Electromechanical Systems (MEMS/NEMS))
Show Figures

Figure 1

21 pages, 4026 KB  
Article
Wind/Wave Testing of a 1:70-Scale Performance-Matched Model of the IEA Wind 15 MW Reference Wind Turbine with Real-Time ROSCO Control and Floating Feedback
by Matthew Fowler, Eben Lenfest, Anthony Viselli, Andrew Goupee, Richard Kimball, Roger Bergua, Lu Wang, Daniel Zalkind, Alan Wright and Amy Robertson
Machines 2023, 11(9), 865; https://doi.org/10.3390/machines11090865 - 28 Aug 2023
Cited by 8 | Viewed by 4043
Abstract
Experimental results from the Floating Offshore-wind and Controls Advanced Laboratory (FOCAL) experimental program, which tested a performance-matched model of the IEA Wind 15 MW Reference Turbine on a 1:70 scale floating semisubmersible platform, are compared with OpenFAST simulations. Four experimental campaigns were performed, [...] Read more.
Experimental results from the Floating Offshore-wind and Controls Advanced Laboratory (FOCAL) experimental program, which tested a performance-matched model of the IEA Wind 15 MW Reference Turbine on a 1:70 scale floating semisubmersible platform, are compared with OpenFAST simulations. Four experimental campaigns were performed, and data from the fourth campaign, which focused on wind and wave testing of the scaled floating wind turbine system, are considered. Simulations of wave-only, wind-only, and wind/wave environments are performed in OpenFAST, and results for key metrics are compared with the experiment. Performance of the real-time Reference OpenSource COntroller (ROSCO) in above-rated wind conditions, including the effects of the floating feedback loop, are investigated. Results show good agreement in mean values for key metrics, and hydrodynamic effects are matched well. Differences in the surge resonant behavior of the platform are identified and discussed. The effect of the controller and floating feedback loop is evident in both the experiment and OpenFAST, showing significant reduction in platform pitch response and tower base bending load near the platform pitch natural frequency. Full article
(This article belongs to the Special Issue Wind Turbine Technologies)
Show Figures

Figure 1

17 pages, 6995 KB  
Article
Kinematics and Dynamics Analysis of a 3UPS-UPU-S Parallel Mechanism
by Jing-Shan Zhao, Xiao-Cheng Sun and Song-Tao Wei
Machines 2023, 11(8), 840; https://doi.org/10.3390/machines11080840 - 18 Aug 2023
Viewed by 2255
Abstract
In this paper, a two-rotational degrees of freedom parallel mechanism with five kinematic subchains (3UPS-UPU-S) (U, P, and S stand for universal joints, prismatic joints, and spherical joints) for an aerospace product is introduced, and its kinematic and dynamic characteristics are subsequently analyzed. [...] Read more.
In this paper, a two-rotational degrees of freedom parallel mechanism with five kinematic subchains (3UPS-UPU-S) (U, P, and S stand for universal joints, prismatic joints, and spherical joints) for an aerospace product is introduced, and its kinematic and dynamic characteristics are subsequently analyzed. The kinematic and dynamic analyses of this mechanism are carried out in screw coordinates. Firstly, the inverse kinematics is performed through the kinematic equations established by the velocity screws of each joint to obtain the position, posture, and velocity of each joint within the mechanism. Then, a dynamic modeling method with screw theory for multi-body systems is proposed. In this method, the momentum screws are established by the momentum and moment of momentum according to the fundamentals of screws. By using the kinematic parameters of joints, the dynamic analysis can be carried out through the dynamic equations formed by momentum screws and force screws. This method unifies the kinematic and dynamic analyses by expressing all parameters in screw form. The approach can be employed in the development of computational dynamics because of its simplified and straightforward analysis procedure and its high adaptability for different kinds of multi-body systems. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

26 pages, 9870 KB  
Article
Contactless Method for Measurement of Surface Roughness Based on a Chromatic Confocal Sensor
by Natalia Lishchenko, Garret E. O’Donnell and Mark Culleton
Machines 2023, 11(8), 836; https://doi.org/10.3390/machines11080836 - 17 Aug 2023
Cited by 13 | Viewed by 5159
Abstract
The methodology for assigning and assessing the surface quality is used at various stages of the product life cycle: during the design and technological preparation of production, the production itself, and during the control (testing) of products. The development of advanced technologies requires [...] Read more.
The methodology for assigning and assessing the surface quality is used at various stages of the product life cycle: during the design and technological preparation of production, the production itself, and during the control (testing) of products. The development of advanced technologies requires in situ part control. A non-contact in situ surface roughness measuring system is proposed in this paper. The proposed system utilizes a chromatic confocal sensor, and profile data, waviness data, roughness data, Ra, and Rz parameters are generated in the developed data-processing software. The assembled measuring system based on the chromatic confocal laser sensor showed its performance in assessing the roughness parameter Ra, from 0.34 µm to more than 12 µm, which covers a common range of milling, turning, and grinding. In this range, measurement relative errors can be controlled within 10%. Frequency analysis and correlation analysis of profilograms were performed. Frequency analysis made it possible to establish the dominant frequency components that occur in the profilogram of the samples, while correlation analysis was used to develop a methodology for identifying the deterministic and random components of the processed surface profile signal. The results of the analysis can be further used to develop diagnostic functions for process monitoring based on profilogram estimates, such as the autocorrelation function and the power spectrum density. Full article
Show Figures

Figure 1

16 pages, 5500 KB  
Article
High-Precision Detection Algorithm for Metal Workpiece Defects Based on Deep Learning
by Xiujin Xu, Gengming Zhang, Wenhe Zheng, Anbang Zhao, Yi Zhong and Hongjun Wang
Machines 2023, 11(8), 834; https://doi.org/10.3390/machines11080834 - 16 Aug 2023
Cited by 10 | Viewed by 2697
Abstract
Computer vision technology is increasingly being widely applied in automated industrial production. However, the accuracy of workpiece detection is the bottleneck in the field of computer vision detection technology. Herein, a new object detection and classification deep learning algorithm called CSW-Yolov7 is proposed [...] Read more.
Computer vision technology is increasingly being widely applied in automated industrial production. However, the accuracy of workpiece detection is the bottleneck in the field of computer vision detection technology. Herein, a new object detection and classification deep learning algorithm called CSW-Yolov7 is proposed based on the improvement of the Yolov7 deep learning network. Firstly, the CotNet Transformer structure was combined to guide the learning of dynamic attention matrices and enhance visual representation capabilities. Afterwards, the parameter-free attention mechanism SimAM was introduced, effectively enhancing the detection accuracy without increasing computational complexity. Finally, using WIoUv3 as the loss function effectively mitigated many negative influences during training, thereby improving the model’s accuracy faster. The experimental results manifested that the mAP@0.5 of CSW-Yolov7 reached 93.3%, outperforming other models. Further, this study also designed a polyhedral metal workpiece detection system. A large number of experiments were conducted in this system to verify the effectiveness and robustness of the proposed algorithm. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

17 pages, 7913 KB  
Article
Comparisons of Loss Reduction Techniques Based on Pulsewidth Modulation and Model Predictive Control for Three-Phase Voltage Source Inverters
by Minh Hoang Nguyen, Sangshin Kwak and Seungdeog Choi
Machines 2023, 11(8), 829; https://doi.org/10.3390/machines11080829 - 14 Aug 2023
Cited by 4 | Viewed by 2247
Abstract
Due to the lack of comparative studies between discontinuous pulse-width modulation and model predictive control methods for reducing switching losses in two-level three-phase voltage source inverter, a comparative analysis of a generalized discontinuous pulse-width modulation and two model predictive control approaches for reducing [...] Read more.
Due to the lack of comparative studies between discontinuous pulse-width modulation and model predictive control methods for reducing switching losses in two-level three-phase voltage source inverter, a comparative analysis of a generalized discontinuous pulse-width modulation and two model predictive control approaches for reducing switching losses is studied in this paper. Both generalized discontinuous pulse-width modulation and two model predictive control approaches are described and conducted in the simulation and experiment. The output performance is obtained by these methods after conducting in various conditions, including switching frequency, output power, and load conditions. It is validated that the generalized discontinuous pulse-width modulation control scheme achieves a better control performance at steady-state, while two model predictive control schemes have better transient-state performance with a superior dynamic. Additionally, the generalized discontinuous pulse-width modulation approach achieves better reducing switching losses performance and has slightly higher efficiency than that of two model predictive control approaches. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

15 pages, 1492 KB  
Article
Saturation-Induced Variable-Flux Characteristics in a 12-Slot 10-Pole Concentrated Winding Permanent-Magnet Motor
by Yuichi Yokoi and Tsuyoshi Higuchi
Machines 2023, 11(8), 824; https://doi.org/10.3390/machines11080824 - 11 Aug 2023
Cited by 1 | Viewed by 1843
Abstract
This paper proposes a stator core design to achieve variable-flux characteristics enhanced by magnetic saturation in fractional-slot concentrated winding (FSCW) permanent-magnet (PM) motors without additional excitation systems, complicated structures, or active controls. Magnetic saturation induced at suitable locations can enhance variable-flux characteristics because [...] Read more.
This paper proposes a stator core design to achieve variable-flux characteristics enhanced by magnetic saturation in fractional-slot concentrated winding (FSCW) permanent-magnet (PM) motors without additional excitation systems, complicated structures, or active controls. Magnetic saturation induced at suitable locations can enhance variable-flux characteristics because the PM flux linkage is variable with the magnetic saturation in cores. In distributed winding configurations, magnetic saturation is induced symmetrically for each rotor pole by the fundamental that is dominant in the spatial distribution of the air-gap flux density. The magnetic saturation at each rotor pole can enhance variable-flux characteristics. In FSCW configurations, magnetic saturation is not induced symmetrically for each rotor pole because of several dominant space harmonics. The magnetic saturation at several rotor poles cannot enhance variable-flux characteristics. In the proposed design, the stator core has thin tooth tips for inducing magnetic saturation. The magnetic saturation in the stator core achieves the variable-flux characteristics that are effective for expanding the operating region or decreasing electromotive force and increasing torque. The efficacy of the proposed design is determined by estimating motor performance through a finite element method analysis and demonstrating the actual motor performance of a prototype. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

22 pages, 26353 KB  
Article
A Knowledge Discovery Process Extended to Experimental Data for the Identification of Motor Misalignment Patterns
by Sebastian Bold and Sven Urschel
Machines 2023, 11(8), 827; https://doi.org/10.3390/machines11080827 - 11 Aug 2023
Cited by 1 | Viewed by 2023
Abstract
The diagnosis of misalignment plays a crucial role in the area of maintenance and repair since misalignment can lead to expensive downtime. To address this issue, several solutions have been developed, and both offline and online approaches are available. However, online strategies using [...] Read more.
The diagnosis of misalignment plays a crucial role in the area of maintenance and repair since misalignment can lead to expensive downtime. To address this issue, several solutions have been developed, and both offline and online approaches are available. However, online strategies using a small number of sensors show a higher false positive rate than other approaches. The problem is a lack of knowledge regarding the interrelations of a fault, disturbances during the diagnosis process, and capable features and feature vectors. Knowledge discovery in database is a framework that allows extracting the missing knowledge. For technical systems, optimal results were achieved by aligning (partially) automated experiments with a data mining strategy, in this case classification. The results yield a greater understanding of the interrelations regarding parallel misalignment, i.e., feature vectors that show good results also with varying load and realistic fault levels. Moreover, the test data confirm a specificity (range 0 to 1) for classification between 0.87 and 1 with the found feature vectors. For angular misalignment, potential vectors were identified, but these need further validation with a modified experiment in future work. For the study, two induction motors with 1.1 kW and 7.5 kW were considered. Furthermore, the findings were compared with additional motors of the same rated power. The findings of this work can help to improve the implementation of sensorless diagnostics on machines and advance the research in this field. Full article
Show Figures

Figure 1

30 pages, 7567 KB  
Article
Research on Lane-Change Decision and Planning in Multilane Expressway Scenarios for Autonomous Vehicles
by Chuanyin Tang, Lv Pan, Jifeng Xia and Shi Fan
Machines 2023, 11(8), 820; https://doi.org/10.3390/machines11080820 - 10 Aug 2023
Cited by 3 | Viewed by 2974
Abstract
Taking into account the issues faced by self-driving vehicles in multilane expressway scenarios, a lane-change decision planning framework that considers two adjacent lanes is proposed. Based on this framework, the lateral stability of an autonomous vehicle under near-limit conditions during lane change is [...] Read more.
Taking into account the issues faced by self-driving vehicles in multilane expressway scenarios, a lane-change decision planning framework that considers two adjacent lanes is proposed. Based on this framework, the lateral stability of an autonomous vehicle under near-limit conditions during lane change is studied by the phase-plane method. Firstly, a state-machine-based driving logic is designed and a decision method is proposed to design the lane-change intention based on the surrounding traffic information and to consider the influence of the motion state of other vehicles in the adjacent lanes on the self-driving vehicle. In order to realize adaptive cruising under the full working conditions of the vehicle, a safety distance model is established for different driving speeds and switching strategies for fixed-speed cruising, following driving, and emergency braking are developed. Secondly, for the trajectory planning problem, a lane-change trajectory based on a quintuple polynomial optimization method is proposed. Then, the vehicle lateral stability boundary is investigated; the stability boundary and rollover boundary are incorporated into the designed path-tracking controller to improve the tracking accuracy while enhancing the rollover prevention capability. Finally, a simulation analysis is carried out through a joint simulation platform; the simulation results show that the proposed method can ensure the driving safety of autonomous vehicles in a multilane scenario. Full article
(This article belongs to the Special Issue Advances in Autonomous Vehicles Dynamics and Control)
Show Figures

Figure 1

18 pages, 1675 KB  
Article
Simulation of the Circulating Bearing Currents for Different Stator Designs of Electric Traction Machines
by Yusa Tombul, Philipp Tillmann and Jakob Andert
Machines 2023, 11(8), 811; https://doi.org/10.3390/machines11080811 - 7 Aug 2023
Cited by 5 | Viewed by 2599
Abstract
Pulse–width modulated inverters are commonly used to control electrical drives, generating a common mode voltage and current with high–frequency components that excite the parasitic capacitances within electric machines, such as permanent magnet synchronous machines or induction machines. This results in different types of [...] Read more.
Pulse–width modulated inverters are commonly used to control electrical drives, generating a common mode voltage and current with high–frequency components that excite the parasitic capacitances within electric machines, such as permanent magnet synchronous machines or induction machines. This results in different types of bearing currents that can shorten the service life of electric machines. One significant type of inverter–induced bearing currents are high–frequency circulating bearing currents. In this context, this work employs finite element analysis and time-domain simulations to determine the common mode current and circulating bearing current for various permanent magnet synchronous machine designs based on the traction machines of commercial electric vehicles with a focus on the stator. The results suggest that the ratio between the circulating bearing current and common mode current is much smaller in permanent magnet synchronous machines for traction applications than previously established in conventional induction machines, with values below 10% for all analyzed designs. A further increase in the robustness of such electric machines to the detrimental effects caused by the inverter supply could be achieved by reducing the parasitic winding–to–stator capacitance or by increasing the stator endwinding leakage inductance. Full article
Show Figures

Figure 1

20 pages, 13342 KB  
Article
Integration of Deep Learning for Automatic Recognition of 2D Engineering Drawings
by Yi-Hsin Lin, Yu-Hung Ting, Yi-Cyun Huang, Kai-Lun Cheng and Wen-Ren Jong
Machines 2023, 11(8), 802; https://doi.org/10.3390/machines11080802 - 4 Aug 2023
Cited by 28 | Viewed by 12320
Abstract
In an environment where manufacturing precision requirements are increasing, complete project plans can consist of hundreds of engineering drawings. The presentation of these drawings often varies based on personal preferences, leading to inconsistencies in format and symbols. The lack of standardization in these [...] Read more.
In an environment where manufacturing precision requirements are increasing, complete project plans can consist of hundreds of engineering drawings. The presentation of these drawings often varies based on personal preferences, leading to inconsistencies in format and symbols. The lack of standardization in these aspects can result in inconsistent interpretations during subsequent analysis. Therefore, proper annotation of engineering drawings is crucial as it determines product quality, subsequent inspections, and processing costs. To reduce the time and cost associated with interpreting and analyzing drawings, as well as to minimize human errors in judgment, we developed an engineering drawing recognition system. This study employs geometric dimensioning and tolerancing (GD&T) in accordance with the ASME (American Society of Mechanical Engineers) Y14.5 2018 specification to describe the language of engineering drawings. Additionally, PyTorch, OpenCV, and You Only Look Once (YOLO) are utilized for training. Existing 2D engineering drawings serve as the training data, and image segmentation is performed to identify objects such as dimensions, tolerances, functional frames, and geometric symbols in the drawings using the network model. By reading the coordinates corresponding to each object, the correct values are displayed. Real-world cases are utilized to train the model with multiple engineering drawings containing mixed features, resulting in recognition capabilities surpassing those of single-feature identification. This approach improves the recognition accuracy of deep learning models and makes engineering drawing and image recognition more practical. The recognition results are directly stored in a database, reducing product verification time and preventing errors that may occur due to manual data entry, thereby avoiding subsequent quality control issues. The accuracy rates achieved are as follows: 85% accuracy in detecting views in 2D engineering drawings, 70% accuracy in detecting annotation groups and annotations, and 80% accuracy in text and symbol recognition. Full article
(This article belongs to the Special Issue Smart Manufacturing and Industrial Automation)
Show Figures

Figure 1

12 pages, 24388 KB  
Article
Design, Realization, and Test of Ultraviolet-C LED Arrays Suitable for Long-Lasting Irradiation of Biological Samples
by Sarah Bollanti, Paolo Di Lazzaro, Francesco Flora, Gian Piero Gallerano, Luca Mezi, Daniele Murra and Massimo Aquilini
Machines 2023, 11(8), 792; https://doi.org/10.3390/machines11080792 - 1 Aug 2023
Cited by 1 | Viewed by 1966
Abstract
We present the electrical and optical design, assembling, and thorough experimental characterization of two compact arrays of short-wavelength ultraviolet (UV-C) light-emitting diodes (LEDs) suitable for near-field irradiation. Through a combination of technical expedients, we have achieved effective thermal management such that long-lasting irradiations [...] Read more.
We present the electrical and optical design, assembling, and thorough experimental characterization of two compact arrays of short-wavelength ultraviolet (UV-C) light-emitting diodes (LEDs) suitable for near-field irradiation. Through a combination of technical expedients, we have achieved effective thermal management such that long-lasting irradiations are possible without appreciable deterioration of UV-C emission. We successfully used these compact UV-C LED arrays for long lasting irradiation tests aimed at generating the biosynthesis of defensive metabolites that enhance the resistance of plants and fruits to pathogen attacks. Finally, we comment on the possibility of implementing these compact UV-C sources on robotic systems to make an automated device suitable to reduce pesticide use in agricultural crops. Full article
Show Figures

Figure 1

20 pages, 9132 KB  
Article
Measuring Point Planning and Fitting Optimization of the Flange and Spigot Structures of Aeroengine Rotors
by Tianyi Zhou, Lei Hu, Xiaoxiao Jin, Ting Li, Yan Zhang, Jianfeng Chen and Hang Gao
Machines 2023, 11(8), 786; https://doi.org/10.3390/machines11080786 - 31 Jul 2023
Cited by 5 | Viewed by 2102
Abstract
An optimized measuring point planning and fitting method for rotor flange and spigot structures was proposed to achieve precise measurement of position and pose of the aeroengine rotors during docking processes. Firstly, the impact of circumferential phase angle, distribution range angle, total number [...] Read more.
An optimized measuring point planning and fitting method for rotor flange and spigot structures was proposed to achieve precise measurement of position and pose of the aeroengine rotors during docking processes. Firstly, the impact of circumferential phase angle, distribution range angle, total number of measuring points, and number of distribution rings on measurement uncertainty was analyzed. The measuring point planning schemes for flange and spigot were proposed. Secondly, the Gauss Newton iterative solution principle considering damping factors was clarified. Subsequently, an optimized iterative reweighting method consisting of weight iterative estimation, singular value detection under the Chauvenet criterion, and clustering detection was proposed for fitting the flange annular end face. A mapping point total least squares method with practical geometric significance was proposed for fitting the spigot cylinder face. Finally, measuring and fitting experiments were performed. The singular measuring point detection methods were verified. Under the optimized fitting methods, the goodness of fit and average orthogonal distance of flange and spigot structures are 0.756 and 0.089 mm, respectively, which have higher fitting accuracy than the other traditional methods. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

19 pages, 8523 KB  
Article
Design and Analysis of a Supine Ankle Rehabilitation Robot for Early Stroke Recovery
by Qingyun Meng, Guanxin Liu, Xin Xu, Qiaoling Meng and Hongliu Yu
Machines 2023, 11(8), 787; https://doi.org/10.3390/machines11080787 - 31 Jul 2023
Cited by 10 | Viewed by 3636
Abstract
Existing ankle rehabilitation robots are large, difficult to move, and mostly designed for seated use, which cannot meet the early bedridden rehabilitation goals of stroke patients. To address these issues, a supine ankle rehabilitation robot (S-ARR) specifically designed for early bedridden rehabilitation of [...] Read more.
Existing ankle rehabilitation robots are large, difficult to move, and mostly designed for seated use, which cannot meet the early bedridden rehabilitation goals of stroke patients. To address these issues, a supine ankle rehabilitation robot (S-ARR) specifically designed for early bedridden rehabilitation of stroke patients has been proposed. The S-ARR is designed to be easily movable and adaptable to different heights. It features a variable workspace with mechanical limiters at the rotating joints. A kinematic model has been constructed, and the kinematic simulation of the S-ARR has been analyzed. A control system scheme for the S-ARR has been proposed. Additionally, experiments have been conducted on the prototype to measure joint range of motion and perform rehabilitation exercises. The simulation and experimental results demonstrate that the S-ARR has a feasible workspace and a relatively smooth motion process, enabling it to achieve supine ankle rehabilitation training. This indicates that the design of the supine ankle rehabilitation robot is reasonable, capable of meeting the requirements for ankle joint rehabilitation training, and has practical utility. Full article
(This article belongs to the Special Issue Recent Advances in Medical Robotics)
Show Figures

Figure 1

Back to TopTop