Open AccessEditor’s ChoiceArticle
Design and Implementation of a Bionic Marine Iguana Robot for Military Micro-Sensor Deployment
by
Gang Chen, Xin Tang, Baohang Guo, Guoqi Li, Zhengrui Wu, Weizhe Huang, Yidong Xu, Ming Lu, Jianfei Liang and Zhen Liu
Viewed by 1257
Abstract
Underwater sensor deployment in military applications requires high precision, yet existing robotic solutions often lack the maneuverability and adaptability required for complex aquatic environments. To address this gap, this study proposes a bio-inspired underwater robot modeled after the marine iguana, which exhibits effective
[...] Read more.
Underwater sensor deployment in military applications requires high precision, yet existing robotic solutions often lack the maneuverability and adaptability required for complex aquatic environments. To address this gap, this study proposes a bio-inspired underwater robot modeled after the marine iguana, which exhibits effective crawling and swimming capabilities. The research aims to develop a compact, multi-functional robot capable of precise sensor deployment and environmental detection. The methodology integrates a biomimetic mechanical design—featuring leg-based crawling, tail-driven swimming, a deployable head mechanism, and buoyancy control—with a multi-sensor control system for navigation and data acquisition. Gait and trajectory planning are optimized using kinematic modeling for both terrestrial and aquatic locomotion. Experimental results demonstrate the robot’s ability to perform accurate underwater sensor deployment, validating its potential for military applications. This work provides a novel approach to underwater deployment robotics, bridging the gap between biological inspiration and functional engineering.
Full article
►▼
Show Figures