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Abstract: In an environment where manufacturing precision requirements are increasing, complete
project plans can consist of hundreds of engineering drawings. The presentation of these drawings
often varies based on personal preferences, leading to inconsistencies in format and symbols. The
lack of standardization in these aspects can result in inconsistent interpretations during subsequent
analysis. Therefore, proper annotation of engineering drawings is crucial as it determines product
quality, subsequent inspections, and processing costs. To reduce the time and cost associated with
interpreting and analyzing drawings, as well as to minimize human errors in judgment, we developed
an engineering drawing recognition system. This study employs geometric dimensioning and
tolerancing (GD&T) in accordance with the ASME (American Society of Mechanical Engineers) Y14.5
2018 specification to describe the language of engineering drawings. Additionally, PyTorch, OpenCV,
and You Only Look Once (YOLO) are utilized for training. Existing 2D engineering drawings serve
as the training data, and image segmentation is performed to identify objects such as dimensions,
tolerances, functional frames, and geometric symbols in the drawings using the network model. By
reading the coordinates corresponding to each object, the correct values are displayed. Real-world
cases are utilized to train the model with multiple engineering drawings containing mixed features,
resulting in recognition capabilities surpassing those of single-feature identification. This approach
improves the recognition accuracy of deep learning models and makes engineering drawing and
image recognition more practical. The recognition results are directly stored in a database, reducing
product verification time and preventing errors that may occur due to manual data entry, thereby
avoiding subsequent quality control issues. The accuracy rates achieved are as follows: 85% accuracy
in detecting views in 2D engineering drawings, 70% accuracy in detecting annotation groups and
annotations, and 80% accuracy in text and symbol recognition.

Keywords: 2D engineering drawings; image segmentation; deep learning; pattern recognition;
ASME Y14.5

1. Introduction

Computer-Aided Design (CAD) software has become increasingly powerful in recent
years, allowing various 3D model annotation techniques. However, even after all these
years, 3D model annotation still cannot completely replace 2D engineering drawings. There
are two main reasons for this. First, there is a performance issue. More powerful 3D
software requires higher computer specifications, and for complex assembly structures, the
loading speed of models, software display, and operations are still not as convenient as 2D
drawings in terms of performance. Second, there is a difficulty in accessing information.
Although 3D annotation is intuitive and provides richer information compared to 2D
drawings, it is still not as convenient as 2D drawings in terms of extracting information
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from the model. The core of 2D drawings lies in annotation, where designers can use ap-
propriate areas for rotation, zooming, section views, etc., to express design intent and filter
out unnecessary feature information, allowing readers to quickly obtain the information
the designer intends to convey. While 3D models can also achieve similar viewing and
annotation to 2D drawings, the workload for drawing is much larger, and they are also
more challenging for non-professionals to interpret. Therefore, engineering drawings still
play an extremely important role in the manufacturing industry.

With advancing production technology, intense market competition, and constant
product innovation, the demand for design drawings is increasing. For a new product,
they occupy a significant portion of the schedule during the design phase. In industrial
manufacturing, interpretation of drawing information by skilled technical personnel was
traditionally required for subsequent processing and quality control validation to present a
complete product profile. However, manual engineering drawing analysis would consume
a significant amount of time in drawing interpretation, especially when most engineers
still use traditional positive and negative tolerance annotation methods, resulting in many
defects in the drawings. For example, traditional dimension annotation cannot control the
shape, deviation, direction, or position of the components. If each person has a different un-
derstanding of the drawing, the product functionality cannot be effectively expressed, and
the inspection results will also differ. Therefore, establishing a unified drawing language
can reduce manual operation time and shorten the product development cycle, providing
an effective solution to this problem. By training on engineering drawings using YOLO and
OpenCV, a feature recognition system can be established. Initially, features are clustered
and managed, and the recognition results are stored in a database, which can effectively
solve the difficulty of storing numerous drawings, eliminate the trouble of manual input,
reduce human errors, and shorten the subsequent validation process.

Integrating drawing information and planning into automated systems is a future
direction in the engineering drawing literature. Zhou et al. [1] noted that in engineering
design, the efficiency and quality of presentation often depend on the completeness of
the drawings. Therefore, feature information plays an important role in CAD drawings.
Moreno-Garcia et al. [2] pointed out that engineering drawings are moving towards digiti-
zation. As engineering drawings can be used in different industries, the current focus is on
how to manage these drawings in a digital format, especially since traditional paper-based
management is challenging and not conducive to preserving historical information and
drawings for various industries. Sun et al. [3] stated that GD&T is an important step in
product design, as it has a significant impact on product manufacturing, quality, and func-
tionality. The practice of GD&T can standardize engineering drawings, making them more
accurate, and easier to understand. ASME [4] noted that the Y14.5 standard is considered
the authoritative guide for geometric dimensioning and tolerancing language. The symbols,
rules, definitions, requirements, default values, and recommended practices outlined in
the standard can provide clearer explanations of GD&T and the associated data files used
in engineering to define drawings and models. Scheibel et al. [5] noted that engineering
drawings accompany the entire production process of a component. Although the manu-
facturing process of components is almost fully automated, the design and utilization of
drawings have not yet been fully integrated into automated production. Therefore, the
current challenge is how to extract dimensional information from drawings and integrate it
into the production process to facilitate and optimize quality control.

From the above literature, it can be observed that some traditional manufacturing
plants still rely on experienced technical personnel to interpret engineering drawings
and annotate dimension tolerances according to their own habits. The presentation of
drawing information varies among different engineering drawings. Without a unified
format of a drawing language, this can lead to different interpretations by subsequent
recipients, resulting in mutual blaming among engineers from different departments,
multiple measurement results during inspection, decreased product quality, increased
costs, and other issues.
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In terms of automated interpretation of drawings, one possible direction is to train
systems using a standard format. This allows the system to automatically extract relevant
annotation information by extracting drawing features, thus facilitating drawing manage-
ment and automated inspection. Text detection and recognition in images have already
been widely applied in various fields. Trischler et al. [6] noted that understanding text is
a major goal in natural language processing, which is a complex cognitive task requiring
local text context reading and incorporating relevant background knowledge. Wan et al. [7]
proposed a text feature localization method using the Maximally Stable Extremal Regions
(MSER) algorithm, which can extract text positions even under image rotation and affine
transformations. Epshtein et al. [8] introduced the Stroke Width Transform (SWT), a novel
image operation that performs edge detection on the entire image, assigns width values
to each pixel, aggregates similar width pixels, and highlights the text regions. Yu et al. [9]
designed a rule-based filtering and Support Vector Machine (SVM)-based hierarchical
localization method. It extracts characters using MSER, filters out non-text regions based
on text features, and locates the text positions using Histogram of Oriented Gradient (HOG)
features and bounding rectangles through SVM.

From the above literature, it can be understood that before the dominance of deep
learning, manual text feature extraction was the main approach. The classical methods
mentioned are MSER, SWT, HOG, etc. These methods involve setting up feature pyramids
on images, scanning locally using sliding windows, extracting features, and performing
classification through sliding windows, before finally merging into text regions.

In the deep learning literature, the field of image processing has received signifi-
cant attention, especially in the development of object detection. This is attributed to the
classification capabilities of Convolutional Neural Networks (CNN), which are a major
driving force in deep learning. Lecun et al. [10] proposed the LeNet-5 network model for
character recognition. It trained a multi-layer neural network using the back-propagation
algorithm, which became a prominent example of gradient learning. It can synthesize
complex drawings using gradient learning algorithms with minimal preprocessing and
perform classification in high-dimensional patterns. Krizhevsky et al. [11] designed the
AlexNet structure, which increased the depth of the network and enhanced its representa-
tion capabilities. They successfully introduced the Rectified Linear Unit (ReLU) activation
function and the dropout technique, which alleviated the gradient vanishing problem
caused by the Sigmoid function and prevented overfitting. Simonyan et al. [12] proposed
the VGGNet model, which replaced the larger convolutions in previous models with con-
secutive 3 × 3 convolutions. This significantly reduced the number of parameters while
maintaining performance, enabling deeper networks. In the 2014 ImageNet competition,
the model achieved good results in localization and classification tasks. Liu et al. [13]
introduced deep deconvolutional semantic image segmentation, which used VGGNet as
the neural network for encoding and deconvolution and pixel prediction to construct image
segmentation. Yu et al. [14] noted that image semantic segmentation is formed by an image
classification model. However, prediction and classification have structural differences.
Therefore, they designed the Dilated Convolution module, which combines information
from different layers and reduces the resolution loss, thereby improving the overall accu-
racy of segmentation. Li et al. [15] and Chen et al. [16] discussed how dilated convolution
can expand the receptive field, reduce training parameters and data volume, and effectively
compensate for insufficient localization accuracy when properly combined with random
fields. He et al. [17] proposed the Deep Residual Network (ResNet), and the key to training
this network is the use of skip connections through identity mapping. It enables the current
output to skip the computation of the original layer by mapping across layers, leading
to a trend of deeper models with fewer parameters and alleviating the problem of gradi-
ent vanishing. Redmon et al. [18] introduced YOLO, a fast and accurate object detection
framework that uses regression methods to globally predict objects in images, ensuring
high precision in detection. Wang et al. [19] introduced YOLOv7, which optimizes the
model architecture and training process to reduce parameters and computations. When the
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frames per second (FPS) range from 5 to 160, it surpasses known real-time object detectors
in terms of speed and accuracy.

From the above literature, it can be concluded that various methods for graphic feature
recognition have been enhanced due to the development of neural networks, which im-
prove the recognition capabilities of machine learning. By training on large amounts of data,
machines can automatically analyze and find optimal solutions. However, machine conclu-
sions are not necessarily 100% correct. To improve recognition accuracy, besides increasing
training data, image processing and adjustments to deep network model architecture may
help solve the problem of poor efficiency in automatic recognition. Therefore, this study
focuses on deep learning image recognition using engineering drawings. By training the
system to read corresponding feature information from graphics, it can accurately segment
and define the expressed categories, achieving automated drawing recognition.

2. Research Technical Background
2.1. GD&T

For product manufacturing processes, how to fully interpret the object on the drawing
after part design is currently a major concern. Incomplete drawing design can result in
defects in the production and inspection processes, leading to parts that do not accurately
match the model. Therefore, in order to meet international requirements for drawing
formats and symbols, a GD&T framework has been designed for assembly design and
production standards, as shown in Figure 1. This framework is a universal language of
engineering drawing symbols, primarily used in engineering drawings and models to
define the allowable deviations of geometric elements. It can precisely express functional
requirements for each feature’s position, orientation, size, shape, etc., in the design. Both
production and verification personnel can use this language to understand design intent
and inspection and to determine design requirements. Different companies use different
GD&T standards. The two major geometric dimensioning and tolerancing standards used
worldwide today are the ASME Y14.5 and ISO GPS standards. ASME Y14.5 is the American
national standard, specifying dimensions and tolerances for part drawings only. ISO is
the international standard, providing detailed specifications for gauge design, acceptance
testing, coordinate measurement, calibration, and other procedures. Both standards aim
to address issues of part interchangeability and assembly. Approximately 80% to 90%
of the content in the two standards is similar. This study primarily adopts ASME Y14.5,
which is widely used in the United States and globally, as shown in Figure 2. Geometric
dimensioning and tolerance symbols are shown in Table 1.
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2.2. Learning Model

In this study, we utilized YOLOv7, which was proposed by Wang et al. [19], for the
development of deep learning-based object recognition. YOLO is a fast and accurate object
detection framework that treats the input image as a whole and predicts output through
CNN channels. The overall architecture is depicted in Figure 3. The image is divided
into multiple grid cells, and the neural network predicts the confidence, probability, and
bounding boxes of objects. Finally, the Non-Maximum Suppression (NMS) algorithm is
applied to filter out erroneous, overlapping, and inaccurate samples and determine the
best detection locations. YOLOv7 outperforms all known object detectors in terms of both
speed and accuracy within the range of 5 FPS to 160 FPS. It is primarily optimized in terms
of the model architecture and training process.
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For model architecture optimization, extended efficient layer aggregation networks
and model scaling techniques are employed. In the training process optimization, re-
parameterization techniques are used to replace the original modules, and a dynamic label
assignment strategy is adopted to allocate labels more efficiently to different output layers.

In Figure 3, the Backbone is primarily responsible for feature extraction and processes
the input image through the first pyramid structure. As the numbers increase from B1 to
B5, the feature maps of the input image become progressively smaller. With the increasing
numbers, the number of features with more channels also increases. The Neck performs
upsampling from top to bottom and expands the feature maps layer by layer, reducing
the numbers from P5 to P3. Through lateral connections, the Neck merges the features
from different layers of the Backbone to obtain scale-rich representation information. The
Head then undergoes a reverse process of the pyramid structure and is primarily used for
predicting the class and position (bounding boxes) of the target.

3. Engineering Drawing Learning and Recognition

Graphical recognition and object classification are commonly applied in the field of
deep learning, such as face and license plate recognition. The development of the YOLO
algorithm system has enabled high-accuracy recognition of tiny cells in the medical field.
However, object recognition in the engineering manufacturing domain is relatively scarce.
This is mainly due to the inclusion of a large number of engineering symbols, numerical
values, and terms in the drawings, making it difficult to integrate the information and
express the content of engineering drawing recognition comprehensively. Therefore, this
study aims to explore how to build an engineering drawing recognition system.

3.1. System Architecture

The development of this 2D engineering drawing recognition system primarily relies
on machine learning to capture feature information from part views and utilize an optical
character recognition engine to recognize corresponding numerical values and symbols.
The system architecture is illustrated in Figure 4. It uses the Flask web framework, Python
language, and platforms such as OpenCV (Open Source Computer Vision Library) and
YOLOv7 to develop real-time image processing, computer vision, and image recognition
training as preliminary operations. The open-source software Tesseract-OCR, developed
by Google, is used for text character recognition. The system is integrated with a Relational
database, Microsoft® (MS) SQL Server, to access the trained drawings and recognition-
related information, facilitating efficient data adjustment and management. Through a
user interface, the system displays pre-training and post-training recognition informa-
tion, providing functions for adding, editing, and deleting information, allowing users
to modify the data and store the modified information in the database again for further
reinforcement learning.
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3.2. Object Detection Process

Based on Python, PyTorch, and YOLO, this study develops the recognition of drawing
features by establishing various decision criteria and loop structures, combined with image
preprocessing using OpenCV, to achieve position prediction and detection. The common
detection process methods are referenced during the process, as shown in Figure 5. In image
recognition, the quality of the image directly affects the detection rate and recognition
rate. Therefore, preprocessing of the input image is necessary. Firstly, OpenCV is used for
preprocessing the images. Then, YOLO is employed to scan the images and extract features.
The trained detection classifier is combined to obtain confidence values for each region
within a sliding window, enabling the prediction of classification results in that region.
Finally, OpenCV is utilized for post-processing the images, where the results obtained from
YOLO detection are used for image cropping and classification.
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3.3. Object Recognition Process

Automatically recognizing the feature information of engineering drawings presents
some challenges. In terms of location, some information may be densely packed, while
other information may be dispersed, making it difficult to select text regions effectively.
To narrow down the detection range, the entire image is analyzed in layers, as shown in
Figure 6. Firstly, the engineering drawing is segmented into individual views, separating
the graphics and their annotations for each view. Then, the drawing features are categorized
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into five groups: dimensions, tolerances, upper tolerances, lower tolerances, and feature
control frames. Dimensions express the basic size of the part, tolerances represent the
allowable differences in part dimensions, and feature control frames describe the conditions
and tolerances for geometric control in GD&T. Each group has its own meaning, which is
one of the reasons why engineering drawings are crucial in the manufacturing domain.
At this stage, the search area on the drawing has been minimized, and numerical values
and symbols are recognized for each group. Clear classification predictions are made for
individual characters, and the predicted information is uniformly stored in the database.
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3.4. Engineering Drawing Recognition Model Training

Following the aforementioned recognition architecture, the engineering drawing is
analyzed and processed in layers. In this study, three YOLO models are trained for feature
recognition and Tesseract-OCR is utilized for text recognition, achieving the application of
engineering drawing recognition.

3.4.1. View Detection Training

In engineering drawings, in addition to part views, features such as dimensions and
tolerances marked on the same part view need to be selected. The training data annotation
method for engineering drawing view recognition is shown in Figure 7. Two hundred and
forty engineering drawings are used as training data, and twenty engineering drawings are
used as validation data for training the view position recognition model. The training curve
of the model is shown in Figure 8 and illustrates the performance metrics for the training
and validation sets. The horizontal axis represents the number of training iterations. Plots
of box loss, objectness loss, classification loss, precision, recall, and mean average precision
(mAP) over the training epochs for the training and validation set are shown. The box loss
evaluates the algorithm’s ability to accurately determine the center of an object and the
extent to which the predicted bounding box covers an object. Objectness can be described
as a measure of the probability that an object exists in a proposed region of interest. If
the objectness is high, it indicates a higher probability that the image window contains an
object. Classification loss provides an indication of the algorithm’s ability to accurately
predict the correct class of a given object. In the training of view recognition, there is only
one type of class, so the classification loss is 0.
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3.4.2. Annotation Group Detection Training

The main annotation groups in the views are primarily divided into three types:
dimension (DIM) annotation with size and tolerance, datum annotation for datum plane,
and feature control frame (FCF) annotation. The feature annotation method for view
recognition annotation groups is shown in Figure 9. A total of 470 views were used as
training data, with 40 views used for validation. The model was trained to recognize
annotation group types, and the training curve of the model is shown in Figure 10.
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3.4.3. Annotation Detection Training

The annotation of geometric dimensions and tolerances on engineering drawings
follows certain regular formats. The size annotation for dimensions can be in the form
of basic dimensions with plus/minus tolerance symbols or tolerance annotation with
upper and lower limits, as shown in Figure 11a,b. The content of the feature control frame
annotation consists of geometric feature symbols, specified tolerances, and datums, as
shown in Figure 11c. The annotation for the datum plane is relatively simple, involving
only the symbol indicating the datum plane, as shown in Figure 11d. By categorizing
these annotations, the values and tolerances in engineering drawings can be labeled with
features, and a neural network model can be trained. The feature annotation method for
training data is shown in Figure 12. A total of 285 dimension annotation images were
used as training data, with 20 images used for validation. The model was trained to
recognize geometric dimensions and tolerances, and the training curve of the model is
shown in Figure 13.
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3.4.4. Character Recognition

The orientation of the text in engineering drawings may not always be in the stan-
dard direction due to the type of annotation. For example, when annotating angles or
radii/diameters, the rotation angle of the text may vary depending on the placement by
the drafter, as shown in Figure 14. To ensure accurate character recognition and avoid the
impact of text rotation angles, it is necessary to correct the text orientation of the extracted
text images from the engineering drawings before performing character recognition.
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Figure 14. Annotated text with rotation angles.

The optical character recognition engine Tesseract-OCR itself has the capability to
detect text angles, but it is limited to situations where the rotation angle is a multiple
of 90 degrees, which is insufficient to handle all types of annotated text. OpenCV also
has the ability to calculate the deviation angle and perform correction, but it is limited to
angles between 0 and 90 degrees. Therefore, by combining the text orientation correction
capabilities of both Tesseract-OCR and OpenCV, the text can be oriented correctly.

The character recognition process is shown in Figure 15. It involves first correcting the
text angle using OpenCV and Tesseract-OCR, and then performing character recognition
using Tesseract-OCR. The code and comments for the text angle correction section are
provided in Figure 16.
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4. Case Study

The trained models were fine-tuned and integrated and an image classification task
was planned. In this case study, an engineering drawing will be used as an example to
demonstrate the process of recognizing numerical values and symbols within the drawing.

4.1. Case Discussion

The view part of this case’s engineering drawing includes top view, front view,
right-side view, and isometric view. The annotation part includes theoretical dimensions,
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plus/minus tolerances, upper and lower tolerance limits, feature control frames, and datum
plane, as shown in Figure 17.
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4.2. Test Results

The test results are divided into two parts: the detection of views in the engineering
drawing and the detection and interpretation of annotations within the views.

4.2.1. Hardware Specifications and Computation Time

The hardware specifications used in this study are shown in Table 2. The computation
times for each stage of recognition are provided in Table 3.

Table 2. Hardware specifications.

Operating System Windows 10 64-bit

Processor Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz 3.70 GHz

Memory (RAM) 32.0 GB

Graphics Card NVIDIA Quadro P2000

Table 3. Computation time.

View Detection
(s)

Group Annotation Detection
(s)

Annotation Detection
(s)

5.82 12.53 9.73
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4.2.2. View Detection in Engineering Drawing

The web interface of the view detection in the case engineering drawing is shown in
Figure 18. From the image, it can be seen that the system can accurately detect each view
and all the annotated features associated with the respective views.
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4.2.3. Annotation Detection in Views

The annotation detection part includes the detection of dimension annotations, datum
plane annotations, and feature control frame annotations. The web interface for detecting
dimension annotations is shown in Figure 19. The system correctly detects the dimension
annotation features in the views, corrects non-forward-facing annotation text, and accu-
rately recognizes dimension and tolerance values. The web interface for detecting datum
plane annotations is shown in Figure 20. The system accurately detects the datum plane
annotation features in the views and correctly recognizes the datum plane text content.
The web interface for detecting feature control frame annotations is shown in Figure 21.
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The system accurately detects the feature control frame features in the views and correctly
recognizes the feature symbols, tolerances, and datums within the feature control frames.
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5. Conclusions and Future Outlook
5.1. Conclusions

Engineering drawings are a primary tool for part design, effectively expressing design
ideas through drawings and serving as a means of communication among designers, man-
ufacturers, and inspectors. Therefore, engineering drawings can be considered a universal
language in the industry. However, manual interpretation of drawings can be inefficient,
especially when dealing with a large number of drawings. Hence, this study developed
a 2D engineering drawing deep learning application integration system that utilizes the
feature information of drawings to develop an efficient model recognition system. The sys-
tem achieved an accuracy rate of nearly 70% in recognition, significantly reducing manual
interpretation time and accurately identifying basic categories of dimensions, tolerances,
and functional controls in engineering drawings.

5.2. Future Outlook

The current module for drawing feature recognition developed in this study has not
been able to recognize all the specifications of GD&T. We hope to continue conducting
in-depth research towards the following goals in the future:

1. Model Classification Training

Currently, the model can effectively identify basic tolerance symbols and numerical
feature positions in real-time predictions of 2D engineering drawings. However, symbols
for modifier indications in GD&T, which represent compensatory tolerances, have not
been included in the model training. This is an area that will continue to be developed in
the future.

2. Group Classification

Currently, the group model classification can only detect five basic categories: dimen-
sions, tolerances, upper tolerances, lower tolerances, and feature control frames. In the
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future, more advanced composite positional tolerance features, such as advanced versions
of feature control frames, need to be added. This is also one of the additional tasks that
need to be planned for the recognition model.

3. Automatic Construction of 3D Models

In the future, we aim to automate the construction of 3D models based on the informa-
tion extracted from 2D engineering drawings. This will further enhance the efficiency and
accuracy of the design process.
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