-
Mechanotransduction and Skeletal Muscle Atrophy: The Interplay Between Focal Adhesions and Oxidative Stress
-
Epigenetic Echoes: Bridging Nature, Nurture, and Healing Across Generations
-
TL1A as a Target in Inflammatory Bowel Disease: Exploring Mechanisms and Therapeutic Potential
-
Nanozymes: Innovative Therapeutics in the Battle Against Neurodegenerative Diseases
-
Breaking the Barrier: The Role of Proinflammatory Cytokines in BBB Dysfunction
Journal Description
International Journal of Molecular Sciences
International Journal of Molecular Sciences
is an international, peer-reviewed, open access journal providing an advanced forum for biochemistry, molecular and cell biology, molecular biophysics, molecular medicine, and all aspects of molecular research in chemistry, and is published semimonthly online by MDPI. The Australian Society of Plant Scientists (ASPS), Epigenetics Society, European Chitin Society (EUCHIS), Spanish Society for Cell Biology (SEBC) and others are affiliated with IJMS and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, MEDLINE, Embase, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q1 (Biochemistry and Molecular Biology) / CiteScore - Q1 (Organic Chemistry)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 20.5 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our editors and authors say about IJMS.
- Companion journals for IJMS include: Biophysica, Stresses, Lymphatics and SynBio.
Impact Factor:
4.9 (2024);
5-Year Impact Factor:
5.7 (2024)
Latest Articles
Longitudinal Assessment of Body Composition and Inflammatory Status in Rheumatoid Arthritis During TNF Inhibitor Treatment: A Pilot Study
Int. J. Mol. Sci. 2025, 26(15), 7635; https://doi.org/10.3390/ijms26157635 (registering DOI) - 7 Aug 2025
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease frequently associated with alterations in body composition, including reduced lean mass and increased fat mass. These alterations are thought to be driven by persistent systemic inflammation, which may be influenced by inflammatory activity and by
[...] Read more.
Rheumatoid arthritis (RA) is a chronic inflammatory disease frequently associated with alterations in body composition, including reduced lean mass and increased fat mass. These alterations are thought to be driven by persistent systemic inflammation, which may be influenced by inflammatory activity and by therapeutic interventions. Objectives: This pilot study aimed to provide preliminary data on changes in body composition and inflammatory activity in biologic-naive patients with active RA during the initial 6 months of TNF inhibitor treatment, and to compare baseline body composition with healthy controls. We conducted a single-center, observational, 24-week pilot study of 70 biologic-naive RA patients with moderate-to-severe disease activity and 70 matched healthy controls. Lean mass, fat mass, and lean mass index (LMI) were measured using dual-energy X-ray absorptiometry at baseline for both groups, and after 6 months only in the RA group. Clinical, laboratory, adipokines, and cytokine parameters were also recorded. At baseline, RA patients had lower lean mass and LMI than controls. Over 6 months, RA patients showed significant clinical and laboratory improvement, with a corresponding increase in lean mass and LMI. No statistically significant change was observed in fat mass. The increase in lean mass was paralleled by a reduction in inflammatory markers. The LMI was inversely associated with female sex (β = −0.562) and C-reactive protein (β = −0.432) and directly associated with body mass index (β = 0.570). Similar associations were observed for total lean mass and change in lean mass, as well as for DAS28 (β = −0.333). This pilot study provides preliminary evidence that TNF inhibitor therapy may be associated with increased lean mass and decreased inflammation in RA patients. Owing to the absence of a comparator RA group not receiving TNF inhibitors, these findings should be interpreted as hypothesis-generating.
Full article
(This article belongs to the Special Issue Pro-inflammatory and Anti-inflammatory Interleukins in Various Diseases 2.0)
►
Show Figures
Open AccessArticle
GM1 Oligosaccharide Modulates Microglial Activation and α-Synuclein Clearance in a Human In Vitro Model
by
Giulia Lunghi, Carola Pedroli, Maria Grazia Ciampa, Laura Mauri, Laura Rouvière, Alexandre Henriques, Noelle Callizot, Benedetta Savino and Maria Fazzari
Int. J. Mol. Sci. 2025, 26(15), 7634; https://doi.org/10.3390/ijms26157634 (registering DOI) - 7 Aug 2025
Abstract
Neuroinflammation driven by microglial activation and α-synuclein (αSyn) aggregation is one of the central features driving Parkinson’s disease (PD) pathogenesis. GM1 ganglioside’s oligosaccharide moiety (OligoGM1) has shown neuroprotective potential in PD neuronal models, but its direct effects on inflammation remain poorly defined. This
[...] Read more.
Neuroinflammation driven by microglial activation and α-synuclein (αSyn) aggregation is one of the central features driving Parkinson’s disease (PD) pathogenesis. GM1 ganglioside’s oligosaccharide moiety (OligoGM1) has shown neuroprotective potential in PD neuronal models, but its direct effects on inflammation remain poorly defined. This study investigated the ability of OligoGM1 to modulate microglial activation and αSyn handling in a human in vitro model. Human embryonic microglial (HMC3) cells were exposed to αSyn pre-formed fibrils (PFFs) in the presence or absence of OligoGM1. Microglial activation markers, intracellular αSyn accumulation, and cytokine release were assessed by immunofluorescence and ELISA. OligoGM1 had no effect on microglial morphology or cytokine release under basal conditions. Upon αSyn challenge, cells exhibited increased amounts of ionized calcium-binding adaptor molecule 1 (Iba1), triggered receptor expressed on myeloid cells 2 (TREM2), elevated αSyn accumulation, and secreted pro-inflammatory cytokines. OligoGM1 pre-treatment significantly reduced the number and area of Iba1(+) cells, the intracellular αSyn burden in TREM2(+) microglia, and the release of interleukin 6 (IL-6). OligoGM1 selectively attenuated αSyn-induced microglial activation and enhanced αSyn clearance without compromising basal immune function. These findings confirm and support the potential of OligoGM1 as a multitarget therapeutic candidate for PD that is capable of modulating glial reactivity and neuroinflammatory responses.
Full article
(This article belongs to the Special Issue Structural Codes of Sphingolipids and Their Involvement in Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
Alterations in the Platelet Transcriptome Mediate Prenatal Thirdhand Smoke Exposure Associated Thrombogenicity via Integrated miRNA-mRNA Regulatory Networks
by
Hamdy E. A. Ali, Ahmed B. Alarabi, Fatima Z. Alshbool and Fadi T. Khasawneh
Int. J. Mol. Sci. 2025, 26(15), 7633; https://doi.org/10.3390/ijms26157633 (registering DOI) - 7 Aug 2025
Abstract
Cigarette smoking is acknowledged as the most preventable risk factor for thrombogenesis-associated cardiovascular disease. Mice prenatally exposed to the thirdhand smoke (THS) form of tobacco exhibited a higher tendency to develop occlusive thrombosis, along with enhancement of several platelet functional responses. Our objective
[...] Read more.
Cigarette smoking is acknowledged as the most preventable risk factor for thrombogenesis-associated cardiovascular disease. Mice prenatally exposed to the thirdhand smoke (THS) form of tobacco exhibited a higher tendency to develop occlusive thrombosis, along with enhancement of several platelet functional responses. Our objective was to investigate whether prenatal (in utero) THS exposure impacts the platelet transcriptome, resulting in enhanced platelet functional responses, thereby underlying THS-associated thrombogenicity. Blood samples obtained from twenty male mice prenatally exposed to THS, along with an equal number of age-matched male mice exposed to clean air (CA) as a control, were divided into pools of five animals and used to prepare leukocyte and red blood cell-depleted platelets. RNA sequencing for mRNA and microRNA (miRNA) was utilized to analyze and compare the platelet expression profiles of the two exposure groups. RNA seq analyses revealed distinct changes in both gene expression and miRNA profiles, with 448 coding genes and 18 miRNAs significantly altered between the two groups. miRNA–mRNA interaction analysis highlighted 14 differentially expressed miRNAs that potentially target 120 of the differentially expressed genes in our data set. Interestingly, altered genes in miRNA–mRNA pairs were functionally enriched into pathways associated with platelet physiology, including platelet activation, signaling and aggregation, and cellular response to chemical stimuli. Our findings establish—for the first time—that prenatal exposure to THS modifies the platelet transcriptome, thereby rendering platelets hypersensitive to stimuli and more prone to thrombogenicity. Additionally, we illuminate the coordinated function of platelet miRNA and mRNA targets in mediating this response.
Full article
(This article belongs to the Special Issue MicroRNAs and mRNA in Human Health and Disease)
►▼
Show Figures

Figure 1
Open AccessArticle
Pro-Reparative Effects of KvLQT1 Potassium Channel Activation in a Mouse Model of Acute Lung Injury Induced by Bleomycin
by
Tom Voisin, Alban Girault, Mélissa Aubin Vega, Émilie Meunier, Jasmine Chebli, Anik Privé, Damien Adam and Emmanuelle Brochiero
Int. J. Mol. Sci. 2025, 26(15), 7632; https://doi.org/10.3390/ijms26157632 (registering DOI) - 7 Aug 2025
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a complex and devastating form of respiratory failure, with high mortality rates, for which there is no pharmacological treatment. The acute exudative phase of ARDS is characterized by severe damage to the alveolar–capillary barrier, infiltration of protein-rich
[...] Read more.
Acute Respiratory Distress Syndrome (ARDS) is a complex and devastating form of respiratory failure, with high mortality rates, for which there is no pharmacological treatment. The acute exudative phase of ARDS is characterized by severe damage to the alveolar–capillary barrier, infiltration of protein-rich fluid into the lungs, neutrophil recruitment, and high levels of inflammatory mediators. Rapid resolution of this reversible acute phase, with efficient restoration of alveolar functional integrity, is essential before the establishment of irreversible fibrosis and respiratory failure. Several lines of in vitro and in vivo evidence support the involvement of potassium (K+) channels—particularly KvLQT1, expressed in alveolar cells—in key cellular mechanisms for ARDS resolution, by promoting alveolar fluid clearance and epithelial repair processes. The aim of our study was to investigate whether pharmacological activation of KvLQT1 channels could elicit beneficial effects on ARDS parameters in an animal model of acute lung injury. We used the well-established bleomycin model, which mimics (at day 7) the key features of the exudative phase of ARDS. Our data demonstrate that treatments with the KvLQT1 activator R-L3, delivered to the lungs, failed to improve endothelial permeability and lung edema in bleomycin mice. However, KvLQT1 activation significantly reduced neutrophil recruitment and tended to decrease levels of pro-inflammatory cytokines/chemokines in bronchoalveolar lavages after bleomycin administration. Importantly, R-L3 treatment was associated with significantly lower injury scores, higher levels of alveolar type I (HTI-56, AQP5) and II (pro-SPC) cell markers, and improved alveolar epithelial repair capacity in the presence of bleomycin. Together, these results suggest that the KvLQT1 K+ channel may be a potential target for the resolution of the acute phase of ARDS.
Full article
(This article belongs to the Special Issue Lung Diseases Molecular Pathogenesis and Therapy)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessment of Hydrogels for Intra-Articulate Application, Based on Sodium Hyaluronate Doped with Synthetic Polymers and Incorporated with Diclofenac Sodium
by
Dorota Wójcik-Pastuszka, Maja Grabara and Witold Musiał
Int. J. Mol. Sci. 2025, 26(15), 7631; https://doi.org/10.3390/ijms26157631 (registering DOI) - 6 Aug 2025
Abstract
The intra-articular application of drugs has gained considerable interest with regard to formulations for advanced drug delivery systems. It has been identified as a potential route for local drug delivery. A drug agent is usually incorporated into the hydrogel to prolong and control
[...] Read more.
The intra-articular application of drugs has gained considerable interest with regard to formulations for advanced drug delivery systems. It has been identified as a potential route for local drug delivery. A drug agent is usually incorporated into the hydrogel to prolong and control the drug release. This study aimed to design and evaluate an intra-articular hydrogel based sodium hyaluronate, which was modified with an additional polymer to enable the sustained release of the incorporated anti-inflammatory agent, diclofenac sodium (NaDic). Viscosity studies, drug release tests and FTIR−ATR measurements, as well as DSC analysis, were carried out to evaluate the obtained formulations. The viscosity measurements were performed using a rotational viscometer. The drug release was carried out by employing the apparatus paddle over the disk. The concentration of the released drug was obtained spectrophotometrically. The results revealed that the addition of the second polymer to the matrix influenced the dynamic viscosity of the hydrogels. The highest viscosity of (25.33 ± 0.55) × 103 cP was observed when polyacrylic acid (PA) was doped in the formulation. This was due to the hydrogen bond formation between both polymers. The FTIR−ATR investigations and DSC study revealed the hydrogen bond formation between the drug and both polymers. The drug was released the slowest from hydrogel doped with PA and 17.2 ± 3.7% of NaDic was transported to the acceptor fluid within 8 h. The hydrogel based on hyaluronan sodium doped with PA and containing NaDic is a promising formulation for the prolonged and controlled intra-articulate drug delivery of anti-inflammatory agents.
Full article
(This article belongs to the Special Issue New Insights into Hyaluronan in Human Medicine)
►▼
Show Figures

Figure 1
Open AccessArticle
Exploring Adverse Event Associations of Predicted PXR Agonists Using the FAERS Database
by
Saki Yamada and Yoshihiro Uesawa
Int. J. Mol. Sci. 2025, 26(15), 7630; https://doi.org/10.3390/ijms26157630 (registering DOI) - 6 Aug 2025
Abstract
Pregnane X receptor (PXR) is an important nuclear receptor that regulates diverse physiological functions, including drug metabolism. Although PXR activation is potentially involved in adverse events, the full scope of its impact has yet to be elucidated. In this study, we developed a
[...] Read more.
Pregnane X receptor (PXR) is an important nuclear receptor that regulates diverse physiological functions, including drug metabolism. Although PXR activation is potentially involved in adverse events, the full scope of its impact has yet to be elucidated. In this study, we developed a machine learning model to predict the activity of PXR agonists and applied the model to drugs listed in the US Food and Drug Administration Adverse Event Reporting System database. Analysis of the predicted agonist–active drug interactions and adverse event reports revealed statistically significant risks (lnROR > 1 and −logp > 1.3) for multiple cardiac disorders. These findings suggest that PXR activity is involved in cardiovascular adverse effects and may contribute to drug safety through the early identification of risks.
Full article
(This article belongs to the Special Issue In Silico Approaches to Unravelling Toxicity Mechanisms in Molecular Drugs)
►▼
Show Figures

Figure 1
Open AccessReview
Unmasking Pediatric Asthma: Epigenetic Fingerprints and Markers of Respiratory Infections
by
Alessandra Pandolfo, Rosalia Paola Gagliardo, Valentina Lazzara, Andrea Perri, Velia Malizia, Giuliana Ferrante, Amelia Licari, Stefania La Grutta and Giusy Daniela Albano
Int. J. Mol. Sci. 2025, 26(15), 7629; https://doi.org/10.3390/ijms26157629 - 6 Aug 2025
Abstract
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation
[...] Read more.
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation of inflammatory pathways contributing to asthma phenotypes and endotypes. This review examines the role of respiratory viruses such as respiratory syncytial virus (RSV), rhinovirus (RV), and other bacterial and fungal infections that are mediators of infection-induced epithelial inflammation that drive epithelial homeostatic imbalance and induce persistent epigenetic alterations. These alterations lead to immune dysregulation, remodeling of the airways, and resistance to corticosteroids. A focused analysis of T2-high and T2-low asthma endotypes highlights unique epigenetic landscapes directing cytokines and cellular recruitment and thereby supports phenotype-specific aspects of disease pathogenesis. Additionally, this review also considers the role of miRNAs in the control of post-transcriptional networks that are pivotal in asthma exacerbation and the severity of the disease. We discuss novel and emerging epigenetic therapies, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, miRNA-based treatments, and immunomodulatory probiotics, that are in preclinical or early clinical development and may support precision medicine in asthma. Collectively, the current findings highlight the translational relevance of including pathogen-related biomarkers and epigenomic data for stratifying pediatric asthma patients and for the personalization of therapeutic regimens. Epigenetic dysregulation has emerged as a novel and potentially transformative approach for mitigating chronic inflammation and long-term morbidity in children with asthma.
Full article
(This article belongs to the Special Issue Molecular Research in Airway Diseases)
Open AccessArticle
Immunogenetics of Multiple Sclerosis in Romanian Patients: Preliminary Data
by
Alexandra Elena Constantinescu, Ion Mărunțelu, Andreea Pleșa, Carmen Adella Sîrbu, Florentina Cristina Pleșa, Andreia Ioana Constantinescu and Ileana Constantinescu
Int. J. Mol. Sci. 2025, 26(15), 7628; https://doi.org/10.3390/ijms26157628 (registering DOI) - 6 Aug 2025
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by the immune system attacking the central nervous system, leading to demyelination and neurodegeneration. This work investigates the relationship between specific human leukocyte antigen (HLA) polymorphisms and MS, aiming to reveal the immunogenetic background
[...] Read more.
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by the immune system attacking the central nervous system, leading to demyelination and neurodegeneration. This work investigates the relationship between specific human leukocyte antigen (HLA) polymorphisms and MS, aiming to reveal the immunogenetic background of this disease for more individualized management approaches. This study employed a case–control design, analyzing HLA allele frequencies in 179 MS patients and 200 control subjects using next-generation sequencing, The key findings indicate significant associations between several HLA Class I and II alleles and MS, including HLA-B*35:03:01:03, HLA-C*04:01:01:14, HLA-DRB1*15:01:01:26, and HLA-DQA1*05:05:01:02. These findings emphasize the critical role of HLA molecules in MS Romanian patients.
Full article
(This article belongs to the Section Molecular Immunology)
Open AccessArticle
Relationship Between Prostaglandin and Interleukin Concentrations in Seminal Fluid and Their Influence on the Rate of Fertilization in Men Undergoing ICSI
by
Houda Amor, Fatina W. Dahadhah, Peter Michael Jankowski, Rami Al Nasser, Lisa Jung, Ingolf Juhasz-Böss, Erich Franz Solomayer and Mohamad Eid Hammadeh
Int. J. Mol. Sci. 2025, 26(15), 7627; https://doi.org/10.3390/ijms26157627 (registering DOI) - 6 Aug 2025
Abstract
Sperm count, motility, and morphology are semen parameters that directly affect male fertility. The presence of cytokines in seminal plasma negatively or positively influences these parameters. Interleukins and prostaglandins are proinflammatory cytokines present in human seminal plasma and play crucial roles in fertilization,
[...] Read more.
Sperm count, motility, and morphology are semen parameters that directly affect male fertility. The presence of cytokines in seminal plasma negatively or positively influences these parameters. Interleukins and prostaglandins are proinflammatory cytokines present in human seminal plasma and play crucial roles in fertilization, in general and after intracytoplasmic sperm injection (ICSI) procedures. This study aimed to investigate the possible influence of interleukins IL-17 and IL-18, and prostaglandins PGE2 and PGF2α on male infertility. Semen samples were collected from 58 males who underwent the ICSI procedure. An enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of IL-17, IL-18, PGE2, and PGF2α, and these concentrations were then correlated with semen parameters and the rate of fertilization. Furthermore, the chromatin integrity of the sperm was evaluated with an Acridine Orange (AO) assay. The results showed an inversely proportional relationship between the AO binding intensity and fertilization rate (r = −0.394; p ≤ 0.002). Furthermore, a negative correlation was observed between the IL-18 concentration and positive AO (p ≤ 0.021). Moreover, the IL-18 concentration was positively correlated with the fertilization rate (p ≤ 0.05). In contrast, IL-17 did not significantly correlate with any semen parameters or with the fertilization rate. Seminal PGE2 levels were significantly correlated with embryo cleavage at 72 h (p ≤ 0.05). To conclude, this study revealed that denaturation of sperm nuclear deoxyribonucleic acid (DNA) contributes to low fertilization rates. In addition, this study proposed a potential role for IL-18 in fertilization. PGE2 likely influences embryo development, but further studies are needed to examine the impact of seminal PGE2 on the oocyte to fully elucidate its contribution to this complex biological process.
Full article
(This article belongs to the Special Issue Advances in Spermatogenesis and Male Infertility)
►▼
Show Figures

Figure 1
Open AccessArticle
A Retrospective Study of Clinical and Genetic Features in a Long-Term Cohort of Mexican Children with Alagille Syndrome
by
Rodrigo Vázquez-Frias, Gustavo Varela-Fascinetto, Carlos Patricio Acosta-Rodríguez-Bueno, Alejandra Consuelo, Ariel Carrillo, Magali Reyes-Apodaca, Rodrigo Moreno-Salgado, Jaime López-Valdez, Elizabeth Hernández-Chávez, Beatriz González-Ortiz, José F Cadena-León, Salvador Villalpando-Carrión, Liliana Worona-Dibner, Valentina Martínez-Montoya, Arantza Cerón-Muñiz, Edgar Ramírez-Ramírez and Tania Barragán-Arévalo
Int. J. Mol. Sci. 2025, 26(15), 7626; https://doi.org/10.3390/ijms26157626 - 6 Aug 2025
Abstract
Alagille syndrome (ALGS) is a multisystem disorder characterized by a paucity of intrahepatic bile ducts and cholestasis, often requiring liver transplantation before adulthood. Due to the lack of genotype–phenotype correlation, case series are essential to understand disease presentation and prognosis. Data on Mexican
[...] Read more.
Alagille syndrome (ALGS) is a multisystem disorder characterized by a paucity of intrahepatic bile ducts and cholestasis, often requiring liver transplantation before adulthood. Due to the lack of genotype–phenotype correlation, case series are essential to understand disease presentation and prognosis. Data on Mexican ALGS patients are limited. Therefore, we aimed to characterize a large series of Mexican patients by consolidating cases from major institutions and independent geneticists, with the goal of generating one of the most comprehensive cohorts in Latin America. We retrospectively analyzed clinical records of pediatric ALGS patients, focusing on demographics, clinical features, laboratory and imaging results, biopsy findings, and transplant status. Genetic testing was performed for all cases without prior molecular confirmation. We identified 52 ALGS cases over 13 years; 22 had available clinical records. Of these, only 6 had molecular confirmation at study onset, prompting genetic testing in the remaining 16. We identified six novel JAG1 variants and several previously unreported phenotypic features. A liver transplantation rate of 13% was observed in the cohort. This study represents the largest molecularly confirmed ALGS cohort in Mexico to date. Novel genetic and clinical findings expand the known spectrum of ALGS and emphasize the need for improved therapies, such as IBAT inhibitors, which may alleviate symptoms and reduce the need for transplantation.
Full article
(This article belongs to the Section Molecular Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessArticle
Polysialylation of Glioblastoma Cells Is Regulated by Autophagy Under Nutrient Deprivation
by
Sofia Scibetta, Giuseppe Pepe, Marco Iuliano, Alessia Iaiza, Elisabetta Palazzo, Marika Quadri, Thomas J. Boltje, Francesco Fazi, Vincenzo Petrozza, Sabrina Di Bartolomeo, Alba Di Pardo, Antonella Calogero, Giorgio Mangino, Vittorio Maglione and Paolo Rosa
Int. J. Mol. Sci. 2025, 26(15), 7625; https://doi.org/10.3390/ijms26157625 - 6 Aug 2025
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor marked by invasive growth and therapy resistance. Tumor cells adapt to hostile conditions, such as hypoxia and nutrient deprivation, by activating survival mechanisms including autophagy and metabolic reprogramming. Among GBM-associated changes, hypersialylation, particularly, the aberrant
[...] Read more.
Glioblastoma (GBM) is a highly aggressive brain tumor marked by invasive growth and therapy resistance. Tumor cells adapt to hostile conditions, such as hypoxia and nutrient deprivation, by activating survival mechanisms including autophagy and metabolic reprogramming. Among GBM-associated changes, hypersialylation, particularly, the aberrant expression of polysialic acid (PSA), has been linked to increased plasticity, motility, and immune evasion. PSA, a long α2,8-linked sialic acid polymer typically attached to the NCAM, is abundant in the embryonic brain and re-expressed in cancers, correlating with poor prognosis. Here, we investigated how PSA expression was regulated in GBM cells under nutrient-limiting conditions. Serum starvation induced a marked increase in PSA-NCAM, driven by upregulation of the polysialyltransferase ST8SiaIV and an autophagy-dependent recycling of sialic acids from degraded glycoproteins. Inhibition of autophagy or sialidases impaired PSA induction, and PSA regulation appeared dependent on p53 function. Immunohistochemical analysis of GBM tissues revealed co-localization of PSA and LC3, particularly around necrotic regions. In conclusion, we identified a novel mechanism by which GBM cells sustain PSA-NCAM expression via autophagy-mediated sialic acid recycling under nutrient stress. This pathway may enhance cell migration, immune escape, and stem-like properties, offering a potential therapeutic target in GBM.
Full article
(This article belongs to the Special Issue Targeting Glioblastoma Metabolism)
►▼
Show Figures

Figure 1
Open AccessArticle
Transcriptional Repression of CCL2 by KCa3.1 K+ Channel Activation and LRRC8A Anion Channel Inhibition in THP-1-Differentiated M2 Macrophages
by
Miki Matsui, Junko Kajikuri, Hiroaki Kito, Yohei Yamaguchi and Susumu Ohya
Int. J. Mol. Sci. 2025, 26(15), 7624; https://doi.org/10.3390/ijms26157624 - 6 Aug 2025
Abstract
We investigated the role of the intermediate-conductance, Ca2+-activated K+ channel KCa3.1 and volume-regulatory anion channel LRRC8A in regulating C-C motif chemokine ligand 2 (CCL2) expression in THP-1-differentiated M2 macrophages (M2-MACs), which serve as a useful
[...] Read more.
We investigated the role of the intermediate-conductance, Ca2+-activated K+ channel KCa3.1 and volume-regulatory anion channel LRRC8A in regulating C-C motif chemokine ligand 2 (CCL2) expression in THP-1-differentiated M2 macrophages (M2-MACs), which serve as a useful model for studying tumor-associated macrophages (TAMs). CCL2 is a potent chemoattractant involved in the recruitment of immunosuppressive cells and its expression is regulated through intracellular signaling pathways such as ERK, JNK, and Nrf2 in various types of cells including macrophages. The transcriptional expression of CCL2 was suppressed in M2-MACs following treatment with a KCa3.1 activator or an LRRC8A inhibitor via distinct signaling pathways: ERK–CREB2 and JNK–c-Jun pathways for KCa3.1, and the NOX2–Nrf2–CEBPB pathway for LRRC8A. Under in vitro conditions mimicking the elevated extracellular K+ concentration ([K+]e) characteristic of the tumor microenvironment (TME), CCL2 expression was markedly upregulated, and this increase was reversed by treatment with them in M2-MACs. Additionally, the WNK1–AMPK pathway was, at least in part, involved in the high [K+]e-induced upregulation of CCL2. Collectively, modulating KCa3.1 and LRRC8A activities offers a promising strategy to suppress CCL2 secretion in TAMs, potentially limiting the CCL2-induced infiltration of immunosuppressive cells (TAMs, Tregs, and MDSCs) in the TME.
Full article
(This article belongs to the Special Issue Regulation of Ion Channels and Transporters)
►▼
Show Figures

Figure 1
Open AccessArticle
Phytochemical Analysis, Antioxidant Activity, and Anticancer Potential of Afzelia quanzensis Welw—Bark Extract: A Traditional Remedy Utilized by Indigenous Communities in KwaZulu-Natal and Eastern Cape Provinces of South Africa
by
Siphamandla Qhubekani Njabuliso Lamula, Thando Bhanisa, Martha Wium, Juliano Domiraci Paccez, Luiz Fernando Zerbini and Lisa V. Buwa-Komoreng
Int. J. Mol. Sci. 2025, 26(15), 7623; https://doi.org/10.3390/ijms26157623 (registering DOI) - 6 Aug 2025
Abstract
Despite the significant advancements in treatment and prevention, the fight against cancer is ongoing worldwide. This study evaluated the pharmacological properties and anticancer activity of Afzelia quanzensis bark, traditionally used by the indigenous communities of KwaZulu Natal and Eastern Cape Provinces of South
[...] Read more.
Despite the significant advancements in treatment and prevention, the fight against cancer is ongoing worldwide. This study evaluated the pharmacological properties and anticancer activity of Afzelia quanzensis bark, traditionally used by the indigenous communities of KwaZulu Natal and Eastern Cape Provinces of South Africa to treat cancer and related illnesses. Phytochemical screening, high-performance liquid chromatography–diode array detection (HPLC-DAD), and Fourier-transform infrared spectroscopy (FTIR) analyses were carried out using established protocols. The antioxidant activity was assessed via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and nitric oxide radicals. The anticancer activity was evaluated using the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). Phytochemical analysis revealed the presence of saponins, flavonoids, terpenoids, alkaloids, steroids, cardiac glycosides, and phlobatannins. The HPLC-DAD analysis detected seven distinctive peaks in the aqueous extract and three distinctive peaks in the methanolic extract. The FTIR spectra of the aqueous extract displayed characteristic peaks corresponding to O-H, C=O, C=C, and =C–H functional groups. Among the tested extracts, the methanol extract exhibited the strongest antioxidant activity, followed by the ethanolic extract, in both DPPH and nitric oxide. The methanol extract showed a higher cell proliferation inhibition against the DU-145 cancer cell line with the percentage of inhibition of 37.8%, followed by the aqueous extract with 36.3%. In contrast, limited activity was observed against PC-3, SK-UT-1, and AGS cell lines. The results demonstrated notable dose-dependent antioxidant and antiproliferative activities supporting the ethnomedicinal use of Afzelia quanzensis bark in cancer management. These findings warrant further investigation into its bioactive constituents and mechanisms of action.
Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
►▼
Show Figures

Figure 1
Open AccessArticle
Role of Endogenous Galectin-3 on Cell Biology of Immortalized Retinal Pigment Epithelial Cells In Vitro †
by
Caspar Liesenhoff, Marlene Hillenmayer, Caroline Havertz, Arie Geerlof, Daniela Hartmann, Siegfried G. Priglinger, Claudia S. Priglinger and Andreas Ohlmann
Int. J. Mol. Sci. 2025, 26(15), 7622; https://doi.org/10.3390/ijms26157622 - 6 Aug 2025
Abstract
Galectin-3 is a multifunctional protein that is associated with diseases of the chorioretinal interface, in which the retinal pigment epithelium (RPE) plays a central role in disease development and progression. Since galectin-3 can function extracellularly as well as intracellularly via different mechanisms,
[...] Read more.
Galectin-3 is a multifunctional protein that is associated with diseases of the chorioretinal interface, in which the retinal pigment epithelium (RPE) plays a central role in disease development and progression. Since galectin-3 can function extracellularly as well as intracellularly via different mechanisms, we developed an immortalized human RPE cell line (ARPE-19) with a knockdown for galectin-3 expression (ARPE-19/LGALS3+/−) using a sgRNA/Cas9 all-in-one expression vector. By Western blot analysis, a reduced galectin-3 expression of approximately 48 to 60% in heterozygous ARPE-19/LGALS3+/− cells was observed when compared to native controls. Furthermore, ARPE-19/LGALS3+/− cells displayed a flattened, elongated phenotype with decreased E-cadherin as well as enhanced N-cadherin and α-smooth muscle actin mRNA expression, indicating an epithelial–mesenchymal transition of the cells. Compared to wildtype controls, ARPE-19/LGALS3+/− cells had significantly reduced metabolic activity to 86% and a substantially decreased proliferation to 73%. Furthermore, an enhanced cell adhesion and a diminished migration of immortalized galectin-3 knockdown RPE cells was observed compared to native ARPE-19 cells. Finally, by Western blot analysis, reduced pAKT, pERK1/2, and β-catenin signaling were detected in ARPE-19/LGALS3+/− cells when compared to wildtype controls. In summary, in RPE cells, endogenous galectin-3 appears to be essential for maintaining the epithelial phenotype as well as cell biological functions such as metabolism, proliferation, or migration, effects that might be mediated via a decreased activity of the AKT, ERK1/2, and β-catenin signaling pathways.
Full article
(This article belongs to the Special Issue Galectins (Gals), 2nd Edition)
Open AccessArticle
Evaluation of Collagenic Porcine Bone Blended with a Collagen Gel for Bone Regeneration: An In Vitro Study
by
Tania Vanessa Pierfelice, Chiara Cinquini, Morena Petrini, Emira D’Amico, Camillo D’Arcangelo, Antonio Barone and Giovanna Iezzi
Int. J. Mol. Sci. 2025, 26(15), 7621; https://doi.org/10.3390/ijms26157621 - 6 Aug 2025
Abstract
A thermosensitive collagen-based gel (TSV gel), containing type I and III collagen, has been developed to improve the handling and stability of bone graft materials. However, its direct effect on osteoblasts is not well understood. This in vitro study evaluated the biological response
[...] Read more.
A thermosensitive collagen-based gel (TSV gel), containing type I and III collagen, has been developed to improve the handling and stability of bone graft materials. However, its direct effect on osteoblasts is not well understood. This in vitro study evaluated the biological response of human oral osteoblasts to four bone substitutes: OsteoBiol® GTO® (larger granules with 20% TSV gel), Gen-OS® (smaller granules), Gen-OS® combined with 50% TSV gel (Gen-OS®+TSV), and TSV gel alone. Cell proliferation, adhesion, morphology, collagen and calcium deposition, alkaline phosphatase (ALP) activity, gene expression of osteogenic markers and integrins, and changes in pH and extracellular calcium and phosphate levels were investigated. All materials supported osteoblast activity, but Gen-OS+TSV and GTO showed the most pronounced effects. These two groups promoted better cell adhesion and proliferation, higher ALP activity, and greater matrix mineralization. GTO improved cell adhesion, while the addition of TSV gel to Gen-OS enhanced biological responses compared with Gen-OS alone. Integrins α2, α5, β1, and β3, important for cell attachment to collagen, were notably upregulated in Gen-OS+TSV and GTO. Both groups also showed increased expression of osteogenic markers such as BMP-2, ALP, and osteocalcin (OCN). Higher extracellular ion concentrations and a more alkaline pH were observed, particularly in conditions without cells, suggesting active ion uptake by osteoblasts. In conclusion, combining TSV gel with collagen-based granules improves the cellular environment for osteoblast activity and may support bone regeneration more effectively than using either component alone.
Full article
(This article belongs to the Special Issue Molecular Studies of Bone Biology and Bone Tissue: 2nd Edition)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Anti-CD26 Antibody Suppresses Epithelial-Mesenchymal Transition in Colorectal Cancer Stem Cells
by
Takumi Iwasawa, Ryo Hatano, Satoshi Takeda, Ayumi Kurusu, Chikako Okamoto, Kazunori Kato, Chikao Morimoto and Noriaki Iwao
Int. J. Mol. Sci. 2025, 26(15), 7620; https://doi.org/10.3390/ijms26157620 - 6 Aug 2025
Abstract
CD26 (dipeptidyl peptidase-4) is a marker of colorectal cancer stem cells with high metastatic potential and resistance to therapy. Although CD26 expression is known to be associated with tumor progression, its functional involvement in epithelial-mesenchymal transition (EMT) and metastasis remains to be fully
[...] Read more.
CD26 (dipeptidyl peptidase-4) is a marker of colorectal cancer stem cells with high metastatic potential and resistance to therapy. Although CD26 expression is known to be associated with tumor progression, its functional involvement in epithelial-mesenchymal transition (EMT) and metastasis remains to be fully elucidated. In this study, we aimed to investigate the effects of a monoclonal anti-CD26 antibody on EMT-related phenotypes and metastatic behavior in colorectal cancer cells. We evaluated changes in EMT markers by quantitative PCR and Western blotting, assessed cell motility and invasion using scratch wound-healing and Transwell assays, and examined metastatic potential in vivo using a splenic injection mouse model. Treatment with the anti-CD26 antibody significantly increased the expression of the epithelial marker E-cadherin and reduced levels of EMT-inducing transcription factors, including ZEB1, Twist1, and Snail1, at the mRNA and protein levels. Functional assays revealed that the antibody markedly inhibited cell migration and invasion in vitro without exerting cytotoxic effects. Furthermore, systemic administration of the anti-CD26 antibody significantly suppressed the formation of liver metastases in vivo. These findings suggest that CD26 may contribute to the regulation of EMT and metastatic behavior in colorectal cancer. Our data highlight the potential therapeutic utility of CD26-targeted antibody therapy for suppressing EMT-associated phenotypes and metastatic progression.
Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Colorectal Cancer: 4th Edition)
►▼
Show Figures

Figure 1
Open AccessReview
Navigating the Landscape of Liquid Biopsy in Colorectal Cancer: Current Insights and Future Directions
by
Pina Ziranu, Andrea Pretta, Giorgio Saba, Dario Spanu, Clelia Donisi, Paolo Albino Ferrari, Flaviana Cau, Alessandra Pia D’Agata, Monica Piras, Stefano Mariani, Marco Puzzoni, Valeria Pusceddu, Ferdinando Coghe, Gavino Faa and Mario Scartozzi
Int. J. Mol. Sci. 2025, 26(15), 7619; https://doi.org/10.3390/ijms26157619 - 6 Aug 2025
Abstract
Liquid biopsy has emerged as a valuable tool for the detection and monitoring of colorectal cancer (CRC), providing minimally invasive insights into tumor biology through circulating biomarkers such as circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs),
[...] Read more.
Liquid biopsy has emerged as a valuable tool for the detection and monitoring of colorectal cancer (CRC), providing minimally invasive insights into tumor biology through circulating biomarkers such as circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Additional biomarkers, including tumor-educated platelets (TEPs) and exosomal RNAs, offer further potential for early detection and prognostic role, although ongoing clinical validation is still needed. This review summarizes the current evidence on the diagnostic, prognostic, and predictive capabilities of liquid biopsy in both metastatic and non-metastatic CRC. In the non-metastatic setting, liquid biopsy is gaining traction in early detection through screening and in identifying minimal residual disease (MRD), potentially guiding adjuvant treatment and reducing overtreatment. In contrast, liquid biopsy is more established in metastatic CRC for monitoring treatment responses, clonal evolution, and mechanisms of resistance. The integration of ctDNA-guided treatment algorithms into clinical practice could optimize therapeutic strategies and minimize unnecessary interventions. Despite promising advances, challenges remain in assay standardization, early-stage sensitivity, and the integration of multi-omic data for comprehensive tumor profiling. Future efforts should focus on enhancing the sensitivity of liquid biopsy platforms, validating emerging biomarkers, and expanding multi-omic approaches to support more targeted and personalized treatment strategies across CRC stages.
Full article
(This article belongs to the Special Issue Cancer Biology and Epigenetic Modifications)
Open AccessArticle
Assessing CFTR Function and Epithelial Morphology in Human Nasal Respiratory Cell Cultures: A Combined Immunofluorescence and Electrophysiological Study
by
Roshani Narayan Singh, Vanessa Mete, Willy van Driessche, Heymut Omran, Wolf-Michael Weber and Jörg Grosse-Onnebrink
Int. J. Mol. Sci. 2025, 26(15), 7618; https://doi.org/10.3390/ijms26157618 - 6 Aug 2025
Abstract
Cystic fibrosis (CF), the most common hereditary lung disease in Caucasians, is caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR). We evaluated CFTR function using a newly developed Ussing chamber system, the Multi Trans Epithelial Current Clamp (MTECC), in an
[...] Read more.
Cystic fibrosis (CF), the most common hereditary lung disease in Caucasians, is caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR). We evaluated CFTR function using a newly developed Ussing chamber system, the Multi Trans Epithelial Current Clamp (MTECC), in an in vitro model of human airway epithelia. Air–liquid interface (ALI) cultures were established from nasal brushings of healthy controls (HC) and CF patients with biallelic CFTR variants. ALI layer thickness was similar between groups (HC: 62 ± 13 µm; CF: 55 ± 9 µm). Immunofluorescence showed apical CFTR expression in HC, but reduced or absent signal in CF cultures. MTECC enabled continuous measurement of transepithelial resistance (Rt), potential difference (PD), and conductance (Gt). Gt was significantly reduced in CF cultures compared to HC (0.825 ± 0.024 vs. −0.054 ± 0.016 mS/cm2), indicating impaired cAMP-inducible ion transport by CFTR. Treatment of CF cultures with elexacaftor, tezacaftor, and ivacaftor (Trikafta®) increased Gt, reflecting partial restoration of CFTR function. These findings demonstrate the utility of MTECC in detecting functional differences in CFTR activity and support its use as a platform for evaluating CFTR-modulating therapies. Our model may contribute to the development of personalized treatment strategies for CF patients.
Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pathophysiology of Cystic Fibrosis)
►▼
Show Figures

Figure 1
Open AccessArticle
Genetic Complexity in Spondyloarthritis: Contributions of HLA-B Alleles Beyond HLA-B*27 in Romanian Patients
by
Ruxandra-Elena Nagit, Mariana Pavel-Tanasa, Corina Cianga, Elena Rezus and Petru Cianga
Int. J. Mol. Sci. 2025, 26(15), 7617; https://doi.org/10.3390/ijms26157617 - 6 Aug 2025
Abstract
This study examined the distribution and disease associations of non-HLA-B*27 HLA-B alleles in Romanian spondyloarthritis (SpA) patients, aiming to address the underrepresentation of Eastern European populations in immunogenetic research. Methods: We analyzed 263 HLA-B*27-negative patients from Northeastern Romania fulfilling ASAS criteria. HLA-B genotyping
[...] Read more.
This study examined the distribution and disease associations of non-HLA-B*27 HLA-B alleles in Romanian spondyloarthritis (SpA) patients, aiming to address the underrepresentation of Eastern European populations in immunogenetic research. Methods: We analyzed 263 HLA-B*27-negative patients from Northeastern Romania fulfilling ASAS criteria. HLA-B genotyping was performed at two-digit resolution, and allele distributions were compared with two Romanian HLA-B*27-negative control groups (n = 335 and n = 1705 cases), using chi-square testing and logistic regression. Compared to controls, HLA-B*47 (p = 0.0007) and HLA-B*54 (p = 0.0013) were significantly enriched, while HLA-B*40 was underrepresented (p = 0.0287). Notably, HLA-B*54 was observed exclusively in axial SpA. Within the cohort, both HLA-B*13 and HLA-B*57 alleles were associated with psoriasis, while HLA-B*37 and HLA-B*41 alleles were clustered within the reactive arthritis group. The HLA-B*35 and HLA-B*18 alleles were the most frequently observed alleles across most clinical phenotypes. When comparing the frequency of HLA-B associations, the most common genotypes among SpA patients were B*08-B*18, B*13-B*35, and B*35-B*51. Notably, B*08-B*18 was more frequent in patients with radiographic sacroiliitis grade ≥ 2, while B*35-B*51 was more frequent in those with confirmed systemic inflammation, as indicated by elevated CRP or ESR levels. Analysis of peptide-binding patterns revealed a cluster of risk alleles, HLA-B*08, B*18, B*35, B*40, and B*54, sharing similar features, distinct from the canonical profile of B*27. These findings highlight the contribution of non-B*27 HLA-B alleles to SpA susceptibility in an Eastern European population and support the notion that HLA-B*27-negative SpA may represent a distinct clinical and immunological entity, driven by alternative pathogenic mechanisms. They also emphasize the importance of population-specific immunogenetic profiling and support expanding genetic characterization in HLA-B*27-negative patients.
Full article
(This article belongs to the Special Issue Role of HLA (Human Leucocyte Antigen) in Human Diseases)
►▼
Show Figures

Figure 1
Open AccessReview
Glucocorticoid-Mediated Skeletal Muscle Atrophy: Molecular Mechanisms and Potential Therapeutic Targets
by
Uttapol Permpoon, Jiyeong Moon, Chul Young Kim and Tae-gyu Nam
Int. J. Mol. Sci. 2025, 26(15), 7616; https://doi.org/10.3390/ijms26157616 - 6 Aug 2025
Abstract
Skeletal muscle atrophy is a critical health issue affecting the quality of life of elderly individuals and patients with chronic diseases. These conditions induce dysregulation of glucocorticoid (GC) secretion. GCs play a critical role in maintaining homeostasis in the stress response and glucose
[...] Read more.
Skeletal muscle atrophy is a critical health issue affecting the quality of life of elderly individuals and patients with chronic diseases. These conditions induce dysregulation of glucocorticoid (GC) secretion. GCs play a critical role in maintaining homeostasis in the stress response and glucose metabolism. However, prolonged exposure to GC is directly linked to muscle atrophy, which is characterized by a reduction in muscle size and weight, particularly affecting fast-twitch muscle fibers. The GC-activated glucocorticoid receptor (GR) decreases protein synthesis and facilitates protein breakdown. Numerous antagonists have been developed to mitigate GC-induced muscle atrophy, including 11β-HSD1 inhibitors and myostatin and activin receptor blockers. However, the clinical trial results have fallen short of the expected efficacy. Recently, several emerging pathways and targets have been identified. For instance, GC-induced sirtuin 6 isoform (SIRT6) expression suppresses AKT/mTORC1 signaling. Lysine-specific demethylase 1 (LSD1) cooperates with the GR for the transcription of atrogenes. The kynurenine pathway and indoleamine 2,3-dioxygenase 1 (IDO-1) also play crucial roles in protein synthesis and energy production in skeletal muscle. Therefore, a deeper understanding of the complexities of GR transactivation and transrepression will provide new strategies for the discovery of novel drugs to overcome the detrimental effects of GCs on muscle tissues.
Full article
(This article belongs to the Special Issue Understanding Aging in Health and Disease)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- IJMS Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 26 (2025)
- Vol. 25 (2024)
- Vol. 24 (2023)
- Vol. 23 (2022)
- Vol. 22 (2021)
- Vol. 21 (2020)
- Vol. 20 (2019)
- Vol. 19 (2018)
- Vol. 18 (2017)
- Vol. 17 (2016)
- Vol. 16 (2015)
- Vol. 15 (2014)
- Vol. 14 (2013)
- Vol. 13 (2012)
- Vol. 12 (2011)
- Vol. 11 (2010)
- Vol. 10 (2009)
- Vol. 9 (2008)
- Vol. 8 (2007)
- Vol. 7 (2006)
- Vol. 6 (2005)
- Vol. 5 (2004)
- Vol. 4 (2003)
- Vol. 3 (2002)
- Vol. 2 (2001)
- Vol. 1 (2000)
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Energies, IJMS, Membranes, Separations, Water
Membrane Separation Technology Research
Topic Editors: Chenxiao Jiang, Zhe Yang, Ying MeiDeadline: 15 September 2025
Topic in
Biomolecules, IJMS, Molecules, Sci. Pharm., Marine Drugs, Plants
Antioxidant Activity of Natural Products—2nd Edition
Topic Editors: José Virgílio Santulhão Pinela, Maria Inês Moreira Figueiredo Dias, Carla Susana Correia Pereira, Alexandra PlácidoDeadline: 30 September 2025
Topic in
Biomedicines, JCM, Molecules, Pharmaceutics, Sci. Pharm., IJMS
Cannabis, Cannabinoids and Its Derivatives
Topic Editors: Melanie Kelly, Christian LehmannDeadline: 31 October 2025
Topic in
Brain Sciences, CIMB, Epigenomes, Genes, IJMS, DNA
Genetics and Epigenetics of Substance Use Disorders
Topic Editors: Aleksandra Suchanecka, Anna Maria Grzywacz, Kszysztof ChmielowiecDeadline: 15 November 2025

Conferences
Special Issues
Special Issue in
IJMS
Galectins (Gals), 2nd Edition
Guest Editor: Luciano PironeDeadline: 10 August 2025
Special Issue in
IJMS
Novel Therapeutic Strategies for Gynecological Cancer
Guest Editor: Masayuki SekineDeadline: 15 August 2025
Special Issue in
IJMS
Molecular and Cellular Therapies Barriers and Opportunities
Guest Editor: O’neil W. GuthrieDeadline: 15 August 2025
Special Issue in
IJMS
The Role of the Gut and Oral Microbiota in Neurodevelopment: Molecular Biological Insights
Guest Editor: Ioannis CharitosDeadline: 15 August 2025
Topical Collections
Topical Collection in
IJMS
Feature Paper Collection in Molecular Endocrinology and Metabolism
Collection Editor: José L. Quiles
Topical Collection in
IJMS
Feature Papers in Molecular Informatics
Collection Editors: Antonio Rescifina, Giuseppe Floresta
Topical Collection in
IJMS
Feature Papers in 'Physical Chemistry and Chemical Physics'
Collection Editor: Francesco Mallamace
Topical Collection in
IJMS
Feature Papers in Molecular Plant Sciences
Collection Editor: Setsuko Komatsu