Immunogenetics of Multiple Sclerosis in Romanian Patients: Preliminary Data
Abstract
1. Introduction
2. Results
2.1. HLA Allele Associations with MS
2.2. Association of HLA Alleles with SPMS Phenotype
2.3. Association of HLA Alleles with Disease Severity (EDSS Score)
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karamyan, A.; Dünser, M.W.; Wiebe, D.J.; Pilz, G.; Wipfler, P.; Chroust, V.; Novak, H.F.; Hauer, L.; Trinka, E.; Sellner, J. Critical Illness in Patients with Multiple Sclerosis: A Matched Case-Control Study. PLoS ONE 2016, 11, e0155795. [Google Scholar] [CrossRef]
- Glatigny, S.; Bettelli, E. Experimental Autoimmune Encephalomyelitis (EAE) as Animal Models of Multiple Sclerosis (MS). Cold Spring Harb. Perspect. Med. 2018, 8, a028977. [Google Scholar] [CrossRef] [PubMed]
- Aldalaan, A.; Alzailaie, A.; Alanazi, E.D.; Alharbi, A.S.; Alhejji, A.M.; Abulaban, A.A.; Althekair, F.Y. Autoimmune Diseases Among Patients with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2023, 80, 105204. [Google Scholar] [CrossRef]
- Murúa, S.R.; Farez, M.F.; Quintana, F.J. The Immune Response in Multiple Sclerosis. Annu. Rev. Pathol. Mech. Dis. 2022, 17, 121–139. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Giovannoni, G. Multiple Sclerosis—A Review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef]
- Landry, R.L.; Embers, M.E. The Probable Infectious Origin of Multiple Sclerosis. NeuroSci 2023, 4, 211–234. [Google Scholar] [CrossRef]
- Gianfrancesco, M.A.; Stridh, P.; Shao, X.; Rhead, B.; Graves, J.S.; Chitnis, T.; Waldman, A.; Lotze, T.; Schreiner, T.; Belman, A.; et al. Genetic Risk Factors for Pediatric-Onset Multiple Sclerosis. Mult. Scler. 2018, 24, 1825–1834. [Google Scholar] [CrossRef]
- Irizar, H.; Muñoz-Culla, M.; Zuriarrain, O.; Goyenechea, E.; Castillo-Triviño, T.; Prada, A.; Saenz-Cuesta, M.; De Juan, D.; Lopez de Munain, A.; Olascoaga, J.; et al. HLA-DRB1*15:01 and Multiple Sclerosis: A Female Association? Mult. Scler. 2012, 18, 569–577. [Google Scholar] [CrossRef]
- Kular, L.; Liu, Y.; Ruhrmann, S.; Zheleznyakova, G.; Marabita, F.; Gomez-Cabrero, D.; James, T.; Ewing, E.; Lindén, M.; Górnikiewicz, B.; et al. DNA Methylation as a Mediator of HLA-DRB1*15:01 and a Protective Variant in Multiple Sclerosis. Nat. Commun. 2018, 9, 2397. [Google Scholar] [CrossRef]
- Waubant, E.; Lucas, R.; Mowry, E.; Graves, J.; Olsson, T.; Alfredsson, L.; Langer-Gould, A. Environmental and Genetic Risk Factors for MS: An Integrated Review. Ann. Clin. Transl. Neurol. 2019, 6, 1905–1922. [Google Scholar] [CrossRef]
- Creary, L.E.; Mallempati, K.C.; Gangavarapu, S.; Caillier, S.J.; Oksenberg, J.R.; Fernández-Viňa, M.A. Deconstruction of HLA-DRB1*04:01:01 and HLA-DRB1*15:01:01 Class II Haplotypes Using next-Generation Sequencing in European-Americans with Multiple Sclerosis. Mult. Scler. 2019, 25, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Okuno, T.; Hosomichi, K.; Hosokawa, A.; Hirata, J.; Suzuki, K.; Sakaue, S.; Kinoshita, M.; Asano, Y.; Miyamoto, K.; et al. Next-Generation Sequencing Identifies Contribution of Both Class I and II HLA Genes on Susceptibility of Multiple Sclerosis in Japanese. J. Neuroinflamm. 2019, 16, 162. [Google Scholar] [CrossRef] [PubMed]
- Prajeeth, C.K.; Kronisch, J.; Khorooshi, R.; Knier, B.; Toft-Hansen, H.; Gudi, V.; Floess, S.; Huehn, J.; Owens, T.; Korn, T.; et al. Effectors of Th1 and Th17 Cells Act on Astrocytes and Augment Their Neuroinflammatory Properties. J. Neuroinflamm. 2017, 14, 204. [Google Scholar] [CrossRef] [PubMed]
- Cipollini, V.; Anrather, J.; Orzi, F.; Iadecola, C. Th17 and Cognitive Impairment: Possible Mechanisms of Action. Front. Neuroanat. 2019, 13, 95. [Google Scholar] [CrossRef]
- Abellanas, M.A.; Zamarbide, M.; Basurco, L.; Luquin, E.; Garcia-Granero, M.; Clavero, P.; San Martin-Uriz, P.; Vilas, A.; Mengual, E.; Hervas-Stubbs, S.; et al. Midbrain Microglia Mediate a Specific Immunosuppressive Response under Inflammatory Conditions. J. Neuroinflamm. 2019, 16, 233. [Google Scholar] [CrossRef]
- Schetters, S.T.T.; Gomez-Nicola, D.; Garcia-Vallejo, J.J.; Van Kooyk, Y. Neuroinflammation: Microglia and T Cells Get Ready to Tango. Front. Immunol. 2018, 8, 95. [Google Scholar] [CrossRef]
- Arneth, B.M. Impact of B Cells to the Pathophysiology of Multiple Sclerosis. J. Neuroinflamm. 2019, 16, 128. [Google Scholar] [CrossRef]
- Papiri, G.; D’Andreamatteo, G.; Cacchiò, G.; Alia, S.; Silvestrini, M.; Paci, C.; Luzzi, S.; Vignini, A. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr. Issues Mol. Biol. 2023, 45, 1443–1470. [Google Scholar] [CrossRef]
- Patil, M.S.; Lin, L.Y.; Marsh-Wakefield, F.; James, E.J.; Palendira, M.; Hawke, S.; Grau, G.E. Multiple Sclerosis: Immune Cells, Histopathology, and Therapeutics. Sclerosis 2024, 2, 117–139. [Google Scholar] [CrossRef]
- Na, S.-Y.; Krishnamoorthy, G. Targeted Expression of Myelin Autoantigen in the Periphery Induces Antigen-Specific T and B Cell Tolerance and Ameliorates Autoimmune Disease. Front. Immunol. 2021, 12, 668487. [Google Scholar] [CrossRef]
- Tafti, D.; Ehsan, M.; Xixis, K.L. Multiple Sclerosis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Parnell, G.P.; Booth, D.R. The Multiple Sclerosis (MS) Genetic Risk Factors Indicate Both Acquired and Innate Immune Cell Subsets Contribute to MS Pathogenesis and Identify Novel Therapeutic Opportunities. Front. Immunol. 2017, 8, 425. [Google Scholar] [CrossRef]
- Andlauer, T.F.M.; Buck, D.; Antony, G.; Bayas, A.; Bechmann, L.; Berthele, A.; Chan, A.; Gasperi, C.; Gold, R.; Graetz, C.; et al. Novel Multiple Sclerosis Susceptibility Loci Implicated in Epigenetic Regulation. Sci. Adv. 2016, 2, e1501678. [Google Scholar] [CrossRef]
- Isobe, N.; Keshavan, A.; Gourraud, P.-A.; Zhu, A.H.; Datta, E.; Schlaeger, R.; Caillier, S.J.; Santaniello, A.; Lizée, A.; Himmelstein, D.S.; et al. Association of HLA Genetic Risk Burden with Disease Phenotypes in Multiple Sclerosis. JAMA Neurol. 2016, 73, 795–802. [Google Scholar] [CrossRef]
- Pandit, L.; Malli, C.; Singhal, B.; Wason, J.; Malik, O.; Sawcer, S.; Ban, M.; D’Cunha, A.; Mustafa, S. HLA Associations in South Asian Multiple Sclerosis. Mult. Scler. 2016, 22, 19–24. [Google Scholar] [CrossRef]
- Vinoy, N.; Sheeja, N.; Kumar, S.; Biswas, L. Class II HLA (DRB1, & DQB1) Alleles and IL7R (Rs6897932) Variants and the Risk for Multiple Sclerosis in Kerala, India. Mult. Scler. Relat. Disord. 2021, 50, 102848. [Google Scholar] [CrossRef]
- Patsopoulos, N.A.; Barcellos, L.F.; Hintzen, R.Q.; Schaefer, C.; van Duijn, C.M.; Noble, J.A.; Raj, T.; IMSGC; ANZgene; Gourraud, P.-A.; et al. Fine-Mapping the Genetic Association of the Major Histocompatibility Complex in Multiple Sclerosis: HLA and Non-HLA Effects. PLoS Genet. 2013, 9, e1003926. [Google Scholar] [CrossRef]
- Osoegawa, K.; Creary, L.E.; Montero-Martín, G.; Mallempati, K.C.; Gangavarapu, S.; Caillier, S.J.; Santaniello, A.; Isobe, N.; Hollenbach, J.A.; Hauser, S.L.; et al. High Resolution Haplotype Analyses of Classical HLA Genes in Families With Multiple Sclerosis Highlights the Role of HLA-DP Alleles in Disease Susceptibility. Front. Immunol. 2021, 12, 644838. [Google Scholar] [CrossRef] [PubMed]
- Barcellos, L.F.; Sawcer, S.; Ramsay, P.P.; Baranzini, S.E.; Thomson, G.; Briggs, F.; Cree, B.C.A.; Begovich, A.B.; Villoslada, P.; Montalban, X.; et al. Heterogeneity at the HLA-DRB1 Locus and Risk for Multiple Sclerosis. Human. Mol. Genet. 2006, 15, 2813–2824. [Google Scholar] [CrossRef]
- Ruxton, G.D.; Neuhäuser, M. Review of Alternative Approaches to Calculation of a Confidence Interval for the Odds Ratio of a 2 × 2 Contingency Table. Methods Ecol. Evol. 2013, 4, 9–13. [Google Scholar] [CrossRef]
- Demidenko, E. Sample Size Determination for Logistic Regression Revisited. Stat. Med. 2007, 26, 3385–3397. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Patients with MS (N = 179) | Controls (N = 200) | p-Value |
---|---|---|---|
Age (years; mean, SD) | 45.94 ± 11.47 | 50.27 ± 20.92 | <0.05 |
Gender (female, %) | 70.4% | 48.0% | <0.05 |
Ethnic origin (Caucasian, %) | 100.0% | 100.0% | |
Age of disease onset (years; mean, SD) | 33.70 ± 9.82 | - | - |
Duration of disease (years; mean, SD) | 12.23 ± 7.86 | - | - |
Type of onset: | - | - | |
Optic neuritis | 24.2% | - | - |
Motor | 40.0% | - | - |
Sensory | 33.7% | - | - |
Vestibular syndrome | 2.1% | - | - |
Form of disease: | |||
Primary progressive multiple sclerosis (PPMS) (%) | 4.5% | - | - |
Secondary progressive multiple sclerosis (SPMS) (%) | 6.7% | - | - |
Relapsing-remitting multiple sclerosis (RRMS) (%) | 88.8% | - | - |
EDSS score (median, IQR) | 3.5 (2.0–6.0) | - | - |
Therapeutic status (% under DMT) | 98.9% (177/179) | - | - |
| - | - | |
Beta-interferon (all forms) (%) | 30.2% | - | - |
Teriflunomide (%) | 19.0% | - | - |
Dimethyl fumarate (%) | 7.8% | - | - |
Glatiramer acetate (%) | 5.0% | - | - |
| - | - | |
Ocrelizumab (%) | 16.2% | - | - |
Natalizumab (%) | 8.9% | - | - |
Fingolimod (%) | 4.5% | - | - |
Cladribine (%) | 4.5% | - | - |
Siponimod (%) | 2.2% | - | - |
Ponesimod (%) | 0.6% | - | - |
Allele (n in MS Patients/n in Controls) | Odds Ratio (OR) | 95% CI | p-Value | pc-Value | Statistical Power (1-β) | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|
HLA-B*35:03:01:03 (19/3) | 7.42 | 2.18–25.28 | 0.0004 | 0.0436 | 0.952 (95.2%) | 5.30% | 99.30% |
HLA-C*04:01:01:14 (35/12) | 3.50 | 1.80–6.86 | 0.00021 | 0.0113 | 0.971 (97.1%) | 9.80% | 97.00% |
HLA-DRB1*15:01:01:26 (38/0) | 96.25 * | 5.89–1572.81 * | <0.0001 | <0.0001 | 0.980 (98.0%) | 10.60% | 100.00% |
HLA-DQA1*05:05:01:02 (63/29) | 2.73 | 1.72–4.35 | <0.0001 | 0.0010 | 0.992 (99.2%) | 17.60% | 92.80% |
Allele | Gender Group (n in MS Patients/n in Controls) | Odds Ratio (OR) | 95% CI | p-Value | pc-Value |
---|---|---|---|---|---|
HLA-B*35:03:01:03 | Females (14/1) | 11.24 | 1.46–86.21 | 0.0082 | 0.6885 |
Males (5/2) | 5.10 | 0.97–26.74 | 0.0459 | 2.3395 | |
HLA-C*04:01:01:14 | Females (25/4) | 5.18 | 1.77–15.14 | 0.0018 | 0.0912 |
Males (10/8) | 2.60 | 1.00–6.81 | 0.0788 | - | |
HLA-DRB1*15:01:01:26 | Females (21/0) | 35.74 * | 2.15–593.90 * | <0.0001 | <0.0001 |
Males (17/0) | 81.80 * | 4.87–1375.22 * | <0.0001 | <0.0001 | |
HLA-DQA1*05:05:01:02 | Females (46/11) | 3.67 | 1.85–7.31 | 0.0002 | 0.0067 |
Males (17/18) | 2.02 | 0.99–4.10 | 0.0757 | - |
Allele | Allele Frequency in SPMS (%) (n/Total) | Allele Frequency in RRMS (%) (n/Total) | Allele Frequency in PPMS (%) (n/Total) | p-Value (SPMS vs. RRMS) | p-Value (SPMS vs. PPMS) |
---|---|---|---|---|---|
HLA-B*35:03:01:03 | 4.2% (1/24) | 5.0% (16/318) | 12.5% (2/16) | >0.05 | >0.05 |
HLA-C*04:01:01:14 | 4.2% (1/24) | 9.8% (31/318) | 18.8% (3/16) | >0.05 | >0.05 |
DRB1*15:01:01:26 | 20.8% (5/24) | 9.4% (30/318) | 18.8% (3/16) | >0.05 | >0.05 |
DQA1*05:05:01:02 | 29.2% (7/24) | 17.3% (55/318) | 6.3% (1/16) | >0.05 | >0.05 |
Allele | Average EDSS in Allele Carriers ± SD | Average EDSS in Allele Non-Carriers ± SD | p-Values (EDSS) | Mean Age of Onset in Allele Carriers ± SD | Mean Age of Onset in Allele Non-Carriers ± SD | p-Values (Age of Onset) |
---|---|---|---|---|---|---|
HLA-B*35:03:01:03 | 2.63 ± 2.11 | 2.59 ± 1.88 | >0.05 | 35.68 ± 10.17 | 33.60 ± 9.80 | >0.05 |
HLA-C*04:01:01:14 | 2.39 ± 1.85 | 2.62 ± 1.90 | >0.05 | 36.03 ± 12.00 | 33.46 ± 9.54 | >0.05 |
DRB1*15:01:01:26 | 2.99 ± 2.01 | 2.55 ± 1.88 | >0.05 | 34.95 ±9.61 | 33.56 ± 9.84 | >0.05 |
DQA1*05:05:01:02 | 2.47 ± 1.92 | 2.62 ± 1.89 | >0.05 | 33.10 ± 9.09 | 33.84 ± 9.70 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantinescu, A.E.; Mărunțelu, I.; Pleșa, A.; Sîrbu, C.A.; Pleșa, F.C.; Constantinescu, A.I.; Constantinescu, I. Immunogenetics of Multiple Sclerosis in Romanian Patients: Preliminary Data. Int. J. Mol. Sci. 2025, 26, 7628. https://doi.org/10.3390/ijms26157628
Constantinescu AE, Mărunțelu I, Pleșa A, Sîrbu CA, Pleșa FC, Constantinescu AI, Constantinescu I. Immunogenetics of Multiple Sclerosis in Romanian Patients: Preliminary Data. International Journal of Molecular Sciences. 2025; 26(15):7628. https://doi.org/10.3390/ijms26157628
Chicago/Turabian StyleConstantinescu, Alexandra Elena, Ion Mărunțelu, Andreea Pleșa, Carmen Adella Sîrbu, Florentina Cristina Pleșa, Andreia Ioana Constantinescu, and Ileana Constantinescu. 2025. "Immunogenetics of Multiple Sclerosis in Romanian Patients: Preliminary Data" International Journal of Molecular Sciences 26, no. 15: 7628. https://doi.org/10.3390/ijms26157628
APA StyleConstantinescu, A. E., Mărunțelu, I., Pleșa, A., Sîrbu, C. A., Pleșa, F. C., Constantinescu, A. I., & Constantinescu, I. (2025). Immunogenetics of Multiple Sclerosis in Romanian Patients: Preliminary Data. International Journal of Molecular Sciences, 26(15), 7628. https://doi.org/10.3390/ijms26157628