Journal Description
Biophysica
Biophysica
is an international, peer-reviewed, open access journal on applying the methods of physics, chemistry, and math to study biological systems, published bimonthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, EBSCO, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 15.7 days after submission; acceptance to publication is undertaken in 3.3 days (median values for papers published in this journal in the second half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review and reviewer names are published annually in the journal.
- Biophysica is a companion journal of IJMS.
Impact Factor:
1.4 (2024);
5-Year Impact Factor:
1.3 (2024)
Latest Articles
β Alanine Modulates the Activity and Stability of Peroxiredoxin 6: A Biochemical and Mechanistic Study
Biophysica 2026, 6(1), 11; https://doi.org/10.3390/biophysica6010011 - 5 Feb 2026
Abstract
►
Show Figures
Peroxiredoxin 6 (Prdx6) is a bifunctional antioxidant enzyme with glutathione peroxidase and phospholipase A2 activities that plays an essential role in cellular redox regulation. However, the modulation of Prdx6 activity by endogenous small metabolites remains poorly understood. In this study, we investigated
[...] Read more.
Peroxiredoxin 6 (Prdx6) is a bifunctional antioxidant enzyme with glutathione peroxidase and phospholipase A2 activities that plays an essential role in cellular redox regulation. However, the modulation of Prdx6 activity by endogenous small metabolites remains poorly understood. In this study, we investigated the effect of β alanine on Prdx6 structure and function using biochemical, biophysical, computational, and cellular approaches. Enzymatic assays revealed that β alanine enhances the peroxidase activity of Prdx6 in a dose-dependent manner. Spectroscopic analyses demonstrated β alanine-induced conformational stabilization of Prdx6, which was further supported by increased thermal stability. Molecular docking and molecular dynamics simulations identified a stable interaction of β alanine at a distinct allosteric site on Prdx6, accompanied by reduced local flexibility. In a proof-of-concept cellular system, β alanine treatment resulted in a significant reduction in intracellular reactive oxygen species, consistent with enhanced Prdx6-associated antioxidant activity. Collectively, these findings identify β alanine as a biochemical modulator of Prdx6 activity. The study is limited to mechanistic and cellular redox regulation and does not address tissue- or disease-specific physiology.
Full article
Open AccessReview
Extraction, Purification and Current Status of Biocompatibility Applications of Fish Collagen
by
Shujie Yang, Shuangling Zhang, Min Chen, Dongxiao Ma, Yuxuan Sun, Xiao Zhang, Jing Zhang, Xiaohang Zheng and Han Zheng
Biophysica 2026, 6(1), 10; https://doi.org/10.3390/biophysica6010010 - 31 Jan 2026
Abstract
Fish collagen is derived from processing residues of marine and freshwater fish (such as fish skin, scales, and bones), primarily composed of amino acids including glycine, proline, and hydroxyproline. It functions include maintaining tissue integrity and promoting cell proliferation and repair. Extraction methods
[...] Read more.
Fish collagen is derived from processing residues of marine and freshwater fish (such as fish skin, scales, and bones), primarily composed of amino acids including glycine, proline, and hydroxyproline. It functions include maintaining tissue integrity and promoting cell proliferation and repair. Extraction methods primarily include acid, alkali, enzymatic, and physical approaches, while purification techniques involve gel filtration chromatography, ultrafiltration, and precipitation. Furthermore, thermal instability, insufficient mechanical strength, immunological concerns, and biocompatibility limitations restrict its application across various fields. This review summarizes the composition, extraction, purification, and existing challenges of fish collagen, proposing improvement strategies. It systematically addresses issues related to fish collagen's biocompatibility, filling a gap in the literature. However, effectively enhancing its biocompatibility remains an urgent priority. Approaches such as nanotechnology and composite material development offer novel avenues for improving biocompatibility and future applications.
Full article
Open AccessArticle
Anticancer Activity of a pH-Responsive Nanocomposite Based on Silver Nanoparticles and Pegylated Carboxymethyl Chitosan (AgNPs-CMC-PEG) in Breast (MCF 7) and Colon Cancer Cells (HCT 116)
by
Gabriel Gonzalo Taco-Gárate, Sandra Esther Loa-Guizado, Corina Vera-Gonzales, Herly Fredy Zegarra-Aragon, Juan Aquino-Puma and Carlos Alberto Arenas-Chávez
Biophysica 2026, 6(1), 9; https://doi.org/10.3390/biophysica6010009 - 31 Jan 2026
Abstract
►▼
Show Figures
Cancer is one of the leading causes of mortality worldwide, with breast and colon cancers being among the most common neoplasms in men and women, respectively. Despite significant advancements in treatment, there is a pressing need to enhance specificity and reduce systemic side
[...] Read more.
Cancer is one of the leading causes of mortality worldwide, with breast and colon cancers being among the most common neoplasms in men and women, respectively. Despite significant advancements in treatment, there is a pressing need to enhance specificity and reduce systemic side effects. Importantly, a distinctive feature of cancer cells is their acidic extracellular environment, which profoundly influences cancer progression. In this study, we evaluated the anticancer activity of a pH-sensitive nanocomposite based on silver nanoparticles and pegylated carboxymethyl chitosan (AgNPs-CMC-PEG) in breast cancer (MCF-7) and colon cancer (HCT 116) cell lines. To achieve this, we synthesized and characterized the nanocomposite using UV-Vis spectroscopy, Dynamic Light Scattering (DLS), Fourier-Transform Infrared Spectroscopy (FT-IR), and Scanning Electron Microscopy (STEM-in-SEM). Furthermore, we assessed cytotoxic effects, apoptosis, and reactive oxygen species (ROS) generation using MTT, DAPI, and H2DCFDA assays. Additionally, we analyzed the expression of DNA methyltransferases (DNMT3a) and histone acetyltransferases (MYST4, GCN5) at the mRNA level using RT-qPCR, along with the acetylation and methylation of H3K9ac and H3K9me2 through Western blot analysis. The synthesized nanocomposite demonstrated an average hydrodynamic diameter of approximately 175.4 nm. In contrast, STEM-in-SEM analyses revealed well-dispersed nanoparticles with an average core size of about 14 nm. Additionally, Fourier-transform infrared (FTIR) spectroscopy verified the successful surface functionalization of the nanocomposite with polyethylene glycol (PEG), indicating effective conjugation and structural stability. The nanocomposite exhibited a pH and concentration dependent cytotoxic effect, with enhanced activity observed at an acidic pH 6.5 and at concentrations of 150 µg/ml, 75 µg/ml, and 37.5 µg/ml for both cell lines. Notably, the nanocomposite preferentially induced apoptosis accompanied by ROS generation. Moreover, expression analysis revealed a decrease in H3K9me2 and H3K9ac in both cell lines, with a more pronounced effect in MCF-7 at an acidic pH. Furthermore, the expression of DNMT3a at the mRNA level significantly decreased, particularly at acidic pH. Regarding histone acetyltransferases, GCN5 expression decreased in the HCT 116 line, while MYST4 expression increased in the MCF-7 line. These findings demonstrate that the AgNPs-CMC-PEG nanocomposite has therapeutic potential as a pH-responsive nanocomposite, capable of inducing significant cytotoxic effects and altering epigenetic markers, particularly under the acidic conditions of the tumor microenvironment. Overall, this study highlights the advantages of utilizing pH-sensitive materials in cancer therapy, paving the way for more effective and targeted treatment strategies.
Full article

Figure 1
Open AccessReview
Mitochondrial Transport and Metabolic Integration: Revisiting the Role of Metabolite Trafficking in Cellular Bioenergetics
by
Salvatore Passarella
Biophysica 2026, 6(1), 8; https://doi.org/10.3390/biophysica6010008 - 27 Jan 2026
Abstract
►▼
Show Figures
Mitochondria serve as central hubs of cellular metabolism, integrating catabolic and anabolic pathways through the controlled exchange of metabolites across their membranes. Although mitochondrial transport of several metabolites has been well documented, the mechanisms underlying the trafficking of fumarate, glutamine, and phosphoenolpyruvate as
[...] Read more.
Mitochondria serve as central hubs of cellular metabolism, integrating catabolic and anabolic pathways through the controlled exchange of metabolites across their membranes. Although mitochondrial transport of several metabolites has been well documented, the mechanisms underlying the trafficking of fumarate, glutamine, and phosphoenolpyruvate as well as the role of the mitochondrial pyruvate kinase remain insufficiently represented in modern biochemistry textbooks. Here, we revisit the biochemical evidence supporting specific transport activities for these metabolites, discuss their physiological roles in major metabolic pathways, and highlight how foundational experimental studies have been overlooked in contemporary literature. Re-examining these mechanisms provides new insight into the dynamic interplay between mitochondrial function, cytosolic metabolism, and overall cellular homeostasis.
Full article

Figure 1
Open AccessArticle
Computational Analysis of Microalgal Proteins with Potential Thrombolytic Effects
by
Yanara Alessandra Santana Moura, Andreza Pereira de Amorim, Maria Carla Santana de Arruda, Marllyn Marques da Silva, Ana Lúcia Figueiredo Porto, Vladimir N. Uversky and Raquel Pedrosa Bezerra
Biophysica 2026, 6(1), 7; https://doi.org/10.3390/biophysica6010007 - 23 Jan 2026
Abstract
►▼
Show Figures
Thrombosis is a cardiovascular disease characterized by the pathological formation of a fibrin clot in blood vessels. Currently available fibrinolytic enzymes have some limitations, including severe side effects, high cost, short half-life, and low fibrin specificity. Proteins from microalgae and cyanobacteria have various
[...] Read more.
Thrombosis is a cardiovascular disease characterized by the pathological formation of a fibrin clot in blood vessels. Currently available fibrinolytic enzymes have some limitations, including severe side effects, high cost, short half-life, and low fibrin specificity. Proteins from microalgae and cyanobacteria have various biological effects and are emerging as promising sources for fibrinolytic enzymes. In this study, bioinformatics tools were used to evaluate the intrinsic disorder predisposition of microalgal fibrinolytic proteins, their capability to undergo liquid–liquid phase separation (LLPS), and the presence of disorder-based functional regions, and short linear motifs (SLiMs). Analysis revealed that these proteins are predominantly hydrophilic and exhibit acidic (pI 3.96–6.49) or basic (pI 8.05–11.0) isoelectric points. Most of them are expected to be moderately (61.4%) or highly disordered proteins (6.8%) and associated with LLPS, with nine proteins being predicted to behave as droplet drivers (i.e., being capable of spontaneous LLPS), and twenty-five proteins being expected to be droplet clients. These observations suggest that LLPS may be related to the regulation of the functionality of microalgal fibrinolytic proteins. The majority of these proteins belong to the blood coagulation inhibitor (disintegrin) 1 hit superfamily, which can inhibit fibrinogen binding to integrin receptors, preventing platelet aggregation. Furthermore, the SLiM-centered analysis indicated that the main motifs found in these proteins are MOD_GlcNHglycan and CLV_PCSK_SKI1_1, which can also play different roles in thrombolytic activity. Finally, Fisher and conservation analysis indicated that CLV_NRD_NRD_1, CLV_PCSK_FUR_1, CLV_PCSK_PC7_1, and MOD_Cter_Amidation motifs are enriched in intrinsically disordered regions (IDRs) of these proteins, showing significant conservation and suggesting compatibility with proteolytic activation and post-translational processing. These data provide important information regarding microalgal proteins with potential thrombolytic effects, which can be realized through protein–protein interactions mediated by SLiMs present in intrinsically disordered regions (IDRs). Additional analyses should be conducted to confirm these observations using experimental in vitro and in vivo approaches.
Full article

Figure 1
Open AccessArticle
Comparison of Structure and Dynamics of ORF8 Binding with Different Protein Partners Through Simulation Studies
by
Liqun Zhang
Biophysica 2026, 6(1), 6; https://doi.org/10.3390/biophysica6010006 - 20 Jan 2026
Abstract
ORF8 is the second most mutated protein in SARS-CoV-2. It can form oligomers such as trimers and can bind to the IL-17RA/RC receptor. To understand the possible role of ORF8 in SARS-CoV-2, the first step of this study involved predicting the ORF8 trimer
[...] Read more.
ORF8 is the second most mutated protein in SARS-CoV-2. It can form oligomers such as trimers and can bind to the IL-17RA/RC receptor. To understand the possible role of ORF8 in SARS-CoV-2, the first step of this study involved predicting the ORF8 trimer structure and the complex structure of the ORF8 monomer bound to the IL-17RA receptor using docking and molecular dynamics simulation methods. It was found that ORF8 molecules bound to the central ORF8 molecule through covalent and noncovalent interactions exhibit similar RMSD and RMSF values as the central ORF8 molecule and form a similar buried surface area, but display different numbers of hydrogen bonds and varying dynamic correlations. Additionally, trimer formation increases the dynamic correlation of the noncovalently bound ORF8 unit. ORF8 can bind with the IL-17RA receptor stably. Regions on ORF8, including C25–I47, L60–S67, T80–C90, and S103–E110, and regions on IL-17RA, including L1–H63 and D122–M165, are involved in the binding interface of the complex. ORF8 becomes less rigid when bound to IL-17RA than in its monomer, dimer, and trimer forms. Based on dihedral angle correlation predictions, binding of ORF8 to IL-17RA reduces internal correlations within ORF8 while strengthening correlations within IL-17RA. The G50–T80 region of ORF8 appears to be critical for interaction with IL-17RA, and the L1–V150 region of IL-17RA should be critical for its dynamics once bound to ORF8. These results help elucidate the structure and dynamics of ORF8 in SARS-CoV-2.
Full article
(This article belongs to the Special Issue Investigations into Protein Structure)
►▼
Show Figures

Graphical abstract
Open AccessReview
Cell Biophysics–Physiological Contexts, from Organism to Cell, In Vivo to In Silico Models: One Collaboratory’s Perspective
by
Melissa L. Knothe Tate, Sara McBride-Gagyi, Eric J. Anderson and Lucy Ngo
Biophysica 2026, 6(1), 5; https://doi.org/10.3390/biophysica6010005 - 14 Jan 2026
Abstract
Here we present a retrospective, integrative review of the approaches and discoveries of our “collaboratory”, a meta-laboratory comprising cross-disciplinary collaborations across laboratories at fourteen different universities and clinics in seven different countries with shared lead investigators. By tying together insights from four decades
[...] Read more.
Here we present a retrospective, integrative review of the approaches and discoveries of our “collaboratory”, a meta-laboratory comprising cross-disciplinary collaborations across laboratories at fourteen different universities and clinics in seven different countries with shared lead investigators. By tying together insights from four decades of research and discovery, applied across cell types, as well as different tissues, organ systems, and organisms, we have aimed to elucidate the interplay between organisms’ movement and the physiology of their tissues, organs, and organ systems’ resident cells. We highlight the potential of increasing imaging and computing power, as well as machine learning/artificial intelligence approaches, to delineate the Laws of Biology. Codifying these laws will provide a foundation for the future, to promote not only the discovery of underpinning mechanisms but also the sustainability of our natural resources, from our brains to our bones, which serve as veritable “hard drives”, physically rendering a lifetime of cellular experiences and millennia of evolution.
Full article
(This article belongs to the Collection Feature Papers in Biophysics)
►▼
Show Figures

Figure 1
Open AccessReview
Molecular Survival Strategies Against Kidney Filtration: Implications for Therapeutic Protein Engineering
by
William P. Heaps, Anne Elise Packard, Kristina M. McCammon, Tyler P. Green, Joseph P. Talley, Bradley C. Bundy and Dennis Della Corte
Biophysica 2026, 6(1), 4; https://doi.org/10.3390/biophysica6010004 - 13 Jan 2026
Abstract
The glomerular filtration barrier poses a significant challenge for circulating proteins, with molecules below ~60–70 kDa facing rapid renal clearance. Endogenous proteins have evolved sophisticated evasion mechanisms including oligomerization, carrier binding, electrostatic repulsion, and FcRn-mediated recycling. Understanding these natural strategies provides blueprints for
[...] Read more.
The glomerular filtration barrier poses a significant challenge for circulating proteins, with molecules below ~60–70 kDa facing rapid renal clearance. Endogenous proteins have evolved sophisticated evasion mechanisms including oligomerization, carrier binding, electrostatic repulsion, and FcRn-mediated recycling. Understanding these natural strategies provides blueprints for engineering therapeutic proteins with improved pharmacokinetics. This review examines how endogenous proteins resist filtration, evaluates their application in protein engineering, and discusses clinical translation including established technologies (PEGylation, Fc-fusion) and emerging strategies (albumin-binding domains, glycoengineering). We address critical challenges of balancing half-life extension with tissue penetration, biological activity, and immunogenicity—essential considerations for the rational design of next-generation therapeutics with optimized dosing and enhanced efficacy.
Full article
(This article belongs to the Special Issue Investigations into Protein Structure)
►▼
Show Figures

Figure 1
Open AccessArticle
Phytochemical Characteristics, Antioxidant, and Antimicrobial Activities and In Silico Prediction of Bioactive Compounds from Cedrus atlantica Wood Tar
by
Sadia Tina, Oussama Khibech, Ali Zourif, Samy Iskandar, Kettani Halabi Mohamed, Martin Ndayambaje, Balouch Lhousaine and Meryem El Jemli
Biophysica 2026, 6(1), 3; https://doi.org/10.3390/biophysica6010003 - 31 Dec 2025
Abstract
►▼
Show Figures
Cedrus atlantica wood tar (CAWT) is traditionally used as a medicinal product, especially in low- and middle-income countries. Despite its traditional use, scientific support for its efficacy remains limited. This study evaluated the biological properties of CAWT using an integrated approach that combined
[...] Read more.
Cedrus atlantica wood tar (CAWT) is traditionally used as a medicinal product, especially in low- and middle-income countries. Despite its traditional use, scientific support for its efficacy remains limited. This study evaluated the biological properties of CAWT using an integrated approach that combined qualitative and quantitative phytochemical analysis, disc diffusion and microdilution tests for antimicrobial assays (disc diffusion and microdilution), antioxidant activity (DPPH and ferric-reducing power assays), in silico ADMET/toxicity, docking, and MD/MMGBSA and provided a balanced comparison with reference antioxidants. This study demonstrated that CAWT is rich in secondary metabolites linked to biological activity, including polyphenols (307.39 ± 58.45 mg GAE/g), tannins (124.42 ± 6.14 mg TAE/g), and flavonoids (15.62 ± 2.53 mg QE/g). For free radical scavenging, CAWT inhibited DPPH with an IC50 of 19.781 ± 2.51 µg/mL and showed ferric-reducing activity with an IC50 of 83.7 ± 2.88 µg/mL for its antimicrobial activity against Pseudomonas aeruginosa; inhibition zones reached 35.66 ± 0.58 mm. In silico analysis, Swiss ADMET and pkCSM predicted ≥94% intestinal absorption, no cytochrome P450 liabilities, and low acute toxicity for six dominant terpenoids. Docking pinpointed trans-cadina-1(6),4-diene and α/β-himachalene as high-affinity ligands of LasR and gyrase B (ΔG ≈ −8 kcal mol−1). A 100 ns GROMACS run confirmed stable hydrophobic locking of the lead LasR complex (RMSD 0.22 nm), while MM/GBSA calculated a dispersion-dominated binding free energy of −37 kcal mol−1. Overall, CAWT showed in vitro antioxidant activity (DPPH and ferric-reducing assays) and inhibitory effects in disc diffusion assays, while in silico predictions for major terpenoids suggested favorable oral absorption and low acute toxicity. However, chemical composition analysis and bio-guided fractionation are necessary to confirm the antimicrobial activity and to validate the compounds responsible for the observed effects.
Full article

Figure 1
Open AccessArticle
Dimethylglycine as a Potent Modulator of Catalase Stability and Activity in Alzheimer’s Disease
by
Adhikarimayum Priya Devi, Seemasundari Yumlembam, Kuldeep Singh, Akshita Gupta, Kananbala Sarangthem and Laishram Rajendrakumar Singh
Biophysica 2026, 6(1), 2; https://doi.org/10.3390/biophysica6010002 - 30 Dec 2025
Abstract
►▼
Show Figures
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by memory loss, cognitive decline, and oxidative stress-driven neuronal damage. Catalase, a key antioxidant enzyme, plays a vital role in decomposing hydrogen peroxide (H2O2) into water and oxygen, thereby protecting
[...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by memory loss, cognitive decline, and oxidative stress-driven neuronal damage. Catalase, a key antioxidant enzyme, plays a vital role in decomposing hydrogen peroxide (H2O2) into water and oxygen, thereby protecting neurons from reactive oxygen species (ROS)-mediated toxicity. In AD, the catalase function is compromised due to reduced enzymatic activity and aggregation, which not only diminishes its protective role but also contributes to amyloid plaque formation through catalase-Aβ co-oligomers. Hence, therapeutic strategies aimed at simultaneously preventing catalase aggregation and enhancing its enzymatic function are of great interest. In this study, we screened twelve naturally occurring metabolites for their ability to modulate catalase aggregation and activity. Among these, dimethylglycine (DMG) emerged as the most potent candidate. DMG significantly inhibited thermally induced aggregation of catalase and markedly enhanced its enzymatic activity in a concentration-dependent manner. Biophysical analyses revealed that DMG stabilizes catalase by promoting its native folded conformation, as evidenced by increased melting temperature (Tm), higher Gibbs free energy of unfolding (ΔG°), and reduced exposure of hydrophobic residues. TEM imaging and Thioflavin T assays further confirmed that DMG prevented amyloid-like fibril formation. Molecular docking and dynamics simulations indicated that DMG binds to an allosteric site on catalase, providing a structural basis for its dual role in stabilization and activation. These findings highlight DMG as a promising therapeutic molecule for restoring catalase function and mitigating oxidative stress in AD. By maintaining catalase stability and activity, DMG offers potential for slowing AD progression.
Full article

Graphical abstract
Open AccessArticle
Predicting Antiviral Inhibitory Activity of Dihydrophenanthrene Derivatives Using Image-Derived 3D Discrete Tchebichef Moments: A Machine Learning-Based QSAR Approach
by
Ossama Daoui, Achraf Daoui, Mohamed Yamni, Marouane Daoui, Souad Elkhattabi, Samir Chtita and Chakir El-Kasri
Biophysica 2026, 6(1), 1; https://doi.org/10.3390/biophysica6010001 - 23 Dec 2025
Abstract
Making advancements in Quantitative Structure-Activity Relationship (QSAR) modeling is crucial for predicting biological activities in new compounds. Traditional 2D-QSAR and 3D-QSAR methods often face challenges in terms of computational efficiency and predictive accuracy. This study introduces a machine learning approach using 3D Discrete
[...] Read more.
Making advancements in Quantitative Structure-Activity Relationship (QSAR) modeling is crucial for predicting biological activities in new compounds. Traditional 2D-QSAR and 3D-QSAR methods often face challenges in terms of computational efficiency and predictive accuracy. This study introduces a machine learning approach using 3D Discrete Tchebichef Moments (3D-DTM) to address these issues. The 3D-DTM method offers efficient computation, robust descriptor generation, and improved interpretability, making it a promising alternative to conventional QSAR techniques. By capturing global 3D shape information, this method provides better representation of molecular interactions essential for biological activities. We applied the 3D-DTM model to a dataset of 46 molecules derived from the Dihydrophenanthrene scaffold, screened against the enzymatic activity of 3-chymotrypsin-like protease, a key antiviral target. Principal Component Analysis and k-means clustering refined descriptors, followed by stepwise Multiple Linear Regression (step-MLR), Partial Least Squares Regression (PLS-R), and Feed-Forward Neural Network (FFNN) techniques for 3DTMs-QSAR model development. The results showed high correlation and predictive accuracy, with significant validation from internal and external tests. The step-MLR model emerged as the optimal method due to its balance of predictive power and simplicity. Validation through y-Randomization and applicability domain analysis confirmed the model’s robustness. Virtual screening of 100 novel compounds identified 32 with improved pIC50 values. This study highlights the potential of 3D-DTMs in QSAR modeling, providing a scalable and reliable tool for computational chemistry and drug discovery. A user-friendly software tool was also developed to facilitate 3D-DTM extraction from input 3D molecular images.
Full article
(This article belongs to the Special Issue Biophysical Insights into Small Molecule Inhibitors)
►▼
Show Figures

Figure 1
Open AccessArticle
Expression of Ion Transporters Is Altered in Experimental Ulcerative Colitis: Anti-Inflammatory Effects of Nobiletin
by
Asmaa Al-Failakawi, Aishah Al-Jarallah, Muddanna Rao and Islam Khan
Biophysica 2025, 5(4), 63; https://doi.org/10.3390/biophysica5040063 - 15 Dec 2025
Abstract
►▼
Show Figures
We investigated the roles and regulation of contractile and sodium ion transporter proteins in the pathogenesis of diarrhea in the acute ulcerative colitis. Acute ulcerative colitis was induced in male Sprague-Dawley rats using dextran sulfate sodium (DSS) in drinking water for seven days.
[...] Read more.
We investigated the roles and regulation of contractile and sodium ion transporter proteins in the pathogenesis of diarrhea in the acute ulcerative colitis. Acute ulcerative colitis was induced in male Sprague-Dawley rats using dextran sulfate sodium (DSS) in drinking water for seven days. The effects of nobiletin, a citrus flavonoid, were also examined. Increased myeloperoxidase activity, colon mass, and inflammatory cell infiltration were associated with damage to goblet cells and the epithelial cell lining indicating the development of acute ulcerative colitis. SERCA-2 calcium pump expression remained unchanged, whereas the phospholamban (PLN) regulatory peptide was reduced and its phosphorylated form (PLN-P) increased, suggesting a post-translational increase in SERCA-2 activity in the inflamed colon. Higher levels of IP3 were associated with a decrease in the Gαq protein levels without altering phospholipase C expression, suggesting that IP3 regulation is independent of Gαq protein signaling. In addition, the expression of sodium/hydrogen exchanger isoforms NHE-1, NHE-3 and carbonic anhydrase-1 and sodium pump activity were decreased in the inflamed colon. Nobiletin treatment of colitis selectively reversed the inflammatory and oxidative stress markers, including superoxide dismutase and catalase without restoring the expression of ion transporters. This study highlights alterations in the expression of ion transporters and their regulatory proteins in acute ulcerative colitis. These changes in the ion transporters are likely to reduce NaCl absorption and alter contractility, thereby contributing to the pathogenesis of diarrhea in the present model of acute ulcerative colitis. Nobiletin selectively ameliorates acute colitis in this model.
Full article

Graphical abstract
Open AccessReview
Integrating AI with Cellular and Mechanobiology: Trends and Perspectives
by
Sakib Mohammad, Md Sakhawat Hossain and Sydney L. Sarver
Biophysica 2025, 5(4), 62; https://doi.org/10.3390/biophysica5040062 - 14 Dec 2025
Abstract
Mechanobiology explores how physical forces and cellular mechanics influence biological processes. This field has experienced rapid growth, driven by advances in high-resolution imaging, micromechanical testing, and computational modeling. At the same time, the increasing complexity and volume of mechanobiological imaging and measurement data
[...] Read more.
Mechanobiology explores how physical forces and cellular mechanics influence biological processes. This field has experienced rapid growth, driven by advances in high-resolution imaging, micromechanical testing, and computational modeling. At the same time, the increasing complexity and volume of mechanobiological imaging and measurement data have made traditional analysis methods difficult to scale. Artificial intelligence (AI) has emerged as a practical tool to address these challenges by providing new methods for interpreting and predicting biological behavior. Recent studies have demonstrated potential in several areas, including image-based analysis of cell and nuclear morphology, traction force microscopy (TFM), cell segmentation, motility analysis, and the detection of cancer biomarkers. Within this context, we review AI applications that either incorporate mechanical inputs/outputs directly or infer mechanobiologically relevant information from cellular and nuclear structure. This study summarizes progress in four key domains: AI/ML-based cell morphology studies, cancer biomarker identification, cell segmentation, and prediction of traction forces and motility. We also discuss the advantages and limitations of integrating AI/ML into mechanobiological research. Finally, we highlight future directions, including physics-informed and hybrid AI approaches, multimodal data integration, generative strategies, and opportunities for computational biophysics-aligned applications.
Full article
(This article belongs to the Special Issue Advances in Computational Biophysics)
►▼
Show Figures

Figure 1
Open AccessArticle
Traction Force Microscopy Using an Epifluorescence Microscope: Experimental Considerations and Caveats
by
Zaria Booth, Mazen Mezher, Rudra Patel and Venkat Maruthamuthu
Biophysica 2025, 5(4), 61; https://doi.org/10.3390/biophysica5040061 - 5 Dec 2025
Abstract
Forces exerted by cells due to their internal contractility play fundamental roles in a host of processes, including adhesion, migration, survival and differentiation. Traction force microscopy (TFM) enables the determination of forces exerted by cells or cell collectives on their environment, which is
[...] Read more.
Forces exerted by cells due to their internal contractility play fundamental roles in a host of processes, including adhesion, migration, survival and differentiation. Traction force microscopy (TFM) enables the determination of forces exerted by cells or cell collectives on their environment, which is typically taken to be an extra-cellular matrix (ECM)-coated substrate. Sample preparation for TFM involves the plating of cells onto an environment embedded with fiducial markers. The imaging of these fiducial markers in the presence and absence of the cells then enables calculation of the displacement of localized regions of the environment, and, consequently, the spatial distribution of forces exerted by the cells on their environment. Here, we consider the most widely used implementation of TFM (two-dimensional or 2D TFM) which enables the determination of in-plane forces exerted by cells plated on top of an elastic soft substrate. We present streamlined methods for preparing TFM substrates, with special consideration towards experimental steps involved in implementing it using an epifluorescence microscope. We highlight considerations involved in substrate choice between polyacrylamide (PAA) gels and soft silicones, fiducial marker (microbead) choice and distribution as well as microbead and ECM coupling to the substrate. We also point out caveats related to sub-optimal choices in the methodology which can affect the resultant traction force distribution, as well as further derived quantities such as inter-cellular forces in cell pairs computed using the traction force imbalance method (TFIM).
Full article
(This article belongs to the Collection Feature Papers in Biophysics)
►▼
Show Figures

Figure 1
Open AccessArticle
Estimation and Classification of Coffee Plant Water Potential Using Spectral Reflectance and Machine Learning Techniques
by
Deyvis Cabrini Teixeira Delfino, Danton Diego Ferreira, Margarete Marin Lordelo Volpato, Vânia Aparecida Silva, Renan Teixeira Delfino, Christiano Sousa Machado de Matos and Meline de Oliveira Santos
Biophysica 2025, 5(4), 60; https://doi.org/10.3390/biophysica5040060 - 4 Dec 2025
Abstract
►▼
Show Figures
Water potential is an important indicator used to study water relations in plants, as it reflects the level of hydration in their tissues. There are different numerical variables that describe plant properties and can be acquired from leaf reflectance. The objective of this
[...] Read more.
Water potential is an important indicator used to study water relations in plants, as it reflects the level of hydration in their tissues. There are different numerical variables that describe plant properties and can be acquired from leaf reflectance. The objective of this study was to estimate water potential in coffee plants using spectral variables. For this, a range of wavelengths that provided analytical flexibility was used. After this, machine learning techniques were employed to build data-driven models. The dataset used presents spectral characteristics (wavelength) of coffee plants, collected through the CI-710 Mini-Leaf Spectrometer equipment and also the water potential of each coffee plant, measured by the Scholander Chamber equipment. The dataset was divided into two crop management groups: irrigated and rainfed. Four machine learning techniques were implemented: Multi-Layer Perceptron (MLP), Decision Tree, Random Forest and K-Nearest Neighbor (KNN). The implementation of machine learning techniques followed two distinct strategies: regression and classification. The results indicate that the decision tree-based model demonstrated superior performance under irrigated conditions for regression tasks. In contrast, the KNN technique achieved the best performance for classification. Under rainfed conditions, the MLP model outperformed the other techniques for regression, while the Random Forest method exhibited the highest accuracy in classification tasks. While no hardware prototype was developed, the machine learning-based methods presented here suggest a possible pathway toward future intelligent, user-friendly, and accessible sensing technologies for coffee plantations.
Full article

Figure 1
Open AccessArticle
Copper-Enhanced Gold Nanoparticle Sensor for Colorimetric Histamine Detection
by
Satoshi Migita
Biophysica 2025, 5(4), 59; https://doi.org/10.3390/biophysica5040059 - 1 Dec 2025
Cited by 1
Abstract
A rapid, colorimetric sensor for histamine detection is presented using citrate-stabilized gold nanoparticles enhanced with Cu2+ coordination. The sensing mechanism involves dual recognition: protonated histamine first adsorbs electrostatically onto AuNP surfaces at pH 5.5, followed by Cu2+-mediated coordination between imidazole
[...] Read more.
A rapid, colorimetric sensor for histamine detection is presented using citrate-stabilized gold nanoparticles enhanced with Cu2+ coordination. The sensing mechanism involves dual recognition: protonated histamine first adsorbs electrostatically onto AuNP surfaces at pH 5.5, followed by Cu2+-mediated coordination between imidazole rings that induces interparticle coupling, resulting in a characteristic shift of the localized surface plasmon resonance from 520 to 620 nm. The optical response, measured as the absorbance ratio A620/A520, exhibits excellent linearity over the range of 1.25–10 μM with a detection limit of 0.95 μM and total assay time under 30 min. The dual-recognition mechanism provides high selectivity for histamine over structural analogs, including L-histidine, imidazole, and L-lysine. The metal ion-mediated colorimetric approach described here achieves sub-micromolar sensitivity in simple buffer solutions, which is comparable to the histamine level used in in vitro cell assays and food-related studies. Thus, the present system is best viewed as a mechanistic model that can inform the design of future biosensing and analytical methods, rather than as a fully optimized sensor for direct clinical measurements in complex biofluids.
Full article
(This article belongs to the Collection Feature Papers in Biophysics)
►▼
Show Figures

Figure 1
Open AccessCommunication
Membrane Depth Measurements of E Protein by 2H ESEEM Spectroscopy in Lipid Bilayers
by
Andrew K. Morris, Robert M. McCarrick and Gary A. Lorigan
Biophysica 2025, 5(4), 58; https://doi.org/10.3390/biophysica5040058 - 26 Nov 2025
Abstract
►▼
Show Figures
A topological analysis was performed by taking ESEEM measurements of site-specifically labeled E protein from SARS-CoV-2. The intensity of deuterium modulation arising from either deuterated solvent or deuterated lipid acyl chains revealed exposure to solvent or the bilayer hydrophobic region. Spin-labeled lipids and
[...] Read more.
A topological analysis was performed by taking ESEEM measurements of site-specifically labeled E protein from SARS-CoV-2. The intensity of deuterium modulation arising from either deuterated solvent or deuterated lipid acyl chains revealed exposure to solvent or the bilayer hydrophobic region. Spin-labeled lipids and soluble spin labels were used as points of comparison. The data indicate that spin labels placed along the transmembrane helix of the E protein showed close contact with lipid acyl chains, but also substantial contact with solvent, while those placed on the C-terminal domain showed substantial but lower exposure to lipid acyl chains, with comparable solvent exposure. The results support the view that the C-terminal domain is in contact with the bilayer surface.
Full article

Figure 1
Open AccessReview
Evaporation-Driven Self-Assembly and Deposition Patterns of Protein Droplets: Mechanisms, Modulation, and Applications
by
Xuanyi Zhang, Zehua Wang, Chenyang Wu and Dongdong Lin
Biophysica 2025, 5(4), 57; https://doi.org/10.3390/biophysica5040057 - 21 Nov 2025
Abstract
►▼
Show Figures
Protein droplets exhibit complex self-assembly and deposition behaviors driven by evaporation, which has attracted increasing attention in recent years. Under evaporation, limited volume and locally concentrated protein solutions can undergo liquid–liquid phase separation (LLPS) and liquid–liquid crystalline phase separation (LLCPS), inducing the formation
[...] Read more.
Protein droplets exhibit complex self-assembly and deposition behaviors driven by evaporation, which has attracted increasing attention in recent years. Under evaporation, limited volume and locally concentrated protein solutions can undergo liquid–liquid phase separation (LLPS) and liquid–liquid crystalline phase separation (LLCPS), inducing the formation of concentrated droplets and anisotropic structures. The combined effects of interfacial tension and internal flow field induce a variety of deposition patterns on the substrate, providing great significance for the development of functional biomaterials. This paper reviews the physical processes experienced by protein/fibril droplets during evaporation, focusing on the formation mechanism of evaporation and their phase separation behaviors. At the same time, the review systematically summarized the key factors affecting the deposition patterns, and a variety of methods were introduced to pattern deposition, such as external electric field and micro-structured substrates. Furthermore, the potential applications of proteins/fibrils droplet deposition were discussed in multiple fields. This review aims to provide systematic theoretical support and experimental reference for understanding and controlling the deposition behavior of proteins/fibrils droplets, and to promote their further application in functional materials and biomedical engineering.
Full article

Figure 1
Open AccessArticle
Laser Trapping Technique for Measuring Ionization Energy and Identifying Hemoglobin Through Charge Quantification in Blood Samples
by
Endris M. Endris, Deresse A. Adem, Horace T. Crogman and Daniel B. Erenso
Biophysica 2025, 5(4), 56; https://doi.org/10.3390/biophysica5040056 - 18 Nov 2025
Abstract
We present a proof-of-concept study using a laser trapping (LT) approach to characterize hemoglobin variants through controlled dielectric breakdown of red blood cell membranes. Using a 1064 nm infrared laser, we analyzed 62 cells from each of four hemoglobin types (Hb AS, Hb
[...] Read more.
We present a proof-of-concept study using a laser trapping (LT) approach to characterize hemoglobin variants through controlled dielectric breakdown of red blood cell membranes. Using a 1064 nm infrared laser, we analyzed 62 cells from each of four hemoglobin types (Hb AS, Hb FA, Hb FSC, Hb AC), measuring the ionization time, cell area, and trap displacement to calculate the apparent threshold ionization energy (TIE*) and apparent threshold radiation dose (TRD*). Post-ionization trajectories and radiation intensity measurements provided charge distribution profiles for each variant. Our results indicate variant-specific differences in TRD* and charge-to-volume ratios across adults and infants (p < 0.05), while the TIE* values remained largely consistent. Charge analysis revealed statistically significant variation between some groups, suggesting that TRD* and charge-based parameters may offer sensitive markers of hemoglobin heterogeneity. This work demonstrates the feasibility of laser trapping as a complementary single-cell method for hemoglobin analysis. While limited in sample size, the approach highlights the potential of TIE* and TRD* measurements for differentiating hemoglobin variants and suggests future applications in hemoglobinopathy screening and diagnostic research.
Full article
(This article belongs to the Special Issue Biophysical Methods to Study Membrane Models, Cells, and Tissues)
►▼
Show Figures

Figure 1
Open AccessArticle
The Specifics of an Interaction Between Hen Egg White Lysozyme and Antibiotics
by
Lyubov Filatova
Biophysica 2025, 5(4), 55; https://doi.org/10.3390/biophysica5040055 - 18 Nov 2025
Abstract
►▼
Show Figures
The combination of antimicrobial agents with different mechanisms of action is an important step in the fight against drug-resistant microorganisms. In this study, the interaction of the lysozyme enzyme with ampicillin and colistin was investigated. These antibiotics are highly effective against Gram-positive (ampicillin)
[...] Read more.
The combination of antimicrobial agents with different mechanisms of action is an important step in the fight against drug-resistant microorganisms. In this study, the interaction of the lysozyme enzyme with ampicillin and colistin was investigated. These antibiotics are highly effective against Gram-positive (ampicillin) and Gram-negative (colistin) pathogenic microorganisms. Spectroscopic and kinetic methods and molecular docking were used in the research. The results of the spectroscopic analysis confirmed the intermolecular interaction of lysozyme with ampicillin or colistin. The formation of the lysozyme complex with ampicillin was accompanied by mixed quenching of the enzyme fluorescence and changes in its secondary structure (a slight decrease in the content of α-helices). The interaction of lysozyme with colistin was complemented by dynamic quenching of the enzyme fluorescence. The method of molecular docking established that the interactions of lysozyme with colistin were predominantly van der Waals, while hydrogen bonds predominated in the lysozyme complex with ampicillin. Despite the presence of interactions of ampicillin and colistin with amino acid residues from the active site of lysozyme, this did not affect its ability to cause destruction of bacterial cell walls. The results obtained can be used in the development of antibacterial drugs.
Full article

Graphical abstract
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biophysica, CIMB, Biology, Membranes, IJMS
New Insights into Cytoskeleton
Topic Editors: Malgorzata Kloc, Jacek KubiakDeadline: 31 March 2026
Topic in
Biophysica, CIMB, IJMS, IJTM, Lymphatics, Sci. Pharm.
Smart Delivery Systems for Biomolecular Therapeutics
Topic Editors: Biana Godin, Vivek GuptaDeadline: 31 October 2026
Topic in
IJMS, Biophysica, IJTM, CIMB, Lymphatics
Molecular Drivers and Precision Therapeutics in Oncology
Topic Editors: Chien-An Hu, Kelly Wentz-HunterDeadline: 31 December 2026
Topic in
Biomolecules, Biophysica, Pharmaceutics, IJMS, Life
Physics-Based Computational Approaches for Soft Matter and Biophysics Challenges
Topic Editors: Yunjie Zhao, Wang JianDeadline: 3 January 2027
Special Issues
Special Issue in
Biophysica
Live Cell Microscopy
Guest Editors: Herbert Schneckenburger, Christoph CremerDeadline: 28 February 2026
Special Issue in
Biophysica
Investigations into Protein Structure
Guest Editor: Salvatore Giovanni De SimoneDeadline: 28 February 2026
Special Issue in
Biophysica
Biological Effects of Magnetic Fields
Guest Editor: Viacheslav V. KrylovDeadline: 28 February 2026
Special Issue in
Biophysica
The Study of Chromatin and Chromosome Structures
Guest Editor: Nitika TanejaDeadline: 31 March 2026
Topical Collections
Topical Collection in
Biophysica
Feature Papers in Biophysics
Collection Editors: Paul C. Whitford, Chandra Kothapalli

