ijms-logo

Journal Browser

Journal Browser

Topical Collection "Feature Papers in Bioactives and Nutraceuticals"

Editor

Prof. Dr. Maurizio Battino
grade E-Mail Website
Collection Editor
Department of Odontostomatologic and Specialized Clinical Sciences, Sez-Biochimica, Faculty of Medicine, Università Politecnica delle Marche, Via Ranieri 65, 60100 Ancona, Italy
Interests: nutrition; periodontal diseases/periodontitis; oxidative stress; nutrition; aging; mitochondrial function and diseases; berries (strawberry, blueberry, bilberry, cranberry, etc.); olive oil (dietary fats); honey, polyphenols; flavonoids; antioxidants, apoptosis
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues,

This Topical Collection entitled “Feature Papers in Bioactives and Nutraceuticals” aims to collect high-quality research articles, communications, and review articles in the cutting-edge field of bioactive compounds and nutraceutical products. Since the aim of this Topical Collection is to illustrate, through selected works, frontier research in bioactives and nutraceuticals, we encourage Editorial Board Members of the Section of the International Journal of Molecular Sciences to contribute feature papers reflecting the latest progress in their research field or to invite relevant experts and colleagues to do so.

Topics include, but are not limited to:

  • the discovery of novel bioactive natural products
  • the role of these products in manipulating food structure and hence their potential physiological mediation for human nutrition
  • the use of in vitro and in vivo bioactivity research involving cell lines and animal models as exemplars of human physiology

Prof. Dr. Maurizio Battino
Collection Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (33 papers)

2022

Jump to: 2021, 2020

Article
Viability of Glioblastoma Cells and Fibroblasts in the Presence of Imidazole-Containing Compounds
Int. J. Mol. Sci. 2022, 23(10), 5834; https://doi.org/10.3390/ijms23105834 - 23 May 2022
Viewed by 364
Abstract
The naturally occurring dipeptide carnosine (β-alanyl-L-histidine) specifically attenuates tumor growth. Here, we ask whether other small imidazole-containing compounds also affect the viability of tumor cells without affecting non-malignant cells and whether the formation of histamine is involved. Patient-derived fibroblasts and glioblastoma [...] Read more.
The naturally occurring dipeptide carnosine (β-alanyl-L-histidine) specifically attenuates tumor growth. Here, we ask whether other small imidazole-containing compounds also affect the viability of tumor cells without affecting non-malignant cells and whether the formation of histamine is involved. Patient-derived fibroblasts and glioblastoma cells were treated with carnosine, L-alanyl-L-histidine (LA-LH), β-alanyl-L-alanine, L-histidine, histamine, imidazole, β-alanine, and L-alanine. Cell viability was assessed by cell-based assays and microscopy. The intracellular release of L-histidine and formation of histamine was investigated by high-performance liquid chromatography coupled to mass spectrometry. Carnosine and LA-LH inhibited tumor cell growth with minor effects on fibroblasts, and L-histidine, histamine, and imidazole affected viability in both cell types. Compounds without the imidazole moiety did not diminish viability. In the presence of LA-LH but not in the presence of carnosine, a significant rise in intracellular amounts of histidine was detected in all cells. The formation of histamine was not detectable in the presence of carnosine, LA-LH, or histidine. In conclusion, the imidazole moiety of carnosine contributes to its anti-neoplastic effect, which is also seen in the presence of histidine and LA-LH. Despite the fact that histamine has a strong effect on cell viability, the formation of histamine is not responsible for the effects on the cell viability of carnosine, LA-LH, and histidine. Full article
Show Figures

Figure 1

Article
Sulfated Phenolic Substances: Preparation and Optimized HPLC Analysis
Int. J. Mol. Sci. 2022, 23(10), 5743; https://doi.org/10.3390/ijms23105743 - 20 May 2022
Viewed by 432
Abstract
Sulfation is an important reaction in nature, and sulfated phenolic compounds are of interest as standards of mammalian phase II metabolites or pro-drugs. Such standards can be prepared using chemoenzymatic methods with aryl sulfotransferases. The aim of the present work was to obtain [...] Read more.
Sulfation is an important reaction in nature, and sulfated phenolic compounds are of interest as standards of mammalian phase II metabolites or pro-drugs. Such standards can be prepared using chemoenzymatic methods with aryl sulfotransferases. The aim of the present work was to obtain a large library of sulfated phenols, phenolic acids, flavonoids, and flavonolignans and optimize their HPLC (high performance liquid chromatography) analysis. Four new sulfates of 2,3,4-trihydroxybenzoic acid, catechol, 4-methylcatechol, and phloroglucinol were prepared and fully characterized using MS (mass spectrometry), 1H, and 13C NMR. The separation was investigated using HPLC with PDA (photodiode-array) detection and a total of 38 standards of phenolics and their sulfates. Different stationary (monolithic C18, C18 Polar, pentafluorophenyl, ZICpHILIC) and mobile phases with or without ammonium acetate buffer were compared. The separation results were strongly dependent on the pH and buffer capacity of the mobile phase. The developed robust HPLC method is suitable for the separation of enzymatic sulfation reaction mixtures of flavonoids, flavonolignans, 2,3-dehydroflavonolignans, phenolic acids, and phenols with PDA detection. Moreover, the method is directly applicable in conjunction with mass detection due to the low flow rate and the absence of phosphate buffer and/or ion-pairing reagents in the mobile phase. Full article
Show Figures

Graphical abstract

Article
Effects of Hypocalcemic Vitamin D Analogs in the Expression of DNA Damage Induced in Minilungs from hESCs: Implications for Lung Fibrosis
Int. J. Mol. Sci. 2022, 23(9), 4921; https://doi.org/10.3390/ijms23094921 - 28 Apr 2022
Viewed by 626
Abstract
In our previous work, we evaluated the therapeutic effects of 1α,25-Dihydroxyvitamin D3, the biologically active form of vitamin D, in the context of bleomycin-induced lung fibrosis. Contrary to the expected, vitamin D supplementation increased the DNA damage expression and cellular senescence [...] Read more.
In our previous work, we evaluated the therapeutic effects of 1α,25-Dihydroxyvitamin D3, the biologically active form of vitamin D, in the context of bleomycin-induced lung fibrosis. Contrary to the expected, vitamin D supplementation increased the DNA damage expression and cellular senescence in alveolar epithelial type II cells and aggravated the overall lung pathology induced in mice by bleomycin. These effects were probably due to an alteration in the cellular DNA double-strand breaks’ repair capability. In the present work, we have evaluated the effects of two hypocalcemic vitamin D analogs (calcipotriol and paricalcitol) in the expression of DNA damage in the context of minilungs derived from human embryonic stem cells and in the cell line A549. Full article
Show Figures

Figure 1

Article
Urolithin A Inactivation of TLR3/TRIF Signaling to Block the NF-κB/STAT1 Axis Reduces Inflammation and Enhances Antioxidant Defense in Poly(I:C)-Induced RAW264.7 Cells
Int. J. Mol. Sci. 2022, 23(9), 4697; https://doi.org/10.3390/ijms23094697 - 23 Apr 2022
Viewed by 722
Abstract
Urolithin A is an active compound of gut-microbiota-derived metabolites of polyphenol ellagic acid that has anti-aging, antioxidative, and anti-inflammatory effects. However, the effects of urolithin A on polyinosinic acid-polycytidylic acid (poly(I:C))-induced inflammation remain unclear. Poly(I:C) is a double-stranded RNA (dsRNA) similar to a [...] Read more.
Urolithin A is an active compound of gut-microbiota-derived metabolites of polyphenol ellagic acid that has anti-aging, antioxidative, and anti-inflammatory effects. However, the effects of urolithin A on polyinosinic acid-polycytidylic acid (poly(I:C))-induced inflammation remain unclear. Poly(I:C) is a double-stranded RNA (dsRNA) similar to a virus and is recognized by Toll-like receptor-3 (TLR3), inducing an inflammatory response in immune cells, such as macrophages. Inflammation is a natural defense process of the innate immune system. Therefore, we used poly(I:C)-induced RAW264.7 cells and attenuated the inflammation induced by urolithin A. First, our data suggested that 1–30 μM urolithin A does not reduce RAW264.7 cell viability, whereas 1 μM urolithin A is sufficient for antioxidation and the decreased production of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and C-C chemokine ligand 5. The inflammation-related proteins cyclooxygenase-2 and inducible nitric oxide synthase were also downregulated by urolithin A. Next, 1 μM urolithin A inhibited the levels of interferon (INF)-α and INF-β. Urolithin A was applied to investigate the blockade of the TLR3 signaling pathway in poly(I:C)-induced RAW264.7 cells. Moreover, the TLR3 signaling pathway, subsequent inflammatory-related pathways, and antioxidation pathways showed changes in nuclear factor-κB (NF-κB) signaling and blocked ERK/mitogen-activated protein kinase (MAPK) signaling. Urolithin A enhanced catalase (CAT) and superoxide dismutase (SOD) activities, but decreased malondialdehyde (MDA) levels in poly(I:C)-induced RAW264.7 cells. Thus, our results suggest that urolithin A inhibits TLR3-activated inflammatory and oxidative-associated pathways in macrophages, and that this inhibition is induced by poly(I:C). Therefore, urolithin A may have antiviral effects and could be used to treat viral-infection-related diseases. Full article
Show Figures

Figure 1

Article
Overexpression of Neuregulin-1 Type III Has Impact on Visual Function in Mice
Int. J. Mol. Sci. 2022, 23(9), 4489; https://doi.org/10.3390/ijms23094489 - 19 Apr 2022
Viewed by 480
Abstract
Schizophrenia is associated with several brain deficits, including abnormalities in visual processes. Neuregulin-1 (Nrg1) is a family of trophic factors containing an epidermal growth factor (EGF)-like domain. It is thought to play a role in neural development and has been linked to neuropsychiatric [...] Read more.
Schizophrenia is associated with several brain deficits, including abnormalities in visual processes. Neuregulin-1 (Nrg1) is a family of trophic factors containing an epidermal growth factor (EGF)-like domain. It is thought to play a role in neural development and has been linked to neuropsychiatric disorders. Abnormal Nrg1 expression has been observed in schizophrenia in clinical studies. Moreover, in schizophrenia, there is more and more evidence found about pathological changes of the retina regarding structural, neurochemical and physiological parameters. However, mechanisms of these changes are not well known. To investigate this, we analysed the function of the visual system using electroretinography (ERG) and the measurement of visual evoked potentials (VEP) in transgenic mice overexpressing Nrg1 type III of three different ages (12 weeks, 24 weeks and 55 weeks). ERG amplitudes tended to be higher in transgenic mice than in control mice in 12-week old mice, whereas the amplitudes were almost similar in older mice. VEP amplitudes were larger in transgenic mice at all ages, with significant differences at 12 and 55 weeks (p values between 0.003 and 0.036). Latencies in ERG and VEP measurements did not differ considerably between control mice and transgenic mice at any age. Our data show for the first time that overexpression of Nrg1 type III changed visual function in transgenic mice. Overall, this investigation of visual function in transgenic mice may be helpful to understand corresponding changes that occur in schizophrenia, as they may find use as biomarkers for psychiatric disorders as well as a potential tool for diagnosis in psychiatry. Full article
Show Figures

Figure 1

Article
S-Acetyl-Glutathione Attenuates Carbon Tetrachloride-Induced Liver Injury by Modulating Oxidative Imbalance and Inflammation
Int. J. Mol. Sci. 2022, 23(8), 4429; https://doi.org/10.3390/ijms23084429 - 17 Apr 2022
Cited by 1 | Viewed by 729
Abstract
Liver fibrosis, depending on the stage of the disease, could lead to organ dysfunction and cirrhosis, and no effective treatment is actually available. Emergent proof supports a link between oxidative stress, liver fibrogenesis and mitochondrial dysfunction as molecular bases of the pathology. A [...] Read more.
Liver fibrosis, depending on the stage of the disease, could lead to organ dysfunction and cirrhosis, and no effective treatment is actually available. Emergent proof supports a link between oxidative stress, liver fibrogenesis and mitochondrial dysfunction as molecular bases of the pathology. A valid approach to protect against the disease would be to replenish the endogenous antioxidants; thus, we investigated the protective mechanisms of the S-acetyl-glutathione (SAG), a glutathione (GSH) prodrug. Preliminary in vitro analyses were conducted on primary hepatic cells. SAG pre-treatment significantly protected against cytotoxicity induced by CCl4. Additionally, CCl4 induced a marked increase in AST and ALT levels, whereas SAG significantly reduced these levels, reaching values found in the control group. For the in vivo analyses, mice were administered twice a week with eight consecutive intraperitoneal injections of 1 mL/kg CCl4 (diluted at 1:10 in olive oil) to induce oxidative imbalance and liver inflammation. SAG (30 mg/kg) was administered orally for 8 weeks. SAG significantly restored SOD activity, GSH levels and GPx activity, while it strongly reduced GSSG levels, lipid peroxidation and H2O2 and ROS levels in the liver. Additionally, CCl4 induced a decrease in anti-oxidants, including Nrf2, HO-1 and NQO-1, which were restored by treatment with SAG. The increased oxidative stress characteristic on liver disfunction causes the impairment of mitophagy and accumulation of dysfunctional and damaged mitochondria. Our results showed the protective effect of SAG administration in restoring mitophagy, as shown by the increased PINK1 and Parkin expressions in livers exposed to CCl4 intoxication. Thus, the SAG administration showed anti-inflammatory effects decreasing pro-inflammatory cytokines TNF-α, IL-6, MCP-1 and IL-1β in both serum and liver, and suppressing the TLR4/NFkB pathway. SAG attenuated reduced fibrosis, collagen deposition, hepatocellular damage and organ dysfunction. In conclusion, our results suggest that SAG administration protects the liver from CCl4 intoxication by restoring the oxidative balance, ameliorating the impairment of mitophagy and leading to reduced inflammation. Full article
Show Figures

Figure 1

Review
COVID-19 and One-Carbon Metabolism
Int. J. Mol. Sci. 2022, 23(8), 4181; https://doi.org/10.3390/ijms23084181 - 10 Apr 2022
Cited by 1 | Viewed by 1781
Abstract
Dysregulation of one-carbon metabolism affects a wide range of biological processes and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Accumulating evidence suggests that one-carbon metabolism plays an important role in COVID-19. The symptoms of [...] Read more.
Dysregulation of one-carbon metabolism affects a wide range of biological processes and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Accumulating evidence suggests that one-carbon metabolism plays an important role in COVID-19. The symptoms of long COVID-19 are similar to those presented by subjects suffering from vitamin B12 deficiency (pernicious anemia). The metabolism of a cell infected by the SARS-CoV-2 virus is reshaped to fulfill the need for massive viral RNA synthesis, which requires de novo purine biosynthesis involving folate and one-carbon metabolism. Many aspects of host sulfur amino acid metabolism, particularly glutathione metabolism underlying antioxidant defenses, are also taken over by the SARS-CoV-2 virus. The purpose of this review is to summarize recent findings related to one-carbon metabolism and sulfur metabolites in COVID-19 and discuss how they inform strategies to combat the disease. Full article
Show Figures

Figure 1

Article
Neferine, an Alkaloid from Lotus Seed Embryos, Exerts Antiseizure and Neuroprotective Effects in a Kainic Acid-Induced Seizure Model in Rats
Int. J. Mol. Sci. 2022, 23(8), 4130; https://doi.org/10.3390/ijms23084130 - 08 Apr 2022
Viewed by 554
Abstract
Current anti-seizure drugs fail to control approximately 30% of epilepsies. Therefore, there is a need to develop more effective anti-seizure drugs, and medicinal plants provide an attractive source for new compounds. This study aimed to evaluate the possible anti-seizure and neuroprotective effects of [...] Read more.
Current anti-seizure drugs fail to control approximately 30% of epilepsies. Therefore, there is a need to develop more effective anti-seizure drugs, and medicinal plants provide an attractive source for new compounds. This study aimed to evaluate the possible anti-seizure and neuroprotective effects of neferine, an alkaloid from the lotus seed embryos of Nelumbo nucifera, in a kainic acid (KA)-induced seizure rat model and its underlying mechanisms. Rats were intraperitoneally (i.p.) administrated neferine (10 and 50 mg/kg) 30 min before KA injection (15 mg/kg, i.p.). Neferine pretreatment increased seizure latency and reduced seizure scores, prevented glutamate elevation and neuronal loss, and increased presynaptic protein synaptophysin and postsynaptic density protein 95 expression in the hippocampi of rats with KA. Neferine pretreatment also decreased glial cell activation and proinflammatory cytokine (interleukin-1β, interleukin-6, tumor necrosis factor-α) expression in the hippocampi of rats with KA. In addition, NOD-like receptor 3 (NLRP3) inflammasome, caspase-1, and interleukin-18 expression levels were decreased in the hippocampi of seizure rats pretreated with neferine. These results indicated that neferine reduced seizure severity, exerted neuroprotective effects, and ameliorated neuroinflammation in the hippocampi of KA-treated rats, possibly by inhibiting NLRP3 inflammasome activation and decreasing inflammatory cytokine secretion. Our findings highlight the potential of neferine as a therapeutic option in the treatment of epilepsy. Full article
Show Figures

Figure 1

Review
Nutraceutical Concepts and Dextrin-Based Delivery Systems
Int. J. Mol. Sci. 2022, 23(8), 4102; https://doi.org/10.3390/ijms23084102 - 07 Apr 2022
Cited by 1 | Viewed by 977
Abstract
Nutraceuticals are bioactive or chemical compounds acclaimed for their valuable biological activities and health-promoting effects. The global community is faced with many health concerns such as cancers, cardiovascular and neurodegenerative diseases, diabetes, arthritis, osteoporosis, etc. The effect of nutraceuticals is similar to pharmaceuticals, [...] Read more.
Nutraceuticals are bioactive or chemical compounds acclaimed for their valuable biological activities and health-promoting effects. The global community is faced with many health concerns such as cancers, cardiovascular and neurodegenerative diseases, diabetes, arthritis, osteoporosis, etc. The effect of nutraceuticals is similar to pharmaceuticals, even though the term nutraceutical has no regulatory definition. The usage of nutraceuticals, to prevent and treat the aforementioned diseases, is limited by several features such as poor water solubility, low bioavailability, low stability, low permeability, low efficacy, etc. These downsides can be overcome by the application of the field of nanotechnology manipulating the properties and structures of materials at the nanometer scale. In this review, the linear and cyclic dextrin, formed during the enzymatic degradation of starch, are highlighted as highly promising nanomaterials- based drug delivery systems. The modified cyclic dextrin, cyclodextrin (CD)-based nanosponges (NSs), are well-known delivery systems of several nutraceuticals such as quercetin, curcumin, resveratrol, thyme essential oil, melatonin, and appear as a more advanced drug delivery system than modified linear dextrin. CD-based NSs prolong and control the nutraceuticals release, and display higher biocompatibility, stability, and solubility of poorly water-soluble nutraceuticals than the CD-inclusion complexes, or uncomplexed nutraceuticals. In addition, the well-explored CD-based NSs pathways, as drug delivery systems, are described. Although important progress is made in drug delivery, all the findings will serve as a source for the use of CD-based nanosystems for nutraceutical delivery. To sum up, our review introduces the extensive literature about the nutraceutical concepts, synthesis, characterization, and applications of the CD-based nano delivery systems that will further contribute to the nutraceutical delivery with more potent nanosystems based on linear dextrins. Full article
Show Figures

Figure 1

Review
Gases in Sepsis: Novel Mediators and Therapeutic Targets
Int. J. Mol. Sci. 2022, 23(7), 3669; https://doi.org/10.3390/ijms23073669 - 27 Mar 2022
Cited by 1 | Viewed by 641
Abstract
Sepsis, a potentially lethal condition resulting from failure to control the initial infection, is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of sepsis is very [...] Read more.
Sepsis, a potentially lethal condition resulting from failure to control the initial infection, is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of sepsis is very complicated and is not yet fully understood. Worse still, the development of effective therapeutic agents is still an unmet need and a great challenge. Gases, including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), are small-molecule biological mediators that are endogenously produced, mainly by enzyme-catalyzed reactions. Accumulating evidence suggests that these gaseous mediators are widely involved in the pathophysiology of sepsis. Many sepsis-associated alterations, such as the elimination of invasive pathogens, the resolution of disorganized inflammation and the preservation of the function of multiple organs and systems, are shaped by them. Increasing attention has been paid to developing therapeutic approaches targeting these molecules for sepsis/septic shock, taking advantage of the multiple actions played by NO, CO and H2S. Several preliminary studies have identified promising therapeutic strategies for gaseous-mediator-based treatments for sepsis. In this review article, we summarize the state-of-the-art knowledge on the pathophysiology of sepsis; the metabolism and physiological function of NO, CO and H2S; the crosstalk among these gaseous mediators; and their crucial effects on the development and progression of sepsis. In addition, we also briefly discuss the prospect of developing therapeutic interventions targeting these gaseous mediators for sepsis. Full article
Show Figures

Figure 1

Review
Diet and Male Fertility: The Impact of Nutrients and Antioxidants on Sperm Energetic Metabolism
Int. J. Mol. Sci. 2022, 23(5), 2542; https://doi.org/10.3390/ijms23052542 - 25 Feb 2022
Cited by 2 | Viewed by 1017
Abstract
Diet might affect male reproductive potential, but the biochemical mechanisms involved in the modulation of sperm quality remain poorly understood. While a Western diet is considered a risk factor for male infertility, the Mediterranean diet seems to protect against male infertility; moreover, the [...] Read more.
Diet might affect male reproductive potential, but the biochemical mechanisms involved in the modulation of sperm quality remain poorly understood. While a Western diet is considered a risk factor for male infertility, the Mediterranean diet seems to protect against male infertility; moreover, the role of a vegetarian habitus in the preservation of sperm quality is controversial. The aim of this review is to analyze the molecular effects of single nutrients on sperm quality, focusing on their involvement in biochemical mechanisms related to sperm bioenergetics. It appears that diets rich in saturated fatty acids (SFA) and low in polyunsaturated fatty acids (PUFA) negatively affect sperm quality, whereas unsaturated fatty acids supplementation ameliorates sperm quality. In fact, the administration of PUFA, especially omega-3 PUFA, determined an increase in mitochondrial energetic metabolism and a reduction in oxidative damage. Carbohydrates and proteins are also nutritional modulators of oxidative stress and testosterone levels, which are strictly linked to sperm mitochondrial function, a key element for sperm quality. Moreover, many dietary natural polyphenols differentially affect (positively or negatively) the mitochondrial function, depending on their concentration. We believe that an understanding of the biochemical mechanisms responsible for sperm quality will lead to more targeted and effective therapeutics for male infertility. Full article
Show Figures

Figure 1

Article
Theophylline Extracted from Fu Brick Tea Affects the Metabolism of Preadipocytes and Body Fat in Mice as a Pancreatic Lipase Inhibitor
Int. J. Mol. Sci. 2022, 23(5), 2525; https://doi.org/10.3390/ijms23052525 - 25 Feb 2022
Viewed by 778
Abstract
The dramatic increase in obesity is putting people under increasing pressure. Lipase inhibitors, as a kind of effective anti-obesity drug, have attracted more and more researchers’ attention in recent years because of their advantages of acting on the intestinal tract and having no [...] Read more.
The dramatic increase in obesity is putting people under increasing pressure. Lipase inhibitors, as a kind of effective anti-obesity drug, have attracted more and more researchers’ attention in recent years because of their advantages of acting on the intestinal tract and having no side effects on the central nervous system. In this study, lipase inhibitor Fu Brick Theophylline (FBT) was screened based on enzyme molecular dynamics, and the inhibition mechanism of lipase inhibitors on obesity was analyzed and discussed at the cellular level and animal model level. We found that FBT had high inhibition effects of lipase with an IC50 of 1.02~0.03 μg/mL. Firstly, the laboratory used 3T3-L1 proadipocytes as models, flow cytometry was used to detect the effects of FBT on the cycle, apoptosis and intracellular ROS activity of proadipocytes. To study the contents of triglyceride, total cholesterol, related metabolites and related gene and protein expression in adipocytes. The results showed that FBT could reduce ROS production and inflammatory factor mRNA expression during cell differentiation. Secondly, by establishing the animal model of high-fat feed ob nutritional obese mice, the morphological observation and gene expression analysis of body weight, fat rate, adipocyte and hepatocyte metabolism of FBT obese mice were further discussed. It was proven that FBT can effectively reduce the degree of fatty liver, prevent liver fibrosis and fat accumulation, and improve the damage of mitochondrial membrane structure. This study provides a theoretical basis for the screening and clinical treatment of lipase inhibitors. Full article
Show Figures

Figure 1

Review
The Role of Nutrients in Maintaining Hematopoietic Stem Cells and Healthy Hematopoiesis for Life
Int. J. Mol. Sci. 2022, 23(3), 1574; https://doi.org/10.3390/ijms23031574 - 29 Jan 2022
Viewed by 884
Abstract
Nutrients are converted by the body to smaller molecules, which are utilized for both anabolic and catabolic metabolic reactions. Cooperative regulation of these processes is critical for life-sustaining activities. In this review, we focus on how the regulation of nutrient-driven metabolism maintains healthy [...] Read more.
Nutrients are converted by the body to smaller molecules, which are utilized for both anabolic and catabolic metabolic reactions. Cooperative regulation of these processes is critical for life-sustaining activities. In this review, we focus on how the regulation of nutrient-driven metabolism maintains healthy hematopoietic stem cells (HSCs). For this purpose, we have examined the metabolic regulation of HSCs from two perspectives: (1) the control of intracellular metabolism by the balance of anabolic and catabolic reactions; and (2) the control of organismal metabolic status and hematopoiesis by dietary intake of nutrients. Critical roles of catabolic regulators in stem cell homeostasis are conserved in several types of tissues, including hematopoiesis. These catabolic signals are also major regulators of organismal lifespan in multiple species. In parallel, changes to nutrients via alterations to dietary intake affect not only an organism’s metabolic state but also the behavior of its stem cells. While the molecular mechanisms involved in these two aspects of nutrient function may not necessarily overlap, a deeper understanding of these phenomena will point to new avenues of medical research and may furnish new agents for improving human health care. Full article
Show Figures

Figure 1

Review
Exogenous Bioactive Peptides Have a Potential Therapeutic Role in Delaying Aging in Rodent Models
Int. J. Mol. Sci. 2022, 23(3), 1421; https://doi.org/10.3390/ijms23031421 - 26 Jan 2022
Viewed by 1002
Abstract
In recent years, some exogenous bioactive peptides have been shown to have promising anti-aging effects. These exogenous peptides may have a mechanism similar to endogenous peptides, and some can even regulate the release of endogenous active peptides and play a synergistic role with [...] Read more.
In recent years, some exogenous bioactive peptides have been shown to have promising anti-aging effects. These exogenous peptides may have a mechanism similar to endogenous peptides, and some can even regulate the release of endogenous active peptides and play a synergistic role with endogenous active peptides. Most aging studies use rodents that are easy to maintain in the laboratory and have relatively homogenous genotypes. Moreover, many of the anti-aging studies using bioactive peptides in rodent models only focus on the activity of single endogenous or exogenous active peptides, while the regulatory effects of exogenous active peptides on endogenous active peptides remain largely under-investigated. Furthermore, the anti-aging activity studies only focus on the effects of these bioactive peptides in individual organs or systems. However, the pathological changes of one organ can usually lead to multi-organ complications. Some anti-aging bioactive peptides could be used for rescuing the multi-organ damage associated with aging. In this paper, we review recent reports on the anti-aging effects of bioactive peptides in rodents and summarize the mechanism of action for these peptides, as well as discuss the regulation of exogenous active peptides on endogenous active peptides. Full article
Show Figures

Figure 1

Review
The Versatility in the Applications of Dithiocarbamates
Int. J. Mol. Sci. 2022, 23(3), 1317; https://doi.org/10.3390/ijms23031317 - 24 Jan 2022
Cited by 2 | Viewed by 1289
Abstract
Dithiocarbamate ligands have the ability to form stable complexes with transition metals, and this chelating ability has been utilized in numerous applications. The complexes have also been used to synthesize other useful compounds. Here, the up-to-date applications of dithiocarbamate ligands and complexes are [...] Read more.
Dithiocarbamate ligands have the ability to form stable complexes with transition metals, and this chelating ability has been utilized in numerous applications. The complexes have also been used to synthesize other useful compounds. Here, the up-to-date applications of dithiocarbamate ligands and complexes are extensively discussed. Some of these are their use as enzyme inhibitor and treatment of HIV and other diseases. The application as anticancer, antimicrobial, medical imaging and anti-inflammatory agents is examined. Moreover, the application in the industry as vulcanization accelerator, froth flotation collector, antifouling, coatings, lubricant additives and sensors is discussed. The various ways in which they have been employed in synthesis of other compounds are highlighted. Finally, the agricultural uses and remediation of heavy metals via dithiocarbamate compounds are comprehensively discussed. Full article
Show Figures

Figure 1

2021

Jump to: 2022, 2020

Review
Natural Dibenzo-α-Pyrones: Friends or Foes?
Int. J. Mol. Sci. 2021, 22(23), 13063; https://doi.org/10.3390/ijms222313063 - 02 Dec 2021
Cited by 4 | Viewed by 1049
Abstract
Natural dibenzo-α-pyrones (DAPs) can be viewed from two opposite angles. From one angle, the gastrointestinal metabolites urolithins are regarded as beneficial, while from the other, the emerging mycotoxin alternariol and related fungal metabolites are evaluated critically with regards to potential hazardous effects. Thus, [...] Read more.
Natural dibenzo-α-pyrones (DAPs) can be viewed from two opposite angles. From one angle, the gastrointestinal metabolites urolithins are regarded as beneficial, while from the other, the emerging mycotoxin alternariol and related fungal metabolites are evaluated critically with regards to potential hazardous effects. Thus, the important question is: can the structural characteristics of DAP subgroups be held responsible for distinct bioactivity patterns? If not, certain toxicological and/or pharmacological aspects of natural DAPs might yet await elucidation. Thus, this review focuses on comparing published data on the two groups of natural DAPs regarding both adverse and beneficial effects on human health. Literature on genotoxic, estrogenic, endocrine-disruptive effects, as well as on the induction of the cellular anti-oxidative defense system, anti-inflammatory properties, the inhibition of kinases, the activation of mitophagy and the induction of autophagy, is gathered and critically reviewed. Indeed, comparing published data suggests similar bioactivity profiles of alternariol and urolithin A. Thus, the current stratification into hazardous Alternaria toxins and healthy urolithins seems debatable. An extrapolation of bioactivities to the other DAP sub-class could serve as a promising base for further research. Conclusively, urolithins should be further evaluated toward high-dose toxicity, while alternariol derivatives could be promising chemicals for the development of therapeutics. Full article
Show Figures

Figure 1

Article
Dityrosine Crosslinking of Collagen and Amyloid-β Peptides Is Formed by Vitamin B12 Deficiency-Generated Oxidative Stress in Caenorhabditis elegans
Int. J. Mol. Sci. 2021, 22(23), 12959; https://doi.org/10.3390/ijms222312959 - 30 Nov 2021
Viewed by 828
Abstract
(1) Background: Vitamin B12 deficiency in Caenorhabditis elegans results in severe oxidative stress and induces morphological abnormality in mutants due to disordered cuticle collagen biosynthesis. We clarified the underlying mechanism leading to such mutant worms due to vitamin B12 deficiency. (2) [...] Read more.
(1) Background: Vitamin B12 deficiency in Caenorhabditis elegans results in severe oxidative stress and induces morphological abnormality in mutants due to disordered cuticle collagen biosynthesis. We clarified the underlying mechanism leading to such mutant worms due to vitamin B12 deficiency. (2) Results: The deficient worms exhibited decreased collagen levels of up to approximately 59% compared with the control. Although vitamin B12 deficiency did not affect the mRNA expression of prolyl 4-hydroxylase, which catalyzes the formation of 4-hydroxyproline involved in intercellular collagen biosynthesis, the level of ascorbic acid, a prolyl 4-hydroxylase coenzyme, was markedly decreased. Dityrosine crosslinking is involved in the extracellular maturation of worm collagen. The dityrosine level of collagen significantly increased in the deficient worms compared with the control. However, vitamin B12 deficiency hardly affected the mRNA expression levels of bli-3 and mlt-7, which are encoding crosslinking-related enzymes, suggesting that deficiency-induced oxidative stress leads to dityrosine crosslinking. Moreover, using GMC101 mutant worms that express the full-length human amyloid β, we found that vitamin B12 deficiency did not affect the gene and protein expressions of amyloid β but increased the formation of dityrosine crosslinking in the amyloid β protein. (3) Conclusions: Vitamin B12-deficient wild-type worms showed motility dysfunction due to decreased collagen levels and the formation of highly tyrosine-crosslinked collagen, potentially reducing their flexibility. In GMC101 mutant worms, vitamin B12 deficiency-induced oxidative stress triggers dityrosine-crosslinked amyloid β formation, which might promote its stabilization and toxic oligomerization. Full article
Show Figures

Graphical abstract

Article
Transcriptomic Characterization of Cow, Donkey and Goat Milk Extracellular Vesicles Reveals Their Anti-Inflammatory and Immunomodulatory Potential
Int. J. Mol. Sci. 2021, 22(23), 12759; https://doi.org/10.3390/ijms222312759 - 25 Nov 2021
Cited by 4 | Viewed by 1030
Abstract
Milk extracellular vesicles (mEVs) seem to be one of the main maternal messages delivery systems. Extracellular vesicles (EVs) are micro/nano-sized membrane-bound structures enclosing signaling molecules and thus acting as signal mediators between distant cells and/or tissues, exerting biological effects such as immune modulation [...] Read more.
Milk extracellular vesicles (mEVs) seem to be one of the main maternal messages delivery systems. Extracellular vesicles (EVs) are micro/nano-sized membrane-bound structures enclosing signaling molecules and thus acting as signal mediators between distant cells and/or tissues, exerting biological effects such as immune modulation and pro-regenerative activity. Milk is also a unique, scalable, and reliable source of EVs. Our aim was to characterize the RNA content of cow, donkey, and goat mEVs through transcriptomic analysis of mRNA and small RNA libraries. Over 10,000 transcripts and 2000 small RNAs were expressed in mEVs of each species. Among the most represented transcripts, 110 mRNAs were common between the species with cow acting as the most divergent. The most represented small RNA class was miRNA in all the species, with 10 shared miRNAs having high impact on the immune regulatory function. Functional analysis for the most abundant mRNAs shows epigenetic functions such as histone modification, telomere maintenance, and chromatin remodeling for cow; lipid catabolism, oxidative stress, and vitamin metabolism for donkey; and terms related to chemokine receptor interaction, leukocytes migration, and transcriptional regulation in response to stress for goat. For miRNA targets, shared terms emerged as the main functions for all the species: immunity modulation, protein synthesis, cellular cycle regulation, transmembrane exchanges, and ion channels. Moreover, donkey and goat showed additional terms related to epigenetic modification and DNA maintenance. Our results showed a potential mEVs immune regulatory purpose through their RNA cargo, although in vivo validation studies are necessary. Full article
Show Figures

Figure 1

Article
Oleanolic Acid Alleviates Atopic Dermatitis-like Responses In Vivo and In Vitro
Int. J. Mol. Sci. 2021, 22(21), 12000; https://doi.org/10.3390/ijms222112000 - 05 Nov 2021
Cited by 3 | Viewed by 928
Abstract
Oleanolic acid (OA) is a pentacyclic triterpenoid, abundantly found in plants of the Oleaceae family, and is well known for its beneficial pharmacological activities. Previously, we reported the inhibitory effect of OA on mast cell-mediated allergic inflammation. In this study, we investigated the [...] Read more.
Oleanolic acid (OA) is a pentacyclic triterpenoid, abundantly found in plants of the Oleaceae family, and is well known for its beneficial pharmacological activities. Previously, we reported the inhibitory effect of OA on mast cell-mediated allergic inflammation. In this study, we investigated the effects of OA on atopic dermatitis (AD)-like skin lesions and its underlying mechanism of action. We evaluated the inhibitory effect of OA on AD-like responses and the possible mechanisms using a 1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD animal model and tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated HaCaT keratinocytes. We found that OA has anti-atopic effects, including histological alterations, on DNCB-induced AD-like lesions in mice. Moreover, it suppressed the expression of Th2 type cytokines and chemokines in the AD mouse model and TNF-α/IFN-γ-induced HaCaT keratinocytes by blocking the activation of serine-threonine kinase Akt, nuclear factor-κB, and the signal transducer and activator of transcription 1. The results demonstrate that OA inhibits AD-like symptoms and regulates the inflammatory mediators; therefore, it may be used as an effective and attractive therapeutic agent for allergic disorders, such as AD. Moreover, the findings of this study provide novel insights into the potential pharmacological targets of OA for treating AD. Full article
Show Figures

Graphical abstract

Review
Targeting Mammalian 5-Lipoxygenase by Dietary Phenolics as an Anti-Inflammatory Mechanism: A Systematic Review
Int. J. Mol. Sci. 2021, 22(15), 7937; https://doi.org/10.3390/ijms22157937 - 25 Jul 2021
Cited by 5 | Viewed by 1603
Abstract
5-Lipoxygenase (5-LOX) plays a key role in inflammation through the biosynthesis of leukotrienes and other lipid mediators. Current evidence suggests that dietary (poly)phenols exert a beneficial impact on human health through anti-inflammatory activities. Their mechanisms of action have mostly been associated with the [...] Read more.
5-Lipoxygenase (5-LOX) plays a key role in inflammation through the biosynthesis of leukotrienes and other lipid mediators. Current evidence suggests that dietary (poly)phenols exert a beneficial impact on human health through anti-inflammatory activities. Their mechanisms of action have mostly been associated with the modulation of pro-inflammatory cytokines (TNF-α, IL-1β), prostaglandins (PGE2), and the interaction with NF-κB and cyclooxygenase 2 (COX-2) pathways. Much less is known about the 5-lipoxygenase (5-LOX) pathway as a target of dietary (poly)phenols. This systematic review aimed to summarize how dietary (poly)phenols target the 5-LOX pathway in preclinical and human studies. The number of studies identified is low (5, 24, and 127 human, animal, and cellular studies, respectively) compared to the thousands of studies focusing on the COX-2 pathway. Some (poly)phenolics such as caffeic acid, hydroxytyrosol, resveratrol, curcumin, nordihydroguaiaretic acid (NDGA), and quercetin have been reported to reduce the formation of 5-LOX eicosanoids in vitro. However, the in vivo evidence is inconclusive because of the low number of studies and the difficulty of attributing effects to (poly)phenols. Therefore, increasing the number of studies targeting the 5-LOX pathway would largely expand our knowledge on the anti-inflammatory mechanisms of (poly)phenols. Full article
Show Figures

Figure 1

Article
Glycyrrhizin Attenuates Portal Hypertension and Collateral Shunting via Inhibition of Extrahepatic Angiogenesis in Cirrhotic Rats
Int. J. Mol. Sci. 2021, 22(14), 7662; https://doi.org/10.3390/ijms22147662 - 17 Jul 2021
Cited by 2 | Viewed by 1269
Abstract
Portal hypertension develops along with liver cirrhosis then induces the formation of portal-systemic collaterals and lethal complications. Extrahepatic angiogenesis plays an important role. Glycyrrhizin has been found to exhibit anti-angiogenic features, which leads to its extensive use. However, the relevant effects of glycyrrhizin [...] Read more.
Portal hypertension develops along with liver cirrhosis then induces the formation of portal-systemic collaterals and lethal complications. Extrahepatic angiogenesis plays an important role. Glycyrrhizin has been found to exhibit anti-angiogenic features, which leads to its extensive use. However, the relevant effects of glycyrrhizin on liver cirrhosis and portal hypertension have not been evaluated. This study thus aimed to investigate the impact of glycyrrhizin on portal hypertension-related derangements in cirrhotic rats. Male Sprague-Dawley rats received bile duct ligation (BDL) to induce cirrhosis or sham operation as control. The rats were subdivided to receive glycyrrhizin (150 mg/kg/day, oral gavage) or vehicle beginning on the 15th day post operation, when BDL-induced liver fibrosis developed. The effects of glycyrrhizin were determined on the 28th day, the typical timing of BDL-induced cirrhosis. Glycyrrhizin significantly reduced portal pressure (p = 0.004). The splanchnic inflow as measured by superior mesenteric arterial flow decreased by 22% (p = 0.029). The portal-systemic collateral shunting degree reduced by 30% (p = 0.024). The mesenteric angiogenesis and phospho-VEGFR2 protein expression were also downregulated (p = 0.038 and 0.031, respectively). Glycyrrhizin did not significantly influence the liver biochemistry data. Although glycyrrhizin tended to reverse liver fibrosis, statistical significance was not reached (p = 0.069). Consistently, hepatic inflow from portal side, hepatic vascular resistance, and liver fibrosis-related protein expressions were not affected. Glycyrrhizin treatment at the stage of hepatic fibrosis still effectively attenuated portal hypertension and portosystemic collateral shunting. These beneficial effects were attributed to, at least in part, the suppression of mesenteric angiogenesis by VEGF signaling pathway downregulation. Full article
Show Figures

Figure 1

Article
Influence of the Anthocyanin and Cofactor Structure on the Formation Efficiency of Naturally Derived Pyranoanthocyanins
Int. J. Mol. Sci. 2021, 22(13), 6708; https://doi.org/10.3390/ijms22136708 - 23 Jun 2021
Cited by 3 | Viewed by 926
Abstract
Pyranoanthocyanins are anthocyanin-derived pigments with higher stability to pH and storage. However, their slow formation and scarcity in nature hinder their industrial application. Pyranoanthocyanin formation can be accelerated by selecting anthocyanin substitutions, cofactor concentrations, and temperature. Limited information is available on the impacts [...] Read more.
Pyranoanthocyanins are anthocyanin-derived pigments with higher stability to pH and storage. However, their slow formation and scarcity in nature hinder their industrial application. Pyranoanthocyanin formation can be accelerated by selecting anthocyanin substitutions, cofactor concentrations, and temperature. Limited information is available on the impacts of the chemical structure of the cofactor and anthocyanin; therefore, we evaluated their impacts on pyranoanthocyanin formation efficiency under conditions reported as favorable for the reaction. Different cofactors were evaluated including pyruvic acid, acetone, and hydroxycinnamic acids (p-coumaric, caffeic, ferulic, and sinapic acid) by incubating them with anthocyanins in a molar ratio of 1:30 (anthocyanin:cofactor), pH 3.1, and 45 °C. The impact of the anthocyanin aglycone was evaluated by incubating delphinidin, cyanidin, petunidin, or malvidin derivatives with the most efficient cofactor (caffeic acid) under identical conditions. Pigments were identified using UHPLC-PDA and tandem mass spectrometry, and pyranoanthocyanin formation was monitored for up to 72 h. Pyranoanthocyanin yields were the highest with caffeic acid (~17% at 72 h, p < 0.05). When comparing anthocyanins, malvidin-3-O-glycosides yielded twice as many pyranoanthocyanins after 24 h (~20%, p < 0.01) as cyanidin-3-O-glycosides. Petunidin- and delphinidin-3-O-glycosides yielded <2% pyranoanthocyanins. This study demonstrated the importance of anthocyanin and cofactor selection in pyranoanthocyanin production. Full article
Show Figures

Figure 1

Article
Carnosic Acid Attenuates an Early Increase in ROS Levels during Adipocyte Differentiation by Suppressing Translation of Nox4 and Inducing Translation of Antioxidant Enzymes
Int. J. Mol. Sci. 2021, 22(11), 6096; https://doi.org/10.3390/ijms22116096 - 05 Jun 2021
Cited by 4 | Viewed by 1175
Abstract
The objective of this study was to investigate molecular mechanisms underlying the ability of carnosic acid to attenuate an early increase in reactive oxygen species (ROS) levels during MDI-induced adipocyte differentiation. The levels of superoxide anion and ROS were determined using dihydroethidium (DHE) [...] Read more.
The objective of this study was to investigate molecular mechanisms underlying the ability of carnosic acid to attenuate an early increase in reactive oxygen species (ROS) levels during MDI-induced adipocyte differentiation. The levels of superoxide anion and ROS were determined using dihydroethidium (DHE) and 2′-7′-dichlorofluorescin diacetate (DCFH-DA), respectively. Both superoxide anion and ROS levels peaked on the second day of differentiation. They were suppressed by carnosic acid. Carnosic acid attenuates the translation of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4), p47phox, and p22phox, and the phosphorylation of nuclear factor-kappa B (NF-κB) and NF-κB inhibitor (IkBa). The translocation of NF-κB into the nucleus was also decreased by carnosic acid. In addition, carnosic acid increased the translation of heme oxygenase-1 (HO-1), γ–glutamylcysteine synthetase (γ-GCSc), and glutathione S-transferase (GST) and both the translation and nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Taken together, these results indicate that carnosic acid could down-regulate ROS level in an early stage of MPI-induced adipocyte differentiation by attenuating ROS generation through suppression of NF-κB-mediated translation of Nox4 enzyme and increasing ROS neutralization through induction of Nrf2-mediated translation of phase II antioxidant enzymes such as HO-1, γ-GCS, and GST, leading to its anti-adipogenetic effect. Full article
Show Figures

Graphical abstract

Article
Prenylated Flavonoids with Potential Antimicrobial Activity: Synthesis, Biological Activity, and In Silico Study
Int. J. Mol. Sci. 2021, 22(11), 5472; https://doi.org/10.3390/ijms22115472 - 22 May 2021
Cited by 3 | Viewed by 1174
Abstract
Prenylated flavonoids are an important class of naturally occurring flavonoids with important biological activity, but their low abundance in nature limits their application in medicines. Here, we showed the hemisynthesis and the determination of various biological activities of seven prenylated flavonoids, named 7–13 [...] Read more.
Prenylated flavonoids are an important class of naturally occurring flavonoids with important biological activity, but their low abundance in nature limits their application in medicines. Here, we showed the hemisynthesis and the determination of various biological activities of seven prenylated flavonoids, named 7–13, with an emphasis on antimicrobial ones. Compounds 9, 11, and 12 showed inhibitory activity against human pathogenic fungi. Compounds 11, 12 (flavanones) and 13 (isoflavone) were the most active against clinical isolated Staphylococcus aureus MRSA, showing that structural requirements as prenylation at position C-6 or C-8 and OH at positions C-5, 7, and 4′ are key to the antibacterial activity. The combination of 11 or 12 with commercial antibiotics synergistically enhanced the antibacterial activity of vancomycin, ciprofloxacin, and methicillin in a factor of 10 to 100 times against drug-resistant bacteria. Compound 11 combined with ciprofloxacin was able to decrease the levels of ROS generated by ciprofloxacin. According to docking results of S enantiomer of 11 with ATP-binding cassette transporter showed the most favorable binding energy; however, more studies are needed to support this result. Full article
Show Figures

Graphical abstract

Article
A Phenylacetamide Resveratrol Derivative Exerts Inhibitory Effects on Breast Cancer Cell Growth
Int. J. Mol. Sci. 2021, 22(10), 5255; https://doi.org/10.3390/ijms22105255 - 17 May 2021
Cited by 10 | Viewed by 1083
Abstract
Resveratrol (RSV) is a natural compound that displays several pharmacological properties, including anti-cancer actions. However, its clinical application is limited because of its low solubility and bioavailability. Here, the antiproliferative and anti-inflammatory activity of a series of phenylacetamide RSV derivatives has been evaluated [...] Read more.
Resveratrol (RSV) is a natural compound that displays several pharmacological properties, including anti-cancer actions. However, its clinical application is limited because of its low solubility and bioavailability. Here, the antiproliferative and anti-inflammatory activity of a series of phenylacetamide RSV derivatives has been evaluated in several cancer cell lines. These derivatives contain a monosubstituted aromatic ring that could mimic the RSV phenolic nucleus and a longer flexible chain that could confer a better stability and bioavailability than RSV. Using MTT assay, we demonstrated that most derivatives exerted antiproliferative effects in almost all of the cancer cell lines tested. Among them, derivative 2, that showed greater bioavailability than RSV, was the most active, particularly against estrogen receptor positive (ER+) MCF7 and estrogen receptor negative (ER-) MDA-MB231 breast cancer cell lines. Moreover, we demonstrated that these derivatives, particularly derivative 2, were able to inhibit NO and ROS synthesis and PGE2 secretion in lipopolysaccharide (LPS)-activated U937 human monocytic cells (derived from a histiocytoma). In order to define the molecular mechanisms underlying the antiproliferative effects of derivative 2, we found that it determined cell cycle arrest at the G1 phase, modified the expression of cell cycle regulatory proteins, and ultimately triggered apoptotic cell death in both breast cancer cell lines. Taken together, these results highlight the studied RSV derivatives, particularly derivative 2, as promising tools for the development of new and more bioavailable derivatives useful in the treatment of breast cancer. Full article
Show Figures

Figure 1

Review
Immunological Aspects of SARS-CoV-2 Infection and the Putative Beneficial Role of Vitamin-D
Int. J. Mol. Sci. 2021, 22(10), 5251; https://doi.org/10.3390/ijms22105251 - 16 May 2021
Cited by 13 | Viewed by 3366
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is still an ongoing global health crisis. Immediately after the inhalation of SARS-CoV-2 viral particles, alveolar type II epithelial cells harbor and initiate local innate immunity. These particles can infect circulating [...] Read more.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is still an ongoing global health crisis. Immediately after the inhalation of SARS-CoV-2 viral particles, alveolar type II epithelial cells harbor and initiate local innate immunity. These particles can infect circulating macrophages, which then present the coronavirus antigens to T cells. Subsequently, the activation and differentiation of various types of T cells, as well as uncontrollable cytokine release (also known as cytokine storms), result in tissue destruction and amplification of the immune response. Vitamin D enhances the innate immunity required for combating COVID-19 by activating toll-like receptor 2. It also enhances antimicrobial peptide synthesis, such as through the promotion of the expression and secretion of cathelicidin and β-defensin; promotes autophagy through autophagosome formation; and increases the synthesis of lysosomal degradation enzymes within macrophages. Regarding adaptive immunity, vitamin D enhances CD4+ T cells, suppresses T helper 17 cells, and promotes the production of virus-specific antibodies by activating T cell-dependent B cells. Moreover, vitamin D attenuates the release of pro-inflammatory cytokines by CD4+ T cells through nuclear factor κB signaling, thereby inhibiting the development of a cytokine storm. SARS-CoV-2 enters cells after its spike proteins are bound to angiotensin-converting enzyme 2 (ACE2) receptors. Vitamin D increases the bioavailability and expression of ACE2, which may be responsible for trapping and inactivating the virus. Activation of the renin–angiotensin–aldosterone system (RAS) is responsible for tissue destruction, inflammation, and organ failure related to SARS-CoV-2. Vitamin D inhibits renin expression and serves as a negative RAS regulator. In conclusion, vitamin D defends the body against SARS-CoV-2 through a novel complex mechanism that operates through interactions between the activation of both innate and adaptive immunity, ACE2 expression, and inhibition of the RAS system. Multiple observation studies have shown that serum concentrations of 25 hydroxyvitamin D are inversely correlated with the incidence or severity of COVID-19. The evidence gathered thus far, generally meets Hill’s causality criteria in a biological system, although experimental verification is not sufficient. We speculated that adequate vitamin D supplementation may be essential for mitigating the progression and severity of COVID-19. Future studies are warranted to determine the dosage and effectiveness of vitamin D supplementation among different populations of individuals with COVID-19. Full article
Show Figures

Figure 1

Article
Active Components from Cassia abbreviata Prevent HIV-1 Entry by Distinct Mechanisms of Action
Int. J. Mol. Sci. 2021, 22(9), 5052; https://doi.org/10.3390/ijms22095052 - 10 May 2021
Viewed by 1397
Abstract
Cassia abbreviata is widely used in Sub-Saharan Africa for treating many diseases, including HIV-1 infection. We have recently described the chemical structures of 28 compounds isolated from an alcoholic crude extract of barks and roots of C. abbreviata, and showed that six [...] Read more.
Cassia abbreviata is widely used in Sub-Saharan Africa for treating many diseases, including HIV-1 infection. We have recently described the chemical structures of 28 compounds isolated from an alcoholic crude extract of barks and roots of C. abbreviata, and showed that six bioactive compounds inhibit HIV-1 infection. In the present study, we demonstrate that the six compounds block HIV-1 entry into cells: oleanolic acid, palmitic acid, taxifolin, piceatannol, guibourtinidol-(4α→8)-epiafzelechin, and a novel compound named as cassiabrevone. We report, for the first time, that guibourtinidol-(4α→8)-epiafzelechin and cassiabrevone inhibit HIV-1 entry (IC50 of 42.47 µM and 30.96 µM, respectively), as well as that piceatannol interacts with cellular membranes. Piceatannol inhibits HIV-1 infection in a dual-chamber assay mimicking the female genital tract, as well as HSV infection, emphasizing its potential as a microbicide. Structure-activity relationships (SAR) showed that pharmacophoric groups of piceatannol are strictly required to inhibit HIV-1 entry. By a ligand-based in silico study, we speculated that piceatannol and norartocarpetin may have a very similar mechanism of action and efficacy because of the highly comparable pharmacophoric and 3D space, while guibourtinidol-(4α→8)-epiafzelechin and cassiabrevone may display a different mechanism. We finally show that cassiabrevone plays a major role of the crude extract of CA by blocking the binding activity of HIV-1 gp120 and CD4. Full article
Show Figures

Figure 1

Article
Chrysin Inhibits TNFα-Induced TSLP Expression through Downregulation of EGR1 Expression in Keratinocytes
Int. J. Mol. Sci. 2021, 22(9), 4350; https://doi.org/10.3390/ijms22094350 - 21 Apr 2021
Cited by 3 | Viewed by 1020
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that acts as a critical mediator in the pathogenesis of atopic dermatitis (AD). Various therapeutic agents that prevent TSLP function can efficiently relieve the clinical symptoms of AD. However, the downregulation of TSLP expression [...] Read more.
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that acts as a critical mediator in the pathogenesis of atopic dermatitis (AD). Various therapeutic agents that prevent TSLP function can efficiently relieve the clinical symptoms of AD. However, the downregulation of TSLP expression by therapeutic agents remains poorly understood. In this study, we investigated the mode of action of chrysin in TSLP suppression in an AD-like inflammatory environment. We observed that the transcription factor early growth response (EGR1) contributed to the tumor necrosis factor alpha (TNFα)-induced transcription of TSLP. Chrysin attenuated TNFα-induced TSLP expression by downregulating EGR1 expression in HaCaT keratinocytes. We also showed that the oral administration of chrysin improved AD-like skin lesions in the ear and neck of BALB/c mice challenged with 2,4-dinitrochlorobenzene. We also showed that chrysin suppressed the expression of EGR1 and TSLP by inhibiting the extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK) 1/2 mitogen-activated protein kinase pathways. Collectively, the findings of this study suggest that chrysin improves AD-like skin lesions, at least in part, through the downregulation of the ERK1/2 or JNK1/2-EGR1-TSLP signaling axis in keratinocytes. Full article
Show Figures

Graphical abstract

Article
The Biochemical Pathways of Nicotinamide-Derived Pyridones
Int. J. Mol. Sci. 2021, 22(3), 1145; https://doi.org/10.3390/ijms22031145 - 24 Jan 2021
Cited by 4 | Viewed by 1180
Abstract
As catabolites of nicotinamide possess physiological relevance, pyridones are often included in metabolomics measurements and associated with pathological outcomes in acute kidney injury (AKI). Pyridones are oxidation products of nicotinamide, its methylated form, and its ribosylated form. While they are viewed as markers [...] Read more.
As catabolites of nicotinamide possess physiological relevance, pyridones are often included in metabolomics measurements and associated with pathological outcomes in acute kidney injury (AKI). Pyridones are oxidation products of nicotinamide, its methylated form, and its ribosylated form. While they are viewed as markers of over-oxidation, they are often wrongly reported or mislabeled. To address this, we provide a comprehensive characterization of these catabolites of vitamin B3, justify their nomenclature, and differentiate between the biochemical pathways that lead to their generation. Furthermore, we identify an enzymatic and a chemical process that accounts for the formation of the ribosylated form of these pyridones, known to be cytotoxic. Finally, we demonstrate that the ribosylated form of one of the pyridones, the 4-pyridone-3-carboxamide riboside (4PYR), causes HepG3 cells to die by autophagy; a process that occurs at concentrations that are comparable to physiological concentrations of this species in the plasma in AKI patients. Full article
Show Figures

Graphical abstract

2020

Jump to: 2022, 2021

Article
Double Gamers—Can Modified Natural Regulators of Higher Plants Act as Antagonists against Phytopathogens? The Case of Jasmonic Acid Derivatives
Int. J. Mol. Sci. 2020, 21(22), 8681; https://doi.org/10.3390/ijms21228681 - 17 Nov 2020
Cited by 5 | Viewed by 1026
Abstract
As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant [...] Read more.
As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi. Full article
Show Figures

Graphical abstract

Review
The Beneficial Effects of Morusin, an Isoprene Flavonoid Isolated from the Root Bark of Morus
Int. J. Mol. Sci. 2020, 21(18), 6541; https://doi.org/10.3390/ijms21186541 - 07 Sep 2020
Cited by 8 | Viewed by 1294
Abstract
The root bark of Morus has long been appreciated as an antiphlogistic, diuretic and expectorant drug in Chinese herbal medicine, albeit with barely known targets and mechanisms of action. In the 1970s, the development of analytic chemistry allowed for the discovery of morusin [...] Read more.
The root bark of Morus has long been appreciated as an antiphlogistic, diuretic and expectorant drug in Chinese herbal medicine, albeit with barely known targets and mechanisms of action. In the 1970s, the development of analytic chemistry allowed for the discovery of morusin as one of 7 different isoprene flavonoid derivatives in the root bark of Morus. However, the remarkable antioxidant capacity of morusin with the unexpected potential for health benefits over the other flavonoid derivatives has recently sparked scientific interest in the biochemical identification of target proteins and signaling pathways and further clinical relevance. In this review, we discuss recent advances in the understanding of the functional roles of morusin in multiple biological processes such as inflammation, apoptosis, metabolism and autophagy. We also highlight recent in vivo and in vitro evidence on the clinical potential of morusin treatment for multiple human pathologies including inflammatory diseases, neurological disorders, diabetes, cancer and the underlying mechanisms. Full article
Show Figures

Figure 1

Article
New Methodology for the Identification of Metabolites of Saccharides and Cyclitols by Off-Line EC-MALDI-TOF-MS
Int. J. Mol. Sci. 2020, 21(15), 5265; https://doi.org/10.3390/ijms21155265 - 24 Jul 2020
Cited by 1 | Viewed by 1394
Abstract
A combination of electrochemistry (EC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (off-line EC-MALDI-TOF-MS) was applied for determination of the studied biologically active compounds (D-glucose, D-fructose, D-galactose, D-pinitol, L-chiro-inositol, and myo-inositol) and their possible electrochemical metabolites. In this work, [...] Read more.
A combination of electrochemistry (EC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (off-line EC-MALDI-TOF-MS) was applied for determination of the studied biologically active compounds (D-glucose, D-fructose, D-galactose, D-pinitol, L-chiro-inositol, and myo-inositol) and their possible electrochemical metabolites. In this work, boron-doped diamond electrode (BDD) was used as a working electrode. MALDI-TOF-MS experiments were carried out (both in positive and negative ion modes and using two matrices) to identify the structures of electrochemical products. This was one of the first applications of the EC system for the generation of electrochemical products produced from saccharides and cyclitols. Moreover, exploratory data analysis approaches (correlation networks, hierarchical cluster analysis, weighted plots) were used in order to present differences/similarities between the obtained spectra, regarding the class of analyzed compounds, ionization modes, and used matrices. This work presents the investigation and comparison of fragmentation patterns of sugars, cyclitols, and their respective products generated through the electrochemistry (EC) process. Full article
Show Figures

Graphical abstract

Review
Interactions of Whey Proteins with Metal Ions
Int. J. Mol. Sci. 2020, 21(6), 2156; https://doi.org/10.3390/ijms21062156 - 20 Mar 2020
Cited by 28 | Viewed by 2147
Abstract
Whey proteins tend to interact with metal ions, which have implications in different fields related to human life quality. There are two impacts of such interactions: they can provide opportunities for applications in food and nutraceuticals, but may lead to analytical challenges related [...] Read more.
Whey proteins tend to interact with metal ions, which have implications in different fields related to human life quality. There are two impacts of such interactions: they can provide opportunities for applications in food and nutraceuticals, but may lead to analytical challenges related to their study and outcomes for food processing, storage, and food interactions. Moreover, interactions of whey proteins with metal ions are complicated, requiring deep understanding, leading to consequences, such as metalloproteins, metallocomplexes, nanoparticles, or aggregates, creating a biologically active system. To understand the phenomena of metal–protein interactions, it is important to develop analytical approaches combined with studies of changes in the biological activity and to analyze the impact of such interactions on different fields. The aim of this review was to discuss chemistry of β-lactoglobulin, α-lactalbumin, and lactotransferrin, their interactions with different metal ions, analytical techniques used to study them and the implications for food and nutraceuticals. Full article
Show Figures

Graphical abstract

Back to TopTop