Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

27 pages, 5111 KiB  
Article
Effect of Combined Infrared and Hot Air Drying Strategies on the Quality of Chrysanthemum (Chrysanthemum morifolium Ramat.) Cakes: Drying Behavior, Aroma Profiles and Phenolic Compounds
by Huihuang Xu, Min Wu, Yong Wang, Wenguang Wei, Dongyu Sun, Dong Li, Zhian Zheng and Fei Gao
Foods 2022, 11(15), 2240; https://doi.org/10.3390/foods11152240 - 27 Jul 2022
Cited by 30 | Viewed by 3189
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.) is a seasonal plant with high medicinal and aesthetic value, and drying is an effective practice to enhance its storability after harvesting. The effects of hot air drying (HAD), combined infrared and hot air drying (IR-HAD), and sequential [...] Read more.
Chrysanthemum (Chrysanthemum morifolium Ramat.) is a seasonal plant with high medicinal and aesthetic value, and drying is an effective practice to enhance its storability after harvesting. The effects of hot air drying (HAD), combined infrared and hot air drying (IR-HAD), and sequential IR-HAD and HAD (IR-HAD + HAD) on the drying behavior, color, shrinkage, aroma profiles, phenolic compounds, and microstructure of chrysanthemum cakes were studied. Results showed that the increasing temperature resulted in a decrease in drying time and an increase in drying rate and moisture diffusivity. The Logarithmic and Page models exhibited superior fit in describing the dehydration process. Among the three drying strategies, IR-HAD was more effective in reducing energy consumption, improving shrinkage, water holding capacity, water binding capacity and cellular microstructure, while IR-HAD + HAD showed better inhibitory effect on color deterioration. Furthermore, gas chromatography–mass spectrometry (GC-MS) analysis revealed that different drying strategies dramatically influenced the aroma profiles in samples, and IR-HAD obtained the highest concentration of volatiles. The results of ultra-performance liquid chromatography (UPLC) indicated that the introduction of infrared radiation contributed to increasing the contents of chlorogenic acid, luteolin, total phenolic and flavonoid. These suggested that IR-HAD was a promising technique for drying medicinal chrysanthemum. Full article
Show Figures

Graphical abstract

10 pages, 929 KiB  
Article
Ethanol at Subinhibitory Concentrations Enhances Biofilm Formation in Salmonella Enteritidis
by Shoukui He, Zeqiang Zhan, Chunlei Shi, Siyun Wang and Xianming Shi
Foods 2022, 11(15), 2237; https://doi.org/10.3390/foods11152237 - 27 Jul 2022
Cited by 12 | Viewed by 3789
Abstract
The survival of Salmonella Enteritidis in the food chain is relevant to its biofilm formation capacity, which is influenced by suboptimal environmental conditions. Here, biofilm formation pattern of this bacterium was assessed in the presence of ethanol at sub-minimal inhibitory concentrations (sub-MICs) by [...] Read more.
The survival of Salmonella Enteritidis in the food chain is relevant to its biofilm formation capacity, which is influenced by suboptimal environmental conditions. Here, biofilm formation pattern of this bacterium was assessed in the presence of ethanol at sub-minimal inhibitory concentrations (sub-MICs) by microtiter plate assays, cell characteristic analyses, and gene expression tests. It was observed that ethanol at subinhibitory concentrations (1/4 MIC, 2.5%; 1/2 MIC, 5.0%) was able to stimulate biofilm formation in S. Enteritidis. The OD595 value (optical density at 595 nm) used to quantify biofilm production was increased from 0.14 in control groups to 0.36 and 0.63 under 2.5% and 5.0% ethanol stresses, respectively. Ethanol was also shown to reduce bacterial swimming motility and enhance cell auto-aggregation ability. However, other cell characteristics such as swarming activity, initial attachment and cell surface hydrophobicity were not remarkedly impacted by ethanol. Reverse transcription quantitative real-time PCR (RT-qPCR) analysis further revealed that the luxS gene belonging to a quorum-sensing system was upregulated by 2.49- and 10.08-fold in the presence of 2.5% and 5.0% ethanol, respectively. The relative expression level of other biofilm-related genes (adrA, csgB, csgD, and sdiA) and sRNAs (ArcZ, CsrB, OxyS, and SroC) did not obviously change. Taken together, these findings suggest that decrease in swimming motility and increase in cell auto-aggregation and quorum sensing may result in the enhancement of biofilm formation by S. Enteritidis under sublethal ethanol stress. Full article
(This article belongs to the Special Issue Foodborne Pathogenic Bacteria: Prevalence and Control)
Show Figures

Figure 1

31 pages, 2962 KiB  
Article
Meat Analogues: Relating Structure to Texture and Sensory Perception
by Layla Godschalk-Broers, Guido Sala and Elke Scholten
Foods 2022, 11(15), 2227; https://doi.org/10.3390/foods11152227 - 26 Jul 2022
Cited by 50 | Viewed by 8485
Abstract
The transition from animal to plant proteins is booming, and the development of meat analogues or alternatives quickly progressing. However, the acceptance of meat analogues by consumers is still limited, mainly due to disappointing organoleptic properties of these foods. The objective of this [...] Read more.
The transition from animal to plant proteins is booming, and the development of meat analogues or alternatives quickly progressing. However, the acceptance of meat analogues by consumers is still limited, mainly due to disappointing organoleptic properties of these foods. The objective of this study was to investigate possible relationships among structure, textural characteristics, consumer acceptance, and sensory evaluation of commercially available meat analogues. The microstructure and texture of 13 chicken analogue pieces and 14 analogue burgers were evaluated with confocal laser scanning microscopy (CLSM) and texture profile analysis (TPA). The moisture of the samples was related to cooking losses and release of liquid upon compression after cooking. Meat products were included as references. A sensory panel (n = 71) evaluated both flavour and texture characteristics. For the chicken analogue pieces, samples with more added fibres had a harder and chewier texture but were less cohesive. No other relations between composition and structure/texture could be found. In the sensory evaluation, lower hardness and chewiness were only seen in products with more fat. A lower sensory hardness was found to be related to the presence of small air pockets. For analogue burgers, there was no clear relation between composition and structure/texture. However, instrumentally measured hardness, chewiness, and cohesiveness correlated well with the corresponding sensory attributes, even though they could not be clearly linked to a structural feature. Next to this, fat content showed a clear correlation to perceived fattiness. CLSM images of burgers with high perceived fattiness showed large areas of fat. Therefore, the release of large fat pools from the meat was most likely responsible for the perception of this attribute. However, perceived fattiness was not related to liking, which was the case also for chicken analogue pieces. For both pieces and burgers, even if some of the measured textural attributes could be linked to the sensory profile, the textural attributes in question could not explain the liking scores. Liking was related to other aspects, such as meaty flavour and juiciness, which were not directly linked to compositional or textural features. Juiciness was not directly related to the moisture loss of the products, indicating that this attribute is rather complex and probably involves a combination of characteristics. These results show that to increase the appreciation of meat analogues by consumers, improving simple texture attributes is not sufficient. Controlling sensory attributes with complex cross-modal perception is probably more important. Full article
(This article belongs to the Special Issue Sensory Analysis of Plant-Based Products)
Show Figures

Figure 1

21 pages, 803 KiB  
Article
Improving Soy Sauce Aroma Using High Hydrostatic Pressure and the Preliminary Mechanism
by Yaqiong Zhang, Zhi-Hong Zhang, Ronghai He, Riyi Xu, Lei Zhang and Xianli Gao
Foods 2022, 11(15), 2190; https://doi.org/10.3390/foods11152190 - 23 Jul 2022
Cited by 33 | Viewed by 2938
Abstract
Using high hydrostatic pressure (HHP) to treat liquid foods can improve their aroma; however, no information about the effects of HHP on soy sauce aroma has yet been reported. The effects of HHP on the aroma of soy sauce fermented for 30 d [...] Read more.
Using high hydrostatic pressure (HHP) to treat liquid foods can improve their aroma; however, no information about the effects of HHP on soy sauce aroma has yet been reported. The effects of HHP on the aroma of soy sauce fermented for 30 d were investigated using quantitative descriptive analysis (QDA), SPME–GC–olfactometry/MS, hierarchical cluster analysis (HCA) and principal component analysis (PCA). Results showed that the pressure used during HHP treatment had a greater influence on soy sauce aroma than the duration of HHP. Compared to the control, soy sauce that was treated with HHP at 400 MPa for 30 min (HHP400–30) obtained the highest sensory score (33% higher) by increasing its sour (7%), malty (9%), floral (27%) and caramel-like (47%) aromas, while decreasing its alcoholic (6%), fruity (6%) and smoky (12%) aromas; moreover, the aroma of HHP400–30 soy sauce was comparable with that of soy sauce fermented for 180 d. Further investigation demonstrated that HHP (400 MPa/30 min) enhanced the OAVs of compounds with sour (19%), malty (37%), floral (37%), caramel-like (49%) and other aromas (118%), and lowered the OAVs of compounds with alcoholic (5%), fruity (12%) and smoky (17%) aromas. These results were consistent with the results of the QDA. HHP treatment positively regulated the Maillard, oxidation and hydrolysis reactions in raw soy sauce, which resulted in the improvement and accelerated formation of raw soy sauce aroma. HHP was capable of simultaneously improving raw soy sauce aroma while accelerating its aroma formation, and this could treatment become a new alternative process involved in the production of high-quality soy sauce. Full article
(This article belongs to the Special Issue Application of Emerging Nonthermal Technologies in the Food Industry)
Show Figures

Figure 1

20 pages, 543 KiB  
Article
Olive Pomace Oil versus High Oleic Sunflower Oil and Sunflower Oil: A Comparative Study in Healthy and Cardiovascular Risk Humans
by Susana González-Rámila, Raquel Mateos, Joaquín García-Cordero, Miguel A. Seguido, Laura Bravo-Clemente and Beatriz Sarriá
Foods 2022, 11(15), 2186; https://doi.org/10.3390/foods11152186 - 22 Jul 2022
Cited by 19 | Viewed by 4477
Abstract
Olive pomace oil (OPO) is mainly a source of monounsaturated fat together with a wide variety of bioactive compounds, such as triterpenic acids and dialcohols, squalene, tocopherols, sterols and aliphatic fatty alcohols. To date, two long-term intervention studies have evaluated OPO’s health effects [...] Read more.
Olive pomace oil (OPO) is mainly a source of monounsaturated fat together with a wide variety of bioactive compounds, such as triterpenic acids and dialcohols, squalene, tocopherols, sterols and aliphatic fatty alcohols. To date, two long-term intervention studies have evaluated OPO’s health effects in comparison with high oleic sunflower oil (HOSO, study-1) and sunflower oil (SO, study-2) in healthy and cardiovascular risk subjects. The present study integrates the health effects observed with the three oils. Two randomized, blinded, cross-over controlled clinical trials were carried out in 65 normocholesterolemic and 67 moderately hypercholesterolemic subjects. Each study lasted fourteen weeks, with two four-week intervention phases (OPO versus HOSO or SO), each preceded by a three-week run-in or washout period. Regular OPO consumption reduced total cholesterol (p = 0.017) and LDL cholesterol (p = 0.018) levels as well as waist circumference (p = 0.026), and only within the healthy group did malondialdehyde (p = 0.004) levels decrease after OPO intake versus HOSO. Contrarily, after the SO intervention, apolipoprotein (Apo) B (p < 0.001) and Apo B/Apo A ratio (p < 0.001) increased, and to a lower extent Apo B increased with OPO. There were no differences between the study groups. OPO intake may improve cardiometabolic risk, particularly through reducing cholesterol-related parameters and waist circumference in healthy and hypercholesterolemic subjects. Full article
Show Figures

Figure 1

21 pages, 1838 KiB  
Article
Impact of Protein Content on the Antioxidants, Anti-Inflammatory Properties and Glycemic Index of Wheat and Wheat Bran
by Ivan Jesus Jimenez-Pulido, Rico Daniel, Jara Perez, Cristina Martínez-Villaluenga, Daniel De Luis and Ana Belén Martín Diana
Foods 2022, 11(14), 2049; https://doi.org/10.3390/foods11142049 - 11 Jul 2022
Cited by 22 | Viewed by 2839
Abstract
Conventional wheat milling generates important volumes of wheat bran (WB), which is a concentrated source of polyphenols and insoluble fiber. In terms of health benefits and based on epidemiological and experimental evidence, these compounds contribute to reducing the risk of certain chronic pathologies. [...] Read more.
Conventional wheat milling generates important volumes of wheat bran (WB), which is a concentrated source of polyphenols and insoluble fiber. In terms of health benefits and based on epidemiological and experimental evidence, these compounds contribute to reducing the risk of certain chronic pathologies. Protein concentration is the main quality factor conditioning wheat use in the agroindustry. When turning waste into feasible resources, it is essential to evaluate the variability of the raw material. The aim of this study was the evaluation of the impact of protein content in the valorization of WB based on its antioxidants, anti-inflammatory properties and glycemic index (GI). A significantly (p ≤ 0.05) lower content of phenolic compounds was found in the whole grain (WG) fractions, both free (FP) and bound (BP), as compared to the WB phenolic fractions, differences that ranged from 4- to 6-fold (538 to 561 mg GAE 100 g−1 in WG vs. 1027 to 1236 in WB mg GAE 100 g−1 in FP and 2245 to 2378 vs. 6344 to 7232 mg GAE 100 g−1 in BP). A significant (p ≤ 0.05) effect of the protein content on the resulting phenolic content and antioxidant capacity was observed, especially in WG, but also in WB, although in the latter a significant (p ≤ 0.05) negative correlation was observed, and increasing the protein content resulted in decreasing total phenolic content, antioxidants, and ferric-reducing capacities, probably due to their different types of proteins. The highest protein content in WB produced a significant (p ≤ 0.05) reduction in GI value, probably due to the role of protein structure in protecting starch from gelatinization, along with phytic acid, which may bind to proteins closely associated to starch and chelate calcium ions, required for α-amylase activity. A significant (p ≤ 0.05) effect of the protein content on the GI was also found, which may be explained by the structural effect of the proteins associated with starch, reducing the GI (21.64). The results obtained show the importance of segregation of WB in valorization strategies in order to increase the efficiency of the processes. Full article
(This article belongs to the Special Issue Bioactive Compounds, Antioxidants, and Health Benefits)
Show Figures

Figure 1

16 pages, 1258 KiB  
Article
Seasonal Occurrence of Aflatoxin M1 in Raw Milk during a Five-Year Period in Croatia: Dietary Exposure and Risk Assessment
by Nina Bilandžić, Ines Varga, Ivana Varenina, Božica Solomun Kolanović, Đurđica Božić Luburić, Maja Đokić, Marija Sedak, Luka Cvetnić and Željko Cvetnić
Foods 2022, 11(13), 1959; https://doi.org/10.3390/foods11131959 - 1 Jul 2022
Cited by 14 | Viewed by 2334
Abstract
This study’s objective was to estimate the seasonal occurrence of aflatoxin M1 (AFM1) in cow’s milk between winter 2016 and winter 2022 and to assess dietary exposure and risk assessment for the adult Croatian population. In total, 5817 cow milk [...] Read more.
This study’s objective was to estimate the seasonal occurrence of aflatoxin M1 (AFM1) in cow’s milk between winter 2016 and winter 2022 and to assess dietary exposure and risk assessment for the adult Croatian population. In total, 5817 cow milk samples were screened for AFM1 concentrations using the enzyme immunoassay assay (ELISA). For confirmation purposes of AFM1 concentration above the European Union maximum permitted level (MRL), ultra high-performance liquid chromatography with tandem mass spectrometry was performed. In 94.7% of milk samples, AFM1 levels were below the detection limit (LOD) of the ELISA test. For 3.47% of samples, the AFM1 was between the LOD and MRL values. Only 1.87% of all samples exceeded the MRL. The mean value of elevated AFM1 in different seasons ranged between 59.2 ng/kg (autumn 2017) and 387.8 ng/kg (autumn 2021). The highest incidences of positive AFM1 were determined in autumn and winter and the maximum (6.4%) was in winter 2019/2020. The largest percentage of positive samples (69.7%) was found in central Croatia. The estimated daily intakes for positive samples ranged between 0.17 and 2.82 ng/kg body weight/day. Risk assessment indicated a high level of concern during autumn and winter, especially for consumers of large amounts of milk. Full article
(This article belongs to the Special Issue Food Mycotoxins and Related Toxicology Research)
Show Figures

Figure 1

20 pages, 1886 KiB  
Article
Effect of Six Lactic Acid Bacteria Strains on Physicochemical Characteristics, Antioxidant Activities and Sensory Properties of Fermented Orange Juices
by Qi Quan, Wei Liu, Jiajing Guo, Meiling Ye and Juhua Zhang
Foods 2022, 11(13), 1920; https://doi.org/10.3390/foods11131920 - 28 Jun 2022
Cited by 33 | Viewed by 3263
Abstract
Six lactic acid bacteria strains were used to study the effects on physicochemical characteristics, antioxidant activities and sensory properties of fermented orange juices. All strains exhibited good growth in orange juice. Of these fermentations, some bioactive compositions (e.g., vitamin C, shikimic acid) and [...] Read more.
Six lactic acid bacteria strains were used to study the effects on physicochemical characteristics, antioxidant activities and sensory properties of fermented orange juices. All strains exhibited good growth in orange juice. Of these fermentations, some bioactive compositions (e.g., vitamin C, shikimic acid) and aroma-active compounds (e.g., linalool, 3-carene, ethyl 3-hydroxyhexanoate, etc.) significantly increased in Lactiplantibacillus plantarum and Lactobacillus acidophilus samples. DPPH free radical scavenging rates in L. plantarum and Lacticaseibacillus paracasei samples increased to 80.25% and 77.83%, respectively. Forty-three volatile profiles were identified, including 28 aroma-active compounds. 7 key factors significantly influencing sensory flavors of the juices were revealed, including D-limonene, linalool, ethyl butyrate, ethanol, β-caryophyllene, organic acids and SSC/TA ratio. The orange juice fermented by L. paracasei, with more optimization aroma-active compounds such as D-limonene, β-caryophyllene, terpinolene and β-myrcene, exhibited more desirable aroma flavors such as orange-like, green, woody and lilac incense, and gained the highest sensory score. Generally, L. paracasei fermentation presented better aroma flavors and overall acceptability, meanwhile enhancing antioxidant activities. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

12 pages, 1058 KiB  
Article
The Effect of Pressure–Shift Freezing versus Air Freezing and Liquid Immersion on the Quality of Frozen Fish during Storage
by Ting Li, Shiyao Kuang, Ting Xiao, Lihui Hu, Pengcheng Nie, Hosahalli S. Ramaswamy and Yong Yu
Foods 2022, 11(13), 1842; https://doi.org/10.3390/foods11131842 - 22 Jun 2022
Cited by 17 | Viewed by 2611
Abstract
In this study, a self-cooling laboratory system was used for pressure–shift freezing (PSF), and the effects of pressure–shift freezing (PSF) at 150 MPa on the quality of largemouth bass (Micropterus salmoides) during frozen storage at −30 °C were evaluated and compared with those [...] Read more.
In this study, a self-cooling laboratory system was used for pressure–shift freezing (PSF), and the effects of pressure–shift freezing (PSF) at 150 MPa on the quality of largemouth bass (Micropterus salmoides) during frozen storage at −30 °C were evaluated and compared with those of conventional air freezing (CAF) and liquid immersion freezing (LIF). The evaluated thawing loss and cooking loss of PSF were significantly lower than those of CAF and LIF during the whole frozen storage period. The thawing loss, L* value, b* value and TBARS of the frozen fish increased during the storage. After 28 days storage, the TBARS values of LIF and CAF were 0.54 and 0.65, respectively, significantly higher (p < 0.05) than the 0.25 observed for PSF. The pH of the samples showed a decreasing trend at first but then increased during the storage, and the CAF had the fastest increasing trend. Based on Raman spectra, the secondary structure of the protein in the PSF-treated samples was considered more stable. The α-helix content of the protein in the unfrozen sample was 59.3 ± 7.22, which decreased after 28 days of frozen storage for PSF, LIF and CAF to 48.5 ± 3.43, 39.1 ± 2.35 and 33.4 ± 4.21, respectively. The results showed that the quality of largemouth bass treated with PSF was better than LIT and CAF during the frozen storage. Full article
(This article belongs to the Special Issue Green Processing Technology of Meat and Meat Products)
Show Figures

Figure 1

14 pages, 1758 KiB  
Article
Bacterial Diversity and Lactic Acid Bacteria with High Alcohol Tolerance in the Fermented Grains of Soy Sauce Aroma Type Baijiu in North China
by Jiali Wang, Chengshun Lu, Qiang Xu, Zhongyuan Li, Yajian Song, Sa Zhou, Tongcun Zhang and Xuegang Luo
Foods 2022, 11(12), 1794; https://doi.org/10.3390/foods11121794 - 17 Jun 2022
Cited by 26 | Viewed by 2822
Abstract
Soy sauce aroma type baijiu (also known as Maotai-flavor baijiu) is one of the most popular types of baijiu in China. Traditionally, it is mainly produced in Southwest China. However, in recent decades, some other regions in China have also been able to [...] Read more.
Soy sauce aroma type baijiu (also known as Maotai-flavor baijiu) is one of the most popular types of baijiu in China. Traditionally, it is mainly produced in Southwest China. However, in recent decades, some other regions in China have also been able to produce high-quality soy sauce aroma type baijiu, but their microbial flora characteristics during fermentation are still unclear. Here, the bacterial microbial community structure of fermented grains in different rounds of Lutaichun soy sauce aroma type baijiu produced in North China was studied by high-throughput sequencing technology, and the potential probiotics strains with good characteristics (alcohol tolerance, etc.) were screened. The results showed that lactic acid bacteria were the main bacteria in the process of baijiu fermentation. However, as the number of repeated fermentation rounds increased, the proportion of lactic acid bacteria decreased. Firmicutes (96.81%) were the main bacteria in baijiu fermentation at the phylum level, and Lactobacillus (66.50%) were the main bacteria at the genus level. Finally, two strains with high resistance to alcohol stress, Lactiplantibacillus plantarum LTJ12 and Pediococcus acidilactici LTJ28, were screened from 48 strains of lactic acid bacteria in the fermented grains. The survival rates of L. plantarum LTJ12 and P. acidilactici LTJ28 under the 8% alcohol stress treatment were 59.01% and 55.50%, respectively. To the best of our knowledge, this study is the first to reveal the microbial succession of fermented grains in different rounds of soy sauce aroma type baijiu from North China, and has the benefit of explaining the deep molecular mechanism in the process of baijiu fermentation. In addition, the obtained lactic acid bacteria strains with high alcohol tolerance could be conducive to the development of new products such as active probiotic alcoholic beverages and may have important industrial development prospects also. Full article
Show Figures

Figure 1

10 pages, 1928 KiB  
Article
Classification of Tea Quality Levels Using Near-Infrared Spectroscopy Based on CLPSO-SVM
by Yuhan Ding, Yuli Yan, Jun Li, Xu Chen and Hui Jiang
Foods 2022, 11(11), 1658; https://doi.org/10.3390/foods11111658 - 5 Jun 2022
Cited by 26 | Viewed by 2718
Abstract
In this paper, we propose a method for classifying tea quality levels based on near-infrared spectroscopy. Firstly, the absorbance spectra of Huangshan Maofeng tea samples were obtained in a wavenumber range of 10,000~4000 cm−1 using near-infrared spectroscopy. The spectral data were then [...] Read more.
In this paper, we propose a method for classifying tea quality levels based on near-infrared spectroscopy. Firstly, the absorbance spectra of Huangshan Maofeng tea samples were obtained in a wavenumber range of 10,000~4000 cm−1 using near-infrared spectroscopy. The spectral data were then converted to transmittance and smoothed using the Savitzky–Golay (SG) algorithm. The denoised transmittance spectra were dimensionally reduced using principal component analysis (PCA). The characteristic variables obtained using PCA were used as the input variables and the tea level was used as the output to establish a support vector machine (SVM) classification model. The penalty factor c and the kernel function parameter g in the SVM model were optimized using particle swarm optimization (PSO) and comprehensive-learning particle swarm optimization (CLPSO) algorithms. The final experimental results show that the CLPSO-SVM method had the best classification performance, and the classification accuracy reached 99.17%. Full article
Show Figures

Graphical abstract

20 pages, 2489 KiB  
Article
Metabolomics Combined with Transcriptomics Analysis Revealed the Amino Acids, Phenolic Acids, and Flavonol Derivatives Biosynthesis Network in Developing Rosa roxburghii Fruit
by Nanyu Li, Lanlan Jiang, Yiyi Liu, Shimei Zou, Min Lu and Huaming An
Foods 2022, 11(11), 1639; https://doi.org/10.3390/foods11111639 - 1 Jun 2022
Cited by 19 | Viewed by 2994
Abstract
Rosa roxburghii Tratt. is a specific fruit with high nutritional value and antioxidative activities. However, the key metabolites and their biosynthesis are still unknown. Herein, a main cultivated variety, ‘Guinong 5’ (Rr5), was chosen to analyze the metabolomics of the three developmental stages [...] Read more.
Rosa roxburghii Tratt. is a specific fruit with high nutritional value and antioxidative activities. However, the key metabolites and their biosynthesis are still unknown. Herein, a main cultivated variety, ‘Guinong 5’ (Rr5), was chosen to analyze the metabolomics of the three developmental stages of R. roxburghii fruit by liquid chromatography–tandem mass spectrometry (LC-MS/MS). A total of 533 metabolites were identified, of which 339 were significantly altered. Total phenols, flavonoids, and amino acids were significantly correlated to at least one in vitro antioxidant activity. The conjoint Kyoto Encyclopedia of Genes and Genomes (KEGG) co-enrichment analysis of metabolome and transcriptome was focused on amino acid, phenylpropanoid, and flavonoid biosynthesis pathways. The amino acid, phenolic acid, and flavonol biosynthesis networks were constructed with 32 structural genes, 48 RrMYBs, and 23 metabolites. Of these, six RrMYBs correlated to 9–15 metabolites in the network were selected to detect the gene expression in six different R. roxburghii genotypes fruits. Subsequently, 21 key metabolites were identified in the in vitro antioxidant activities in the fruits at various developmental stages or in fruits of different R. roxburghii genotypes. We found that four key RrMYBs were related to the significantly varied amino acids, phenolic acids, and flavonol derivatives in the network during fruit development and the key metabolites in the in vitro antioxidative activities in the fruits of six R. roxburghii genotypes. This finding provided novel insights into the flavonoid, polyphenol, and amino acid synthesis in R. roxburghii. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

16 pages, 3225 KiB  
Article
Comparison of Different Drying Methods on the Volatile Components of Ginger (Zingiber officinale Roscoe) by HS-GC-MS Coupled with Fast GC E-Nose
by Dai-Xin Yu, Sheng Guo, Jie-Mei Wang, Hui Yan, Zhen-Yu Zhang, Jian Yang and Jin-Ao Duan
Foods 2022, 11(11), 1611; https://doi.org/10.3390/foods11111611 - 30 May 2022
Cited by 33 | Viewed by 3993
Abstract
Ginger (Zingiber officinale Roscoe) is one of the most popular spices in the world, with its unique odor. Due to its health benefits, ginger is also widely used as a dietary supplement and herbal medicine. In this study, the main flavor components [...] Read more.
Ginger (Zingiber officinale Roscoe) is one of the most popular spices in the world, with its unique odor. Due to its health benefits, ginger is also widely used as a dietary supplement and herbal medicine. In this study, the main flavor components of gingers processed by different drying methods including hot air drying, vacuum drying, sun-drying, and vacuum-freeze drying, were identified on the basis of headspace-gas chromatography coupled with mass spectrometry (HS-GC-MS) and fast gas chromatography electronic-nose (fast GC e-nose) techniques. The results showed that the ginger dried by hot air drying exhibited high contents of volatile compounds and retained the richest odor in comparison with those dried by other methods, which indicated that hot air drying is more suitable for the production of dried ginger. Sensory description by fast GC e-nose exhibited that ginger flavor was mainly concentrated in the spicy, sweet, minty, fruity, and herbaceous odor. The relative content of the zingiberene was significantly higher in the hot air drying sample than those by other methods, suggesting that dried ginger by hot air drying can retain more unique spicy and pungent odorants. Furthermore, the results of chemometrics analyses showed that the main variance components among the samples by different drying methods were α-naginatene, (+)-cyclosativene, and sulcatone in HS-GC-MS analysis, and α-terpinen-7-al, dimethyl sulfide, and citronellal in fast GC e-nose analysis. For comparison of fresh and dried gingers, terpinolene, terpinen-4-ol, 2,4-decadienal, (E, Z)-, and linalool were considered the main variance components. This study generated a better understanding of the flavor characteristics of gingers by different drying methods and could provide a guide for drying and processing of ginger. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

15 pages, 2568 KiB  
Article
Storage Stability of Conventional and High Internal Phase Emulsions Stabilized Solely by Chickpea Aquafaba
by Graziele Grossi Bovi Karatay, Andrêssa Maria Medeiros Theóphilo Galvão and Miriam Dupas Hubinger
Foods 2022, 11(11), 1588; https://doi.org/10.3390/foods11111588 - 28 May 2022
Cited by 14 | Viewed by 2946
Abstract
Aquafaba is a liquid residue of cooked pulses, which is generally discarded as waste. However, it is rich in proteins and, thus, can be used as a plant-based emulsifier to structure vegetable oil. This study investigates chickpea aquafaba (CA) as an agent to [...] Read more.
Aquafaba is a liquid residue of cooked pulses, which is generally discarded as waste. However, it is rich in proteins and, thus, can be used as a plant-based emulsifier to structure vegetable oil. This study investigates chickpea aquafaba (CA) as an agent to structure different oil phase volumes (Φ) of canola oil (CO). CO was structured in the form of conventional emulsions (EΦ65% and EΦ70%) and high internal phase emulsion (HIPE) (EΦ75%) by the one-pot homogenization method. Emulsions were evaluated for a period of 60 days at 25 °C in terms of average droplet size (11.0–15.9 µm), microscopy, rheological properties, and oil loss (<1.5%). All systems presented predominantly elastic behavior and high resistance to coalescence. EΦ75% was the most stable system throughout the 60 days of storage. This study developed an inexpensive and easy to prepare potential substitute for saturated and trans-fat in food products. Moreover, it showed a valuable utilization of an often-wasted by-product and its conversion into a food ingredient. Full article
(This article belongs to the Special Issue Foods: 10th Anniversary)
Show Figures

Figure 1

12 pages, 8122 KiB  
Article
Screening and Probiotic Potential Evaluation of Bacteriocin-Producing Lactiplantibacillus plantarum In Vitro
by Yushan Bu, Yisuo Liu, Yinxue Liu, Shaolei Wang, Qiqi Liu, Haining Hao and Huaxi Yi
Foods 2022, 11(11), 1575; https://doi.org/10.3390/foods11111575 - 27 May 2022
Cited by 17 | Viewed by 3119
Abstract
Probiotics are gaining attention due to their functions of regulating the intestinal barrier and promoting human health. The production of bacteriocins is one of the important factors for probiotics to exert beneficial properties. This study aimed to screen bacteriocin-producing Lactiplantibacillus plantarum and evaluate [...] Read more.
Probiotics are gaining attention due to their functions of regulating the intestinal barrier and promoting human health. The production of bacteriocins is one of the important factors for probiotics to exert beneficial properties. This study aimed to screen bacteriocin-producing Lactiplantibacillus plantarum and evaluate the probiotic potential in vitro. It was found that L. plantarum Q7, L. plantarum F3-2 and L. plantarum YRL45 could produce bacteriocins and inhibit common intestinal pathogens. These three strains had probiotic potential with tolerance to the gastrointestinal environmental and colonization in the gut, and exhibited various degrees of anti-inflammatory activity and tight junction function in the intestinal barrier. Particularly, L. plantarum YRL45 could significantly (p < 0.05) reduce the increase in nitric oxide (NO), prostaglandin E2 (PGE2), necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) induced by lipopolysaccharide (LPS), thereby easing inflammatory response. L. plantarum F3-2 could remarkably (p < 0.05) up-regulate the expression levels of ZO-1, Occludin and Claudin-1 in intestinal epithelial injured cells, which was conducive to protecting the intestinal barrier. These findings provided fundamental information about the probiotic properties of bacteriocin-producing L. plantarum, which suggested that L. plantarum Q7, L. plantarum F3-2 and L. plantarum YRL45 had the potential to be used as novel probiotic strains. Full article
(This article belongs to the Collection Probiotics Research and Innovation in Functional Food Production)
Show Figures

Figure 1

12 pages, 1661 KiB  
Article
Prediction of ACE-I Inhibitory Peptides Derived from Chickpea (Cicer arietinum L.): In Silico Assessments Using Simulated Enzymatic Hydrolysis, Molecular Docking and ADMET Evaluation
by Jesús Gilberto Arámburo-Gálvez, Aldo Alejandro Arvizu-Flores, Feliznando Isidro Cárdenas-Torres, Francisco Cabrera-Chávez, Giovanni I. Ramírez-Torres, Lilian Karem Flores-Mendoza, Pedro Erick Gastelum-Acosta, Oscar Gerardo Figueroa-Salcido and Noé Ontiveros
Foods 2022, 11(11), 1576; https://doi.org/10.3390/foods11111576 - 27 May 2022
Cited by 25 | Viewed by 3217
Abstract
Chickpea (Cicer arietinum L.) peptides have shown in vitro potential to inhibit the angiotensin I-converting enzyme (ACE-I). However, the potential molecular interactions between chickpea peptides (CP) and ACE-I as well as their ADMET (absorption/distribution/metabolism/excretion/toxicity) characteristics remain unknown. Thus, our aim was to [...] Read more.
Chickpea (Cicer arietinum L.) peptides have shown in vitro potential to inhibit the angiotensin I-converting enzyme (ACE-I). However, the potential molecular interactions between chickpea peptides (CP) and ACE-I as well as their ADMET (absorption/distribution/metabolism/excretion/toxicity) characteristics remain unknown. Thus, our aim was to study the in silico interactions of CP with ACE-I and the CP ADMET characteristics. Legumin and provicilin sequences were submitted to in silico analysis to search for ACE-I inhibitory peptides. Simulated enzymatic hydrolysis was performed using the BIOPEP-UWM database, and the ACE-I inhibitory peptides generated (EC50 ≤ 200 μM) were selected to perform molecular docking and ADMET analysis. After hydrolysis, 59 out of 381 peptides with ACE-I inhibitory potential were released. Based on A and B parameters, the legumin peptides showed better ACE-I inhibitory potential than the provicilin ones. CP mainly interact with residues from pocket S1 (Ala354/Glu384) and S2 (His353/His513) through hydrogen bonds (distances < 3.0 Å) and hydrophobic interactions (binding energy from −5.7 to −9.2 kcal/mol). Through ADMET analysis, CP showed optimal values for inhibiting ACE-I in vivo. ACE-I inhibitory peptides from legumin and provicilin can bind strongly and tightly to the active site of ACE-I. Further studies to evaluate in vivo the antihypertensive effects of CP are warranted. Full article
Show Figures

Figure 1

17 pages, 3667 KiB  
Article
Application of Xanthan-Gum-Based Edible Coating Incorporated with Litsea cubeba Essential Oil Nanoliposomes in Salmon Preservation
by Haiying Cui, Mei Yang, Ce Shi, Changzhu Li and Lin Lin
Foods 2022, 11(11), 1535; https://doi.org/10.3390/foods11111535 - 24 May 2022
Cited by 31 | Viewed by 3504
Abstract
Salmon is prone to be contaminated by Vibrio parahaemolyticus (V. parahaemolyticus), leading to the deterioration of salmon quality and the occurrence of food-borne diseases. In this study, we aimed to develop a novel xanthan-gum-based edible coating embedded with nano-encapsulated Litsea cubeba [...] Read more.
Salmon is prone to be contaminated by Vibrio parahaemolyticus (V. parahaemolyticus), leading to the deterioration of salmon quality and the occurrence of food-borne diseases. In this study, we aimed to develop a novel xanthan-gum-based edible coating embedded with nano-encapsulated Litsea cubeba essential oil (LC-EO) for salmon preservation at 4 °C. First, the results of the growth curves and scanning electron microscopy (SEM) showed that LC-EO displayed potent antibacterial activity against V. parahaemolyticus; the optimal concentration of LC-EO in the liposomes was 5 mg/mL, and the maximal encapsulation efficiency (EE) was 37.8%. The particle size, polydispersity coefficient (PDI), and zeta potential of the liposomes were 168.10 nm, 0.250, and −32.14 mV, respectively. The rheological test results of xanthan-gum-based edible coatings incorporating liposomes showed that the prepared coating was suitable for applying on food surfaces. The results in the challenge test at 4 °C demonstrated that the treatment of 1:3 (liposome: xanthan gum, v/v) coating performed the best preservative properties, the coating treatment delayed the oxidation of salmon, and controlled the growth of V. parahaemolyticus. These findings suggest that the coatings formulated in this study could be used as a promising approach to control V. parahaemolyticus contamination and maintain salmon quality. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

14 pages, 2412 KiB  
Article
Comparative Analysis of Volatile Compounds in Tieguanyin with Different Types Based on HS–SPME–GC–MS
by Lin Zeng, Yanqing Fu, Jinshui Huang, Jianren Wang, Shan Jin, Junfeng Yin and Yongquan Xu
Foods 2022, 11(11), 1530; https://doi.org/10.3390/foods11111530 - 24 May 2022
Cited by 36 | Viewed by 3723
Abstract
Tieguanyin (TGY) is one kind of oolong tea that is widely appreciated for its aroma and taste. To study the difference of volatile compounds among different types of TGY and other oolong teas, solid-phase microextraction–gas chromatography–mass spectrometry and chemometrics analysis were conducted in [...] Read more.
Tieguanyin (TGY) is one kind of oolong tea that is widely appreciated for its aroma and taste. To study the difference of volatile compounds among different types of TGY and other oolong teas, solid-phase microextraction–gas chromatography–mass spectrometry and chemometrics analysis were conducted in this experiment. Based on variable importance in projection > 1 and aroma character impact > 1, the contents of heptanal (1.60–2.79 μg/L), (E,E)-2,4-heptadienal (34.15–70.68 μg/L), (E)-2-octenal (1.57–2.94 μg/L), indole (48.44–122.21 μg/L), and (E)-nerolidol (32.64–96.63 μg/L) in TGY were higher than in other varieties. With the increase in tea fermentation, the total content of volatile compounds decreased slightly, mainly losing floral compounds. Heavily fermented tea contained a higher content of monoterpenoids, whereas low-fermentation tea contained higher contents of sesquiterpenes and indole, which could well distinguish the degree of TGY fermentation. Besides, the volatiles analysis of different grades of TGY showed that the special-grade tea contained more aroma compounds, mainly alcohols (28%). (E,E)-2,4-Heptadienal, (E)-2-octenal, benzeneacetaldehyde, and (E)-nerolidol were the key volatile compounds to distinguish different grades of TGY. The results obtained in this study could help enrich the theoretical basis of aroma substances in TGY. Full article
(This article belongs to the Special Issue Advances on Tea Chemistry and Function)
Show Figures

Figure 1

16 pages, 2688 KiB  
Article
Effects of Soybean Oil Body as a Milk Fat Substitute on Ice Cream: Physicochemical, Sensory and Digestive Properties
by Wan Wang, Min Wang, Cong Xu, Zhijing Liu, Liya Gu, Jiage Ma, Lianzhou Jiang, Zhanmei Jiang and Juncai Hou
Foods 2022, 11(10), 1504; https://doi.org/10.3390/foods11101504 - 22 May 2022
Cited by 34 | Viewed by 4278
Abstract
Soybean oil body (SOB) has potential as a milk fat substitute due to its ideal emulsification, stability and potential biological activity. In this study, SOB was used as a milk fat substitute to prepare ice cream, expecting to reduce the content of saturated [...] Read more.
Soybean oil body (SOB) has potential as a milk fat substitute due to its ideal emulsification, stability and potential biological activity. In this study, SOB was used as a milk fat substitute to prepare ice cream, expecting to reduce the content of saturated fatty acid and improve the quality defects of ice cream products caused by the poor stability of milk fat at low temperatures. This study investigated the effect of SOB as a milk fat substitute (the substitution amount was 10–50%) on ice cream through apparent viscosity, particle size, overrun, melting, texture, sensory and digestive properties. The results show SOB substitution for milk fat significantly increased the apparent viscosity and droplet uniformity and decreased the particle size of the ice cream mixes, indicating that there were lots of intermolecular interactions to improve ice cream stability. In addition, ice cream with 30% to 50% SOB substitution had better melting properties and texture characteristics. The ice cream with 40% SOB substitution had the highest overall acceptability. Furthermore, SOB substitution for milk fat increased unsaturated fatty acid content in ice cream and fatty acid release during digestion, which had potential health benefits for consumers. Therefore, SOB as a milk fat substitute may be an effective way to improve the nutritional value and quality characteristics of dairy products. Full article
(This article belongs to the Special Issue Lipid Delivery System and Functional Food)
Show Figures

Graphical abstract

17 pages, 4207 KiB  
Article
Astragalin and Isoquercitrin Isolated from Aster scaber Suppress LPS-Induced Neuroinflammatory Responses in Microglia and Mice
by Eun Hae Kim, Youn Young Shim, Hye In Lee, Sanghyun Lee, Martin J. T. Reaney and Mi Ja Chung
Foods 2022, 11(10), 1505; https://doi.org/10.3390/foods11101505 - 22 May 2022
Cited by 21 | Viewed by 2622
Abstract
The current study investigated the anti-neuroinflammatory effects and mechanisms of astragalin (Ast) and isoquercitrin (Que) isolated from chamchwi (Aster scaber Thunb.) in the lipopolysaccharide (LPS)-activated microglia and hippocampus of LPS induced mice. LPS induced increased cytotoxicity, nitric oxide (NO) production, antioxidant activity, [...] Read more.
The current study investigated the anti-neuroinflammatory effects and mechanisms of astragalin (Ast) and isoquercitrin (Que) isolated from chamchwi (Aster scaber Thunb.) in the lipopolysaccharide (LPS)-activated microglia and hippocampus of LPS induced mice. LPS induced increased cytotoxicity, nitric oxide (NO) production, antioxidant activity, reactive oxygen species (ROS), inducible nitric oxide synthase (iNOS) expression, the release of pro-inflammatory cytokines, protein kinase B phosphorylation, and mitogen-activated protein kinases (MAPK) phosphorylation in LPS-treated microglial cells. Intraperitoneal injection of LPS also induced neuroinflammatory effects in the murine hippocampus. Ast and Que significantly reduced LPS-induced production of NO, iNOS, and pro-inflammatory cytokines in the microglia and hippocampus of mice. Therefore, anti-inflammatory effects on MAPK signaling pathways mediate microglial cell and hippocampus inflammation. In LPS-activated microglia and hippocampus of LPS-induced mice, Ast or Que inhibited MAPK kinase phosphorylation by extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 signaling proteins. Ast and Que inhibited LPS-induced ROS generation in microglia and increased 1,1-diphenyl-2-picrylhydrazyl radical scavenging. In addition, LPS treatment increased the heme oxygenase-1 level, which was further elevated after Ast or Que treatments. Ast and Que exert anti-neuroinflammatory activity by down-regulation of MAPKs signaling pathways in LPS-activated microglia and hippocampus of mice. Full article
(This article belongs to the Special Issue Functional Food and Bioactive Food Components)
Show Figures

Figure 1

13 pages, 1290 KiB  
Article
Saponification Value of Fats and Oils as Determined from 1H-NMR Data: The Case of Dairy Fats
by Mihaela Ivanova, Anamaria Hanganu, Raluca Dumitriu, Mihaela Tociu, Galin Ivanov, Cristina Stavarache, Liliana Popescu, Aliona Ghendov-Mosanu, Rodica Sturza, Calin Deleanu and Nicoleta-Aurelia Chira
Foods 2022, 11(10), 1466; https://doi.org/10.3390/foods11101466 - 18 May 2022
Cited by 37 | Viewed by 13805
Abstract
The saponification value of fats and oils is one of the most common quality indices, reflecting the mean molecular weight of the constituting triacylglycerols. Proton nuclear magnetic resonance (1H-NMR) spectra of fats and oils display specific resonances for the protons from [...] Read more.
The saponification value of fats and oils is one of the most common quality indices, reflecting the mean molecular weight of the constituting triacylglycerols. Proton nuclear magnetic resonance (1H-NMR) spectra of fats and oils display specific resonances for the protons from the structural patterns of the triacylglycerols (i.e., the glycerol backbone), methylene (-CH2-) groups, double bonds (-CH=CH-) and the terminal methyl (-CH3) group from the three fatty acyl chains. Consequently, chemometric equations based on the integral values of the 1H-NMR resonances allow for the calculation of the mean molecular weight of triacylglycerol species, leading to the determination of the number of moles of triacylglycerol species per 1 g of fat and eventually to the calculation of the saponification value (SV), expressed as mg KOH/g of fat. The algorithm was verified on a series of binary mixtures of tributyrin (TB) and vegetable oils (i.e., soybean and rapeseed oils) in various ratios, ensuring a wide range of SV. Compared to the conventional technique for SV determination (ISO 3657:2013) based on titration, the obtained 1H-NMR-based saponification values differed by a mean percent deviation of 3%, suggesting the new method is a convenient and rapid alternate approach. Moreover, compared to other reported methods of determining the SV from spectroscopic data, this method is not based on regression equations and, consequently, does not require calibration from a database, as the SV is computed directly and independently from the 1H-NMR spectrum of a given oil/fat sample. Full article
Show Figures

Figure 1

17 pages, 2414 KiB  
Article
Functional Properties and Preservative Effect of P-Hydroxybenzoic Acid Grafted Chitosan Films on Fresh-Cut Jackfruit
by Zhiguo Jiang, Jiaolong Wang, Dong Xiang and Zhengke Zhang
Foods 2022, 11(9), 1360; https://doi.org/10.3390/foods11091360 - 7 May 2022
Cited by 18 | Viewed by 2738
Abstract
In the present study, p-hydroxybenzoic acid-grafted chitosan (PA-g-CS) conjugates with different grafting degrees were synthesized by a free radical-regulated grafting approach. The conjugates were further developed into films by casting, and their characteristics and preservative effects on fresh-cut jackfruit were evaluated. Compared to [...] Read more.
In the present study, p-hydroxybenzoic acid-grafted chitosan (PA-g-CS) conjugates with different grafting degrees were synthesized by a free radical-regulated grafting approach. The conjugates were further developed into films by casting, and their characteristics and preservative effects on fresh-cut jackfruit were evaluated. Compared to the CS film, the PA-g-CS film showed comprehensive performance improvements, including enhancements of water solubility, anti-ultraviolet capacity, antioxidation, and antibacterial activity. Moreover, compared with CS film, some appreciable and favorable changes of physical properties were observed in the PA-g-CS films, which included water vapor permeability, oxygen permeability, surface morphology, moisture content, and mechanical intensity. Furthermore, compared to CS alone, the application of PA-g-CS films to fresh-cut jackfruit exerted a beneficial effect on the quality of products, as indicated by the inhibition of weight loss, softening, and membrane damage, the maintenance of soluble solids and ascorbic acids contents, as well as a reduced bacterial count and a higher sensory score. Among these PA-g-CS films, the best preservation effect was achieved with the highest degree of grafting (PA-g-CS III). The results suggested that the PA-g-CS film has the potential to be explored as a new type of packaging material for the preservation of fresh-cut fruits and vegetables. Full article
Show Figures

Graphical abstract

17 pages, 2996 KiB  
Article
Effect of the Degree of Hydrolysis on Nutritional, Functional, and Morphological Characteristics of Protein Hydrolysate Produced from Bighead Carp (Hypophthalmichthys nobilis) Using Ficin Enzyme
by Kamal Alahmad, Wenshui Xia, Qixing Jiang and Yanshun Xu
Foods 2022, 11(9), 1320; https://doi.org/10.3390/foods11091320 - 30 Apr 2022
Cited by 28 | Viewed by 3621
Abstract
The production of fish protein hydrolysates from bighead carp (Hypophthalmichthys nobilis) using ficin enzymes was achieved in optimal conditions of 3% enzyme/substrate ratio, 40 °C temperature, and pH 6. Three different hydrolysis times, 1, 3, and 6 h, were investigated, and their degree [...] Read more.
The production of fish protein hydrolysates from bighead carp (Hypophthalmichthys nobilis) using ficin enzymes was achieved in optimal conditions of 3% enzyme/substrate ratio, 40 °C temperature, and pH 6. Three different hydrolysis times, 1, 3, and 6 h, were investigated, and their degree of hydrolysis (DH) values were 13.36%, 17.09%, and 20.15%, respectively. The hydrolysate yield values increased with DH increase, and the highest yield was obtained at DH 20.15%. The crude protein content increased from 80.58% to 85.27%, and amino acid compositions increased from 78.33% to 83.07%. The peptides formed during hydrolysis indicated low molecular weight that might improve functional characteristics of fish protein hydrolysates, including protein solubility, which ranged from 84.88% to 95.48% for all hydrolysates. The thermal degradation of hydrolysates occurred from 160 to 168 °C with intensive endothermic peaks. Results revealed that oil holding capacity was higher at DH 13.36%; water holding capacity was higher when DH increased. Hence, fish protein hydrolysates (FPH) from bighead carp have improved functional properties, and can be utilized as supplements and excellent protein sources in various uses in food applications. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

16 pages, 4003 KiB  
Article
Effect of Electrohydrodynamic (EHD) on Drying Kinetics and Quality Characteristics of Shiitake Mushroom
by Anjin Xiao and Changjiang Ding
Foods 2022, 11(9), 1303; https://doi.org/10.3390/foods11091303 - 29 Apr 2022
Cited by 23 | Viewed by 2793
Abstract
The effect of an electrohydrodynamic (EHD) drying system on the drying kinetics, microstructure and nutritional composition of shiitake mushrooms was studied. Shiitake mushroom slices were dried at 0, 18, 22, 26, 30 and 34 kV. The results showed that the drying rate, effective [...] Read more.
The effect of an electrohydrodynamic (EHD) drying system on the drying kinetics, microstructure and nutritional composition of shiitake mushrooms was studied. Shiitake mushroom slices were dried at 0, 18, 22, 26, 30 and 34 kV. The results showed that the drying rate, effective moisture diffusion coefficient and shrinkage of the EHD treatment group were significantly higher than those of the control group. The 34 kV treatment group had the highest drying rate (0.24 g W/g DM × h) and the highest effective moisture diffusion coefficient (1.01 × 10−10 m2/s), which were 6.75 and 7.41 times higher than those of the control group, respectively. The control group had the highest rehydration ratio (7.72) and showed unsatisfactory color performance. The scanning electron microscopy (SEM) results showed that compared with the control group, the surface of samples dried by EHD exhibited different degrees of encrustation, and the area of encrustation increased with increasing voltage. After analysis by Fourier transform infrared (FTIR) spectroscopy, it was found that the samples of both the EHD-treated and control groups had similar absorption peak positions, but the intensity of the absorption peak of the EHD-dried samples was greater. Compared with the control group, the shiitake mushroom slices dried by EHD had a higher protein content and polysaccharide content. The polysaccharide content in 22 kV treatment group was the highest (4.67 g/100 g), and the protein content in 26 kV and 34 kV treatment groups was the highest (17.0 g/100 g). This study provides an experimental and theoretical basis for an in-depth study of the drying kinetics of shiitake mushrooms and provides theoretical guidance and clues for the wider application of EHD drying technology. Full article
(This article belongs to the Topic Food Processing and Preservation)
Show Figures

Figure 1

17 pages, 3828 KiB  
Article
Physical Properties of Extrudates with Fibrous Structures Made of Faba Bean Protein Ingredients Using High Moisture Extrusion
by Katja Kantanen, Anni Oksanen, Minnamari Edelmann, Heikki Suhonen, Tuula Sontag-Strohm, Vieno Piironen, Jose Martin Ramos Diaz and Kirsi Jouppila
Foods 2022, 11(9), 1280; https://doi.org/10.3390/foods11091280 - 28 Apr 2022
Cited by 30 | Viewed by 4417
Abstract
Faba bean is a potential ingredient due to its high protein yield and its possible cultivation in colder climate regions. In this study, meat analogues made from faba bean protein isolate (FPI) and concentrate (FPC) blends were produced using high moisture extrusion. The [...] Read more.
Faba bean is a potential ingredient due to its high protein yield and its possible cultivation in colder climate regions. In this study, meat analogues made from faba bean protein isolate (FPI) and concentrate (FPC) blends were produced using high moisture extrusion. The aim of this study was to investigate the effect of the FPI content (FPIc), feed water content (FWC), and temperature of the long cooling die (LT) during extrusion on the mechanical and physicochemical properties as well as on the structure of the meat analogues. Increased FPIc resulted in higher values in hardness, gumminess, chewiness, and cutting strengths as well as in darker colour and decreased water absorption capacity. The effect of increased FWC on these properties was weaker and the opposite. Images from microtomography revealed that higher FPIc led to a less organised fibrous structure. In conclusion, fibrous structures can be achieved by utilising a mixture of faba bean protein ingredients, and a higher FPC content seemed to promote fibre formation in the meat analogue. Full article
Show Figures

Graphical abstract

14 pages, 792 KiB  
Article
Effects of Purple Corn Anthocyanin on Growth Performance, Meat Quality, Muscle Antioxidant Status, and Fatty Acid Profiles in Goats
by Xingzhou Tian, Jiaxuan Li, Qingyuan Luo, Xu Wang, Tiansong Wang, Di Zhou, Lingling Xie, Chao Ban and Qi Lu
Foods 2022, 11(9), 1255; https://doi.org/10.3390/foods11091255 - 27 Apr 2022
Cited by 18 | Viewed by 2813
Abstract
This study was conducted to examine the effect of purple corn anthocyanin on performance, meat quality, muscle antioxidant activity, antioxidant gene expression, and fatty acid profiles in goats. The feeding trial period lasted 74 d. The adaptation period was 14 d, and the [...] Read more.
This study was conducted to examine the effect of purple corn anthocyanin on performance, meat quality, muscle antioxidant activity, antioxidant gene expression, and fatty acid profiles in goats. The feeding trial period lasted 74 d. The adaptation period was 14 d, and the formal experimental period was 60 d. Eighteen Qianbei-pockmarked goats (Guizhou native goat breed; body weight, 21.38 ± 1.61 kg; mean ± standard deviation) were randomly allotted into three equal groups, including a control with no purple corn pigment (PCP) and groups receiving either 0.5 g/d PCP or 1.0 g/d PCP. The inclusion of PCP did not affect (p > 0.05) the dry matter intake, average daily gain, or feed conversion ratio compared to the control group. The addition of PCP reduced (p < 0.05) shear force in the longissimus thoracis et lumborum muscle (LTL) during the growth phase of the goats. Goats receiving PCP showed higher (p < 0.05) levels of reduced glutathione, 2,2-diphenyl-1-picrylhydrazyl scavenging activity and peroxidase in LTL compared to the control. Moreover, compared to the control, the PCP group displayed lower (p < 0.05) concentrations of 12:0, C16:0, and total saturated fatty acids, but increased (p < 0.05) concentrations of various unsaturated fatty acids, including C18:1n9, C20:3n6, C20:4n6, C18:2n6 cis, C20:3n6, C22:5n3, C22:6n3, and total polyunsaturated fatty acids (PUFAs). The abundance of nuclear factor, erythroid 2 like 2, superoxide dismutase 1, glutathione peroxidase 1, and catalase was upregulated (p < 0.05) in the LTL of goats receiving 0.5 g/d PCP in comparison to the other groups. Collectively, result of the current study indicated that PCP anthocyanin could be used as a source of natural functional additive because anthocyanin-rich PCP has the potential to improve meat quality and enhance muscle antioxidant status as well as improve the proportions of PUFAs in goat muscle. Full article
Show Figures

Figure 1

17 pages, 2853 KiB  
Article
Inverse Molecular Docking Elucidating the Anticarcinogenic Potential of the Hop Natural Product Xanthohumol and Its Metabolites
by Katarina Kores, Zala Kolenc, Veronika Furlan and Urban Bren
Foods 2022, 11(9), 1253; https://doi.org/10.3390/foods11091253 - 26 Apr 2022
Cited by 17 | Viewed by 2890
Abstract
Natural products from plants exert a promising potential to act as antioxidants, antimicrobials, anti-inflammatory, and anticarcinogenic agents. Xanthohumol, a natural compound from hops, is indeed known for its anticarcinogenic properties. Xanthohumol is converted into three metabolites: isoxanthohumol (non-enzymatically) as well as 8- and [...] Read more.
Natural products from plants exert a promising potential to act as antioxidants, antimicrobials, anti-inflammatory, and anticarcinogenic agents. Xanthohumol, a natural compound from hops, is indeed known for its anticarcinogenic properties. Xanthohumol is converted into three metabolites: isoxanthohumol (non-enzymatically) as well as 8- and 6-prenylnaringenin (enzymatically). An inverse molecular docking approach was applied to xanthohumol and its three metabolites to discern their potential protein targets. The aim of our study was to disclose the potential protein targets of xanthohumol and its metabolites in order to expound on the potential anticarcinogenic mechanisms of xanthohumol based on the found target proteins. The investigated compounds were docked into the predicted binding sites of all human protein structures from the Protein Data Bank, and the best docking poses were examined. Top scoring human protein targets with successfully docked compounds were identified, and their experimental connection with the anticarcinogenic function or cancer was investigated. The obtained results were carefully checked against the existing experimental findings from the scientific literature as well as further validated using retrospective metrics. More than half of the human protein targets of xanthohumol with the highest docking scores have already been connected with the anticarcinogenic function, and four of them (including two important representatives of the matrix metalloproteinase family, MMP-2 and MMP-9) also have a known experimental correlation with xanthohumol. Another important protein target is acyl-protein thioesterase 2, to which xanthohumol, isoxanthohumol, and 6-prenylnaringenin were successfully docked with the lowest docking scores. Moreover, the results for the metabolites show that their most promising protein targets are connected with the anticarcinogenic function as well. We firmly believe that our study can help to elucidate the anticarcinogenic mechanisms of xanthohumol and its metabolites as after consumption, all four compounds can be simultaneously present in the organism. Full article
(This article belongs to the Special Issue Bioactive Compounds, Antioxidants, and Health Benefits)
Show Figures

Graphical abstract

14 pages, 1127 KiB  
Article
Variation in Bioactive Compounds and Antioxidant Activity of Rubus Fruits at Different Developmental Stages
by Xin Huang, Yaqiong Wu, Shanshan Zhang, Hao Yang, Wenlong Wu, Lianfei Lyu and Weilin Li
Foods 2022, 11(8), 1169; https://doi.org/10.3390/foods11081169 - 18 Apr 2022
Cited by 24 | Viewed by 4856
Abstract
Blackberry and raspberry have high nutritional, health value, and are popular with consumers for their unique flavors. To explore the relationships between nutrient accumulation, antioxidant substance contents in blackberry and raspberry fruits, and fruit growth and development, seven Rubus cultivars were selected, and [...] Read more.
Blackberry and raspberry have high nutritional, health value, and are popular with consumers for their unique flavors. To explore the relationships between nutrient accumulation, antioxidant substance contents in blackberry and raspberry fruits, and fruit growth and development, seven Rubus cultivars were selected, and contents of the main active substance were determined. “Clode Summit” had the highest soluble sugar and fructose contents, “Chester”—the highest total phenol content, and “Bristol’—the highest anthocyanin content. Generally, the contents of flavonoids and total phenols showed a downward trend with the development of fruit in seven Rubus cultivars, and the content of anthocyanins increased rapidly in the later stage of development. Pearson correlation analysis showed extremely significant correlation between antioxidant activity and the contents of vitamin E, total phenols, and flavonoids. Flavonoids were extremely significantly positively correlated with the content of total phenols, and the contents of flavonoids and anthocyanins in various cultivars were highly negatively correlated. Considering the different nutritional ingredients and active antioxidant substance contents, “Clode Summit”, “Bristol”, and “Chester” are recommended for raw consumption, processing, and medicinal purposes, respectively. These results provide a reference for comparing the main active substance contents in different Rubus cultivars and their changes across fruit development stages. Full article
(This article belongs to the Special Issue Bioactive Compounds, Antioxidants, and Health Benefits)
Show Figures

Figure 1

29 pages, 6962 KiB  
Article
Relandscaping the Gut Microbiota with a Whole Food: Dose–Response Effects to Common Bean
by Tymofiy Lutsiv, John N. McGinley, Elizabeth S. Neil-McDonald, Tiffany L. Weir, Michelle T. Foster and Henry J. Thompson
Foods 2022, 11(8), 1153; https://doi.org/10.3390/foods11081153 - 15 Apr 2022
Cited by 9 | Viewed by 3879
Abstract
Underconsumption of dietary fiber and the milieu of chemicals with which it is associated is a health concern linked to the increasing global burden of chronic diseases. The benefits of fiber are partially attributed to modulation of the gut microbiota, whose composition and [...] Read more.
Underconsumption of dietary fiber and the milieu of chemicals with which it is associated is a health concern linked to the increasing global burden of chronic diseases. The benefits of fiber are partially attributed to modulation of the gut microbiota, whose composition and function depend on the amount and quality of microbiota-accessible substrates in the diet. However, not all types of fiber are equally accessible to the gut microbiota. Phaseolus vulgaris L., or common bean, is a food type rich in fiber as well as other prebiotics posing a great potential to positively impact diet-microbiota-host interactions. To elucidate the magnitude of bean’s effects on the gut microbiota, increasing doses of common bean were administered in macronutrient-matched diet formulations. The microbial communities in the ceca of female and male mice were evaluated via 16S rRNA gene sequencing. As the bean dose increased, the Bacillota:Bacteroidota ratio (formerly referred to as the Firmicutes:Bacteroidetes ratio) was reduced and α-diversity decreased, whereas the community composition was distinctly different between the diet groups according to β-diversity. These effects were more pronounced in female mice compared to male mice. Compositional analyses identified a dose-responsive bean-induced shift in microbial composition. With an increasing bean dose, Rikenellaceae, Bacteroides, and RF39, which are associated with health benefits, were enhanced. More taxa, however, were suppressed, among which were Allobaculum, Oscillospira, Dorea, and Ruminococcus, which are predominantly associated with chronic disease risk. Investigation of the origins of the dose dependent and biological sex differences in response to common bean consumption may provide insights into bean-gut microbiota-host interactions important to developing food-based precision approaches to chronic disease prevention and control. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

13 pages, 14759 KiB  
Article
Nutritional and Antioxidant Properties of Moringa oleifera Leaves in Functional Foods
by Rocío Peñalver, Lorena Martínez-Zamora, José Manuel Lorenzo, Gaspar Ros and Gema Nieto
Foods 2022, 11(8), 1107; https://doi.org/10.3390/foods11081107 - 12 Apr 2022
Cited by 60 | Viewed by 7363
Abstract
Moringa oleifera is a tree cultivated originally in northern India, whose ancient use as a medicine has demonstrated its antioxidant and anti-inflammatory properties. Due to its richness in minerals and macronutrients, the antioxidant capacity and the mineral bioaccesibility were assessed. In addition, the [...] Read more.
Moringa oleifera is a tree cultivated originally in northern India, whose ancient use as a medicine has demonstrated its antioxidant and anti-inflammatory properties. Due to its richness in minerals and macronutrients, the antioxidant capacity and the mineral bioaccesibility were assessed. In addition, the chemical composition, amino acid, fatty acid, and mineral content were also evaluated. The performed analysis reported a high content of proteins and low content of lipids in the chemical composition. Regarding the mineral content, Ca and Fe presented high bioaccessibility; K, S, Ca, and Fe being the most concentrated elements. The obtained values using FRAP, ABTS, and ORAC methods showed high antioxidant capacity, directly related to the increased content of phenolic compounds. In view of the results, Moringa oleifera can be incorporated into the diet as a functional ingredient or as a fortifier of any kind of food. The important source of minerals, phenolics, proteins, unsaturated fats, and folates make it an excellent extract with beneficial properties. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

16 pages, 1103 KiB  
Article
Nutritional Composition and Bioactive Compounds of Basil, Thyme and Sage Plant Additives and Their Functionality on Broiler Thigh Meat Quality
by Petru Alexandru Vlaicu, Arabela Elena Untea, Raluca Paula Turcu, Mihaela Saracila, Tatiana Dumitra Panaite and Gabriela Maria Cornescu
Foods 2022, 11(8), 1105; https://doi.org/10.3390/foods11081105 - 12 Apr 2022
Cited by 35 | Viewed by 4373
Abstract
Meat industries across the world are constantly focusing to find natural low-cost additives for the development of novel meat products to meet consumer demand for improving the health benefits. In this study, we investigated the chemical composition and the bioactive compounds of some [...] Read more.
Meat industries across the world are constantly focusing to find natural low-cost additives for the development of novel meat products to meet consumer demand for improving the health benefits. In this study, we investigated the chemical composition and the bioactive compounds of some herbal plants, namely basil, thyme, sage, and their functionality on broiler chicken thigh meat quality. Chemical composition, as well as total antioxidant activity, polyphenols, vitamin E lutein and zeaxanthin and the fatty acids of the plants, were analyzed. According to findings, total polyphenols was 21.53 mg gallic acid/g in basil, 31.73 mg gallic acid/g in thyme and 38.87 mg gallic acid/g in sage. The antioxidant capacity was 19.91 mM Trolox in basil, 54.09 mM Trolox in thyme and 54.09 mM Trolox in sage. Lutein and zeaxanthin from basil was 267.91 mg/kg, 535.79 mg/kg in thyme and 99.89 mg/kg, and vitamin E ranged from 291.71 mg/kg in basil to 379.37 mg/kg in thyme and 148.07 mg/kg in sage, respectively. After, we developed a trial on 120 unsexed broiler chickens (n = 30) which were separated into four groups with six replications of five chickens each: control (C); 1% basil (B); 1% thyme (T) and 1% sage (S). The B, T and S groups deposited significantly higher (p < 0.05) concentration of zinc, polyphenols, antioxidant capacity and vitamin E in meat samples compared with the C group. In the experimental groups, the proportion of total polyunsaturated fatty acids, the ratio of n-6 to n-3 fatty acids, and the ratio of polyunsaturated fatty acids to saturated fatty acids in the thigh muscles were significantly improved (p < 0.05). The tested plants exhibited a significant (p = 0.0007) hypocholesterolemic effect in the meat of the B (45.90 mg/g), T (41.60 mg/g) and S (48.80 mg/kg) experimental groups compared with the C (60.50 mg/g) group. These results support the application of the studied plants as natural sources of additives which could be effective in improving meat quality, from the human consumption perspective. Full article
(This article belongs to the Section Meat)
Show Figures

Graphical abstract

15 pages, 1736 KiB  
Article
Microbial Communities and Flavor Compounds during the Fermentation of Traditional Hong Qu Glutinous Rice Wine
by Anqi Liu, Xu Yang, Quanyou Guo, Baoguo Li, Yao Zheng, Yuzhuo Shi and Lin Zhu
Foods 2022, 11(8), 1097; https://doi.org/10.3390/foods11081097 - 11 Apr 2022
Cited by 40 | Viewed by 3125
Abstract
As a traditional Chinese rice wine, Hong Qu glutinous rice wine (HQW) is popular among consumers due to its unique flavor. However, its quality changes during fermentation, and the potential relationships between flavor and microbes have not been systematically researched. In this work, [...] Read more.
As a traditional Chinese rice wine, Hong Qu glutinous rice wine (HQW) is popular among consumers due to its unique flavor. However, its quality changes during fermentation, and the potential relationships between flavor and microbes have not been systematically researched. In this work, physicochemical properties (pH, total sugar, alcohol, amino acid nitrogen), flavor compounds (organic acids, free amino acids, and volatile compounds), and microbial communities were investigated. The results revealed that Pantoea, Lactiplantibacillus, Lactobacillus, Leuconostoc, and Weissella predominated the bacterial genera, and Monascus was the predominant fungal genus. Organic acids, free amino acids, and key volatile compounds (esters and alcohols) significantly increased during fermentation. The correlations analysis showed that Lactiplantibacillus was closely associated with flavor compounds formation. This study deepens our understanding of the roles of microorganisms in flavor formation on traditional HQW fermentation. Full article
Show Figures

Figure 1

14 pages, 1041 KiB  
Article
Natural Pectin-Based Edible Composite Coatings with Antifungal Properties to Control Green Mold and Reduce Losses of ‘Valencia’ Oranges
by María Victoria Alvarez, Lluís Palou, Verònica Taberner, Asunción Fernández-Catalán, Maricruz Argente-Sanchis, Eleni Pitta and María Bernardita Pérez-Gago
Foods 2022, 11(8), 1083; https://doi.org/10.3390/foods11081083 - 9 Apr 2022
Cited by 18 | Viewed by 2571
Abstract
Novel pectin-based, antifungal, edible coatings (ECs) were formulated by the addition of natural extracts or essential oils (EOs), and their ability to control green mold (GM), caused by Penicillium digitatum, and preserve postharvest quality of ‘Valencia’ oranges was evaluated. Satureja montana, [...] Read more.
Novel pectin-based, antifungal, edible coatings (ECs) were formulated by the addition of natural extracts or essential oils (EOs), and their ability to control green mold (GM), caused by Penicillium digitatum, and preserve postharvest quality of ‘Valencia’ oranges was evaluated. Satureja montana, Cinnamomum zeylanicum (CN), Commiphora myrrha (MY) EOs, eugenol (EU), geraniol (GE), vanillin, and propolis extract were selected as the most effective antifungal agents against P. digitatum in in vitro assays. Pectin-beeswax edible coatings amended with these antifungals were applied to artificially inoculated oranges to evaluate GM control. ECs containing GE (2 g/kg), EU (4 and 8 g/kg), and MY EO (15 g/kg) reduced disease incidence by up to 58% after 8 days of incubation at 20 °C, while CN (8 g/kg) effectively reduced disease severity. Moreover, ECs formulated with EU (8 g/kg) and GE (2 g/kg) were the most effective on artificially inoculated cold-stored oranges, with GM incidence reductions of 56 and 48% after 4 weeks at 5 °C. Furthermore, ECs containing EU and MY reduced weight loss and maintained sensory and physicochemical quality after 8 weeks at 5 °C followed by 7 days at 20 °C. Overall, ECs with EU were the most promising and could be a good natural, safe, and eco-friendly commercial treatment for preserving orange postharvest quality. Full article
Show Figures

Figure 1

15 pages, 3164 KiB  
Article
Nondestructive Testing of Pear Based on Fourier Near-Infrared Spectroscopy
by Zhaohui Lu, Ruitao Lu, Yu Chen, Kai Fu, Junxing Song, Linlin Xie, Rui Zhai, Zhigang Wang, Chengquan Yang and Lingfei Xu
Foods 2022, 11(8), 1076; https://doi.org/10.3390/foods11081076 - 8 Apr 2022
Cited by 22 | Viewed by 2880
Abstract
Fourier transform near-infrared (FT-NIR) spectroscopy is a nondestructive, rapid, real-time analysis of technical detection methods with an important reference value for producers and consumers. In this study, the feasibility of using FT-NIR spectroscopy for the rapid quantitative analysis and qualitative analysis of ‘Zaosu’ [...] Read more.
Fourier transform near-infrared (FT-NIR) spectroscopy is a nondestructive, rapid, real-time analysis of technical detection methods with an important reference value for producers and consumers. In this study, the feasibility of using FT-NIR spectroscopy for the rapid quantitative analysis and qualitative analysis of ‘Zaosu’ and ‘Dangshansuli’ pears is explored. The quantitative model was established by partial least squares (PLS) regression combined with cross-validation based on the spectral data of 340 pear fresh fruits and synchronized with the reference values determined by conventional assays. Furthermore, NIR spectroscopy combined with cluster analysis was used to identify varieties of ‘Zaosu’ and ‘Dangshansuli’. As a result, the model developed using FT-NIR spectroscopy gave the best results for the prediction models of soluble solid content (SSC) and titratable acidity (TA) of ‘Dangshansuli’ (residual prediction deviation, RPD: 3.272 and 2.239), which were better than those developed for ‘Zaosu’ SSC and TA modeling (RPD: 1.407 and 1.471). The results also showed that the variety identification of ‘Zaosu’ and ‘Dangshansuli’ could be carried out based on FT-NIR spectroscopy, and the discrimination accuracy was 100%. Overall, FT-NIR spectroscopy is a good tool for rapid and nondestructive analysis of the internal quality and variety identification of fresh pears. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 1217 KiB  
Article
Effect of Orange-Fleshed Sweet Potato Purée and Wheat Flour Blends on β-Carotene, Selected Physicochemical and Microbiological Properties of Bread
by Derick Malavi, Daniel Mbogo, Mukani Moyo, Lucy Mwaura, Jan Low and Tawanda Muzhingi
Foods 2022, 11(7), 1051; https://doi.org/10.3390/foods11071051 - 6 Apr 2022
Cited by 20 | Viewed by 4795
Abstract
Partial substitution of wheat flour with orange-fleshed sweet potato (OFSP) purée in bread can increase vitamin A intake among consumers. The study investigated the influence of wheat flour substitution with 20–50% of OFSP purée on proximate composition, color, β-carotene, water activity, and microbial [...] Read more.
Partial substitution of wheat flour with orange-fleshed sweet potato (OFSP) purée in bread can increase vitamin A intake among consumers. The study investigated the influence of wheat flour substitution with 20–50% of OFSP purée on proximate composition, color, β-carotene, water activity, and microbial keeping quality. The moisture content, crude protein, crude fat, total ash, crude fiber, and carbohydrate in bread ranged from 28.6–32.7%, 9.9–10.6%, 5.0–5.5%, 1.9–3.2%, 1.4–1.8%, and 79.1–80.9%, respectively. β-carotene, total ash, and crude fiber contents in bread, and Hunter color values a*, b*, chroma, and ∆E significantly increased with the addition of OFSP purée. Total viable counts (TVC), yeast, and molds in bread ranged from 2.82–3.64 log10 cfu/g and 1.48–2.16 log10 cfu/g, respectively, on the last day of storage. Water activity, TVC, and fungal counts were low in sweet potato composite bread as compared to white bread. Total β-carotene in OFSP bread ranged from 1.9–5.4 mg/100 g (on dry weight). One hundred grams of bread portion enriched with 40% and 50% OFSP purée provides more than 50% of vitamin A dietary requirements to children aged 4–8 years. Incorporation of up to 50% OFSP purée in wheat flour produces a relatively shelf-stable, nutritious, and health-promoting functional bread. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

15 pages, 3431 KiB  
Article
Regulation Effects of Beeswax in the Intermediate Oil Phase on the Stability, Oral Sensation and Flavor Release Properties of Pickering Double Emulsions
by Meimiao Chen, Abdullah, Wenbo Wang and Jie Xiao
Foods 2022, 11(7), 1039; https://doi.org/10.3390/foods11071039 - 2 Apr 2022
Cited by 17 | Viewed by 2913
Abstract
Double emulsions (W/O/W) with compartmentalized structures have attracted a lot of research interests due to their diverse applications in the food industry. Herein, oil phase of double emulsions was gelled with beeswax (BW), and the effects of BW mass ratios (0–8.0%) on the [...] Read more.
Double emulsions (W/O/W) with compartmentalized structures have attracted a lot of research interests due to their diverse applications in the food industry. Herein, oil phase of double emulsions was gelled with beeswax (BW), and the effects of BW mass ratios (0–8.0%) on the stability, oral sensation, and flavor release profile of the emulsions were investigated. Rheological tests revealed that the mechanical properties of double emulsions were dependent on the mass ratio of BW. With the increase in BW content, double emulsions showed a higher resistance against deformation, and lower friction coefficient with a smoother mouthfeel. Turbiscan analysis showed that the addition of BW improved the stability of double emulsions during a 14 days’ storage, under freeze–thawed, and osmotic pressure conditions, but it did not improve the heating stability of double emulsions. The addition of BW contributed to lower air-emulsion partition coefficients of flavor (2,3-diacetyl) compared to those without the addition of BW at 20 °C and 37 °C, respectively. Furthermore, the addition of BW and its mass ratio significantly altered the flavor release behavior during the open-bottle storage of double emulsions. The response value of 0% BW dropped sharply on the first day of opening storage, showing a burst release behavior. While a slow and sustained release behavior was observed in double emulsions with 8.0% BW. In conclusion, gelation of the intermediate oil phase of double emulsions significantly enhanced the stability of double emulsions with tunable oral sensation and flavor release by varying the mass ratio of beeswax. Full article
Show Figures

Graphical abstract

14 pages, 665 KiB  
Article
Influence of Feeding Weaned Piglets with Laminaria digitata on the Quality and Nutritional Value of Meat
by David Miguel Ribeiro, Cristina M. Alfaia, José M. Pestana, Daniela F. P. Carvalho, Mónica Costa, Cátia F. Martins, José P. C. Lemos, Miguel Mourato, Sandra Gueifão, Inês Delgado, Patrícia Carvalho, Diogo Coelho, Inês Coelho, João P. B. Freire, André M. Almeida and José A. M. Prates
Foods 2022, 11(7), 1024; https://doi.org/10.3390/foods11071024 - 31 Mar 2022
Cited by 14 | Viewed by 3052
Abstract
Laminaria digitata is a novel feedstuff that can be used in pig diets to replace conventional feedstuffs. However, its resilient cell wall can prevent the monogastric digestive system from accessing intracellular nutrients. Carbohydrate-active enzyme (CAZyme) supplementation is a putative solution for this problem, [...] Read more.
Laminaria digitata is a novel feedstuff that can be used in pig diets to replace conventional feedstuffs. However, its resilient cell wall can prevent the monogastric digestive system from accessing intracellular nutrients. Carbohydrate-active enzyme (CAZyme) supplementation is a putative solution for this problem, degrading the cell wall during digestion. The objective of this work was to evaluate the effect of 10% L. digitata feed inclusion and CAZyme supplementation on the meat quality and nutritional value of weaned piglets. Forty weaned piglets were randomly allocated to four experimental groups (n = 10): control, LA (10% L. digitata, replacing the control diet), LAR (LA + CAZyme (0.005% Rovabio® Excel AP)) and LAL (LA + CAZyme (0.01% alginate lyase)) and the trial lasted for two weeks. The diets had no effect on any zootechnical parameters measured (p > 0.05) and meat quality traits, except for the pH measured 24 h post-mortem, which was higher in LAL compared to LA (p = 0.016). Piglets fed with seaweed had a significantly lower n-6/n-3 PUFA ratio compared to control, to which the higher accumulation of C20:5n-3 (p = 0.001) and C18:4n-3 (p < 0.0001) contributed. In addition, meat of seaweed-fed piglets was enriched with bromine (Br, p < 0.001) and iodine (I, p < 0.001) and depicted a higher oxidative stability. This study demonstrates that the nutritional value of piglets’ meat could be improved by the dietary incorporation of L. digitata, regardless of CAZyme supplementation, without negatively affecting growth performance in the post-weaning stage. Full article
(This article belongs to the Section Meat)
Show Figures

Graphical abstract

19 pages, 947 KiB  
Article
Understanding Consumers’ Preferences for Protected Geographical Indications: A Choice Experiment with Hungarian Sausage Consumers
by Áron Török, Matthew Gorton, Ching-Hua Yeh, Péter Czine and Péter Balogh
Foods 2022, 11(7), 997; https://doi.org/10.3390/foods11070997 - 29 Mar 2022
Cited by 13 | Viewed by 3371
Abstract
Geographical Indications (GIs) can increase producer margins and contribute to local economic development, but the extent to which they do so depends on the nature of consumer demand. A Discrete Choice Experiment (DCE) considers the value that consumers place on a Protected Geographical [...] Read more.
Geographical Indications (GIs) can increase producer margins and contribute to local economic development, but the extent to which they do so depends on the nature of consumer demand. A Discrete Choice Experiment (DCE) considers the value that consumers place on a Protected Geographical Indication (PGI) in comparison with a leading manufacturer’s brand, as well as the importance of taste variations. Based on an application of DCE to sausages in Hungary, results indicate that a PGI can generate value to consumers exceeding that conveyed by the leading manufacturer’s brand. Consumers’ taste preferences, however, may not be consistent with the specification of GI products. Latent Class (LC) and Random parameter Latent Class (RLC) analyses identify two consumer segments, with the majority of consumers (71%-LC, 65%-RLC) classified as traditionalists, who most value the GI label, while a minority (29%-LC, 35%-RLC) is brand conscious, for whom the GI status is less salient. Both theoretical and business implications for GI marketing and club branding are drawn. Full article
(This article belongs to the Special Issue Animal-Based Food Consumption - Trends and Perspectives)
Show Figures

Figure 1

18 pages, 3344 KiB  
Article
Nutritional, Functional, Textural and Sensory Evaluation of Spirulina Enriched Green Pasta: A Potential Dietary and Health Supplement
by Deepak Kumar Koli, Shalini Gaur Rudra, Arpan Bhowmik and Sunil Pabbi
Foods 2022, 11(7), 979; https://doi.org/10.3390/foods11070979 - 28 Mar 2022
Cited by 41 | Viewed by 7080
Abstract
In house cultivated Spirulina powder was incorporated at 2 to 15% concentrations to enrich pasta prepared from semolina. Spirulina incorporation led to development of green color pasta with nutritional and functional fortification resulting in increase in its protein, total phenols, flavonoids, iron and [...] Read more.
In house cultivated Spirulina powder was incorporated at 2 to 15% concentrations to enrich pasta prepared from semolina. Spirulina incorporation led to development of green color pasta with nutritional and functional fortification resulting in increase in its protein, total phenols, flavonoids, iron and calcium content by up to 77.47%, 76.62%, 162.88%, 296.99% and 57.27%, respectively, without causing detrimental changes to the textural and sensory attributes. FAME analysis revealed 2 to 2.5 times enhanced levels of γ-linolenic acid and docosahexaenoic acid in enriched pasta. Significant improvement in phenolics, flavonoids and antioxidant activity were also observed in comparison to control pasta. Analysis of theoretical and realized composition confirmed retention of nutrients post cooking revealing no significant loss in proteins and other nutrients. Principal components analysis demonstrated significant contribution of Spirulina to nutritional and functional attributes especially at higher concentrations. Pasta enriched with 12.5% Spirulina was rated as “liked very much” and the purchase intention was also high. Spirulina enrichment at concentrations above 10% (12.5%) with appreciable increase in nutritional and functional attributes without affecting textural or cooking quality and acceptable sensory evaluation can be a preferred alternative to augment health and prevent sickness. Since green color symbolizes freshness, hope, renewal and physical health, the consumption of Spirulina incorporated green pasta may be a potential option to enhance the livelihood and nutritional security of rural poor and a good alternative for hidden hunger alleviation programs for mass nutrition especially for infants and children in an effective manner. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

14 pages, 1696 KiB  
Article
Impact of Quercetin against Salmonella Typhimurium Biofilm Formation on Food–Contact Surfaces and Molecular Mechanism Pattern
by Pantu Kumar Roy, Min Gyu Song and Shin Young Park
Foods 2022, 11(7), 977; https://doi.org/10.3390/foods11070977 - 28 Mar 2022
Cited by 28 | Viewed by 4132
Abstract
Quercetin is an active nutraceutical element that is found in a variety of foods, vegetables, fruits, and other products. Due to its antioxidant properties, quercetin is a flexible functional food that has broad protective effects against a wide range of infectious and degenerative [...] Read more.
Quercetin is an active nutraceutical element that is found in a variety of foods, vegetables, fruits, and other products. Due to its antioxidant properties, quercetin is a flexible functional food that has broad protective effects against a wide range of infectious and degenerative disorders. As a result, research is required on food-contact surfaces (rubber (R) and hand gloves (HG)) that can lead to cross-contamination. In this investigation, the inhibitory effects of quercetin, an antioxidant and antibacterial molecule, were investigated at sub-MIC (125; 1/2, 62.5; 1/4, and 31.25; 1/8 MIC, μg/mL) against Salmonella Typhimurium on surfaces. When quercetin (0–125 μg/mL) was observed on R and HG surfaces, the inhibitory effects were 0.09–2.49 and 0.20–2.43 log CFU/cm2, respectively (p < 0.05). The results were confirmed by field emission scanning electron microscopy (FE-SEM), because quercetin inhibited the biofilms by disturbing cell-to-cell connections and inducing cell lysis, resulting in the loss of normal cell morphology, and the motility (swimming and swarming) was significantly different at 1/4 and 1/2 MIC compared to the control. Quercetin significantly (p < 0.05) suppressed the expression levels of virulence and stress response (rpoS, avrA, and hilA) and quorum-sensing (luxS) genes. Our findings imply that plant-derived quercetin could be used as an antibiofilm agent in the food industry to prevent S. Typhimurium biofilm formation. Full article
Show Figures

Figure 1

17 pages, 2156 KiB  
Article
Emerging Pattern of Post-COVID-19 Parosmia and Its Effect on Food Perception
by Jane K. Parker, Lisa Methven, Robert Pellegrino, Barry C. Smith, Simon Gane and Christine E. Kelly
Foods 2022, 11(7), 967; https://doi.org/10.3390/foods11070967 - 27 Mar 2022
Cited by 26 | Viewed by 11536
Abstract
Olfactory dysfunction is amongst the many symptoms of Long COVID. Whilst most people that experience smell loss post COVID-19 recover their sense of smell and taste within a few weeks, about 10% of cases experience long-term problems, and their smell recovery journey often [...] Read more.
Olfactory dysfunction is amongst the many symptoms of Long COVID. Whilst most people that experience smell loss post COVID-19 recover their sense of smell and taste within a few weeks, about 10% of cases experience long-term problems, and their smell recovery journey often begins a few months later when everyday items start to smell distorted. This is known as parosmia. The aim of this study was to identify the key food triggers of parosmic distortions and investigate the relationship between distortion and disgust in order to establish the impact of parosmia on diet and quality of life. In this cross-sectional study (n = 727), respondents experiencing smell distortions completed a questionnaire covering aspects of smell loss, parosmia and the associated change in valence of everyday items. There was a significant correlation between strength and disgust (p < 0.0001), and when the selected items were reported as distorted, they were described as either unpleasant or gag-inducing 84% of the time. This change in valence associated with loss of expected pleasure and the presence of strange tastes and burning sensations must certainly lead to changes in eating behaviours and serious longer-term consequences for mental health and quality of life. Full article
Show Figures

Figure 1

17 pages, 3311 KiB  
Article
Multiple Technologies Combined to Analyze the Changes of Odor and Taste in Daokou Braised Chicken during Processing
by Feili Zhan, Lingxia Sun, Gaiming Zhao, Miaoyun Li and Chaozhi Zhu
Foods 2022, 11(7), 963; https://doi.org/10.3390/foods11070963 - 26 Mar 2022
Cited by 20 | Viewed by 2617
Abstract
This study analyzed the changes of odor and taste in Daokou braised chicken during processing by GC-MS, GC-IMS, e-nose and e-tongue. The 75 and 55 volatile compounds identified in Daokou braised chicken by GC-MS and GC-IMS, respectively, included hydrocarbons, aldehydes, alcohols, terpenes, ketones, [...] Read more.
This study analyzed the changes of odor and taste in Daokou braised chicken during processing by GC-MS, GC-IMS, e-nose and e-tongue. The 75 and 55 volatile compounds identified in Daokou braised chicken by GC-MS and GC-IMS, respectively, included hydrocarbons, aldehydes, alcohols, terpenes, ketones, heterocyclics, esters, acids and phenols; among them, aldehydes, alcohols and ketones were the most abundant. The number and proportion of volatile compounds in Daokou braised chicken changed significantly (p < 0.05) in the process. The proportion of volatile compounds with animal fatty odor, such as aldehydes and alcohols, decreased, while that of esters, ketones and terpenes from spices with fruity fragrance increased, especially in the braising stage. An e-nose showed that the odor intensities of sulfur-containing and nitrogen oxide compounds were higher (p < 0.05) after the braising stage, but weakened after 2 h braising. An e-tongue showed that saltiness and richness increased significantly (p < 0.05) after braising. The results of these four techniques showed that braising promoted the release of flavor compounds, and was beneficial to salt penetration and umami release. However, long braising could lead to weakened flavor intensity and the introduction of bitterness and astringency. This study also found that GC-IMS and e-nose were more sensitive to trace compounds such as sulfur-containing and nitrogen oxide compounds, esters, acids and phenolics in Daokou braised chicken than GC-MS. The use of multiple technologies could provide more comprehensive flavor profiles for Daokou braised chicken during processing. This study provides insights into the control of flavor of Daokou braised chicken, and may be of practical relevance for the poultry industry. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

17 pages, 591 KiB  
Article
Physicochemical Characterization and Biological Properties of Pine Honey Produced across Greece
by Eleni Tsavea, Fotini-Paraskevi Vardaka, Elisavet Savvidaki, Abdessamie Kellil, Dimitrios Kanelis, Marcela Bucekova, Spyros Grigorakis, Jana Godocikova, Panagiota Gotsiou, Maria Dimou, Sophia Loupassaki, Ilektra Remoundou, Christina Tsadila, Tilemachos G. Dimitriou, Juraj Majtan, Chrysoula Tananaki, Eleftherios Alissandrakis and Dimitris Mossialos
Foods 2022, 11(7), 943; https://doi.org/10.3390/foods11070943 - 25 Mar 2022
Cited by 25 | Viewed by 3843
Abstract
Pine honey is a honeydew honey produced in the East Mediterranean region (Greece and Turkey) from the secretions of the plant sucking insect Marchalina hellenica (Gennadius) (Coccoidea: Marchalini-dae) feeding on living parts of Pinus species. Nowadays, honeydew honey has attracted great attention due [...] Read more.
Pine honey is a honeydew honey produced in the East Mediterranean region (Greece and Turkey) from the secretions of the plant sucking insect Marchalina hellenica (Gennadius) (Coccoidea: Marchalini-dae) feeding on living parts of Pinus species. Nowadays, honeydew honey has attracted great attention due to its biological activities. The aim of this study was to study unifloral pine honey samples produced in Greece regarding their physicochemical parameters and antioxidant and antibacterial activity against five nosocomial and foodborne pathogens. These honeys showed physicochemical and microscopic characteristics within the legal limits, except for diastase activity, a parameter known to be highly variable, depending on various factors. Substantially higher levels of H2O2 were estimated compared to other types of honeydew honey, whereas protein content was similar. The total phenolic content was 451.38 ± 120.38 mg GAE/kg and antiradical activity ranged from 42.43 to 79.33%, while FRAP values (1.87 to 9.43 mmol Fe+2/kg) were in general higher than those reported in the literature. Various correlations could be identified among these parameters. This is the first attempt to investigate in depth the antibacterial activity of pine honey from Greece and correlate it with honey quality parameters. All tested honeys exerted variable but significant antibacterial activity, expressed as MIC and MBC values, comparable or even superior to manuka honey for some tested samples. Although honey antibacterial activity is mainly attributed to hydrogen peroxide and proteins in some cases (demonstrated by elevated MICs after catalase and Proteinase K treatment, respectively), no strong correlation between the antibacterial activity and hydrogen peroxide concentration or total protein content was demonstrated in this study. However, there was a statistically significant correlation of moisture, antioxidant and antibacterial activity against Klebsiella pneuomoniae, as well as antioxidant and antibacterial activity against Salmonella ser. Typhimurium. Interestingly, a statistically significant negative correlation has been observed between diastase activity and Staphylococcus aureus antibacterial activity. Overall, our data indicate multiple mechanisms of antibacterial activity exerted by pine honey. Full article
Show Figures

Figure 1

15 pages, 6027 KiB  
Article
Application of Untargeted Metabolomics to Reveal the Taste-Related Metabolite Profiles during Mandarin Fish (Siniperca chuatsi) Fermentation
by Yueqi Wang, Shi Nie, Chunsheng Li, Huan Xiang, Yongqiang Zhao, Shengjun Chen, Laihao Li and Yanyan Wu
Foods 2022, 11(7), 944; https://doi.org/10.3390/foods11070944 - 25 Mar 2022
Cited by 18 | Viewed by 3212
Abstract
Spontaneous fermentation is a critical processing step that determines the taste quality of fermented mandarin fish (Siniperca chuatsi). Here, untargeted metabolomics using ultra-high-performance liquid chromatography coupled with Q Exactive tandem mass spectrometry was employed to characterize the taste-related metabolite profiles during [...] Read more.
Spontaneous fermentation is a critical processing step that determines the taste quality of fermented mandarin fish (Siniperca chuatsi). Here, untargeted metabolomics using ultra-high-performance liquid chromatography coupled with Q Exactive tandem mass spectrometry was employed to characterize the taste-related metabolite profiles during the fermentation of mandarin fish. The results demonstrated that the taste profiles of mandarin fish at different stages of fermentation could be distinguished using an electronic tongue technique. Sixty-two metabolites, including amino acids, small peptides, fatty acids, alkaloids, and organic acids, were identified in fermented mandarin fish samples. Additional quantitative analysis of amino acids revealed glutamic acid and aspartic acid as significant contributors to the fresh flavor. Furthermore, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that amino acid metabolism was the dominant pathway throughout the fermentation process. This study provides a scientific and theoretical reference for the targeted regulation of the quality of fermented mandarin fish. Full article
(This article belongs to the Special Issue Seafood: Quality, Shelf Life and Sensory Attributes)
Show Figures

Figure 1

20 pages, 2751 KiB  
Article
Chitooligosaccharide Conjugates Prepared Using Several Phenolic Compounds via Ascorbic Acid/H2O2 Free Radical Grafting: Characteristics, Antioxidant, Antidiabetic, and Antimicrobial Activities
by Ajay Mittal, Avtar Singh, Bin Zhang, Wonnop Visessanguan and Soottawat Benjakul
Foods 2022, 11(7), 920; https://doi.org/10.3390/foods11070920 - 23 Mar 2022
Cited by 32 | Viewed by 3639
Abstract
Chitooligosaccharide (COS)-polyphenol (PPN) conjugates prepared using different PPNs, including gallic, caffeic, and ferulic acids, epigallocatechin gallate, and catechin, at various concentrations were characterized via UV-visible, FTIR, and 1H-NMR spectra and tested for antioxidant, antidiabetic, and antimicrobial activities. Grafting of PPNs with COS [...] Read more.
Chitooligosaccharide (COS)-polyphenol (PPN) conjugates prepared using different PPNs, including gallic, caffeic, and ferulic acids, epigallocatechin gallate, and catechin, at various concentrations were characterized via UV-visible, FTIR, and 1H-NMR spectra and tested for antioxidant, antidiabetic, and antimicrobial activities. Grafting of PPNs with COS was achieved. The highest conjugation efficiency was noticed for COS-catechin (COS-CAT), which was identified to have the highest total phenolic content (TPC) out of all the conjugates (p < 0.05). For antioxidant activities, DPPH and ABTS radical scavenging activities (DPPH-RSA and ABTS-RSA, respectively), oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), and metal chelating activity (MCA) of all the samples were positively correlated with the TPC incorporated. COS-CAT had higher DPPH-RSA, ABTS-RSA, ORAC, and FRAP than COS and all other COS-PPN conjugates (p < 0.05). In addition, COS-CAT also showed the highest antidiabetic activity of the conjugates, as determined by inhibitory activity toward α-amylase, α-glucosidase, and pancreatic lipase (p < 0.05). COS-CAT also had the highest antimicrobial activity against all tested Gram-negative and Gram-positive bacteria (p < 0.05). Overall, grafting of PPNs, especially CAT on COS, significantly enhanced bioactivities, including antioxidant and antimicrobial, which could be used to retard spoilage and enhance shelf-life of various food systems. Moreover, the ability of COS-CAT to inhibit digestive enzymes reflects its preventive effect on diabetes mellitus and its complications. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

15 pages, 2896 KiB  
Article
Brassinosteroid Accelerates Wound Healing of Potato Tubers by Activation of Reactive Oxygen Metabolism and Phenylpropanoid Metabolism
by Ye Han, Ruirui Yang, Xuejiao Zhang, Qihui Wang, Bin Wang, Xiaoyuan Zheng, Yongcai Li, Dov Prusky and Yang Bi
Foods 2022, 11(7), 906; https://doi.org/10.3390/foods11070906 - 22 Mar 2022
Cited by 22 | Viewed by 2864
Abstract
Wound healing could effectively reduce the decay rate of potato tubers after harvest, but it took a long time to form typical and complete healing structures. Brassinosteroid (BR), as a sterol hormone, is important for enhancing plant resistance to abiotic and biotic stresses. [...] Read more.
Wound healing could effectively reduce the decay rate of potato tubers after harvest, but it took a long time to form typical and complete healing structures. Brassinosteroid (BR), as a sterol hormone, is important for enhancing plant resistance to abiotic and biotic stresses. However, it has not been reported that if BR affects wound healing of potato tubers. In the present study, we observed that BR played a positive role in the accumulation of lignin and suberin polyphenolic (SPP) at the wounds, and effectively reduced the weight loss and disease index of potato tubers (cv. Atlantic) during healing. At the end of healing, the weight loss and disease index of BR group was 30.8% and 23.1% lower than the control, respectively. Furthermore, BR activated the expression of StPAL, St4CL, StCAD genes and related enzyme activities in phenylpropanoid metabolism, and promoted the synthesis of lignin precursors and phenolic acids at the wound site, mainly by inducing the synthesis of caffeic acid, sinapic acid and cinnamyl alcohol. Meanwhile, the expression of StNOX was induced and the production of O2− and H2O2 was promoted, which mediated oxidative crosslinking of above phenolic acids and lignin precursors to form SPP and lignin. In addition, the expression level of StPOD was partially increased. In contrast, the inhibitor brassinazole inhibited phenylpropanoid metabolism and reactive oxygen metabolism, and demonstrated the function of BR hormone in healing in reverse. Taken together, the activation of reactive oxygen metabolism and phenylpropanoid metabolism by BR could accelerate the wound healing of potato tubers. Full article
(This article belongs to the Topic Food Processing and Preservation)
Show Figures

Figure 1

18 pages, 5446 KiB  
Article
Fabrication of Porous Spherical Beads from Corn Starch by Using a 3D Food Printing System
by Safoura Ahmadzadeh and Ali Ubeyitogullari
Foods 2022, 11(7), 913; https://doi.org/10.3390/foods11070913 - 22 Mar 2022
Cited by 21 | Viewed by 3310
Abstract
This study introduces a 3D food printing approach to fabricate spherical starch beads with small sizes and high porosity for the first time. The results illustrated that 3D food printing could generate starch beads in different sizes depending on the nozzle diameter, printing [...] Read more.
This study introduces a 3D food printing approach to fabricate spherical starch beads with small sizes and high porosity for the first time. The results illustrated that 3D food printing could generate starch beads in different sizes depending on the nozzle diameter, printing pressure, and ink viscosity. The 3D-printed beads were characterized for their morphology, crystallinity, and textural properties, while the starch-based ink was analyzed for its rheological properties. A suitable printing was attained when viscosity was in the range of 1000–1200 Pa.s at a low shear rate (˂0.1 s−1). Among the starch concentrations (10–15%, w/w) investigated, 15% starch concentration provided the best control over the shape of the beads due to its high storage modulus (8947 Pa), indicating higher gel strength. At this condition, the starch beads revealed an average size of ~650 µm, which was significantly smaller than the beads produced with other starch concentrations (10 and 12.5%), and had a density of 0.23 g/cm3. However, at lower starch concentrations (10%), the beads were not able to retain their spherical shape, resulting in larger beads (812–3501 µm). Starch crystallinity decreased by gelatinization, and the starch beads exhibited a porous structure, as observed from their SEM images. Overall, 3D food printing can be an alternative approach to preparing porous beads for the delivery of bioactive compounds with high precision. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

12 pages, 17150 KiB  
Article
The Protective Effects of Ginseng Polysaccharides and Their Effective Subfraction against Dextran Sodium Sulfate-Induced Colitis
by Shanshan Li, Xiaohui Huo, Yuli Qi, Duoduo Ren, Zhiman Li, Di Qu and Yinshi Sun
Foods 2022, 11(6), 890; https://doi.org/10.3390/foods11060890 - 21 Mar 2022
Cited by 21 | Viewed by 2981
Abstract
Polysaccharides from Panax ginseng are natural carbohydrates with multiple activities. However, little was known about its functions on colitis. In this study, we aim to investigate the protective effects of ginseng polysaccharides and its effective subfraction on dextran sodium sulfate (DSS)-induced colitis. Water [...] Read more.
Polysaccharides from Panax ginseng are natural carbohydrates with multiple activities. However, little was known about its functions on colitis. In this study, we aim to investigate the protective effects of ginseng polysaccharides and its effective subfraction on dextran sodium sulfate (DSS)-induced colitis. Water soluble ginseng polysaccharides (WGP) were obtained from dry ginseng root, then purified to neutral fraction (WGPN) and acidic fraction (WGPA) by ion exchange chromatography. An animal model was constructed with male Wistar rats, which were treated with a normal diet (con group), DSS (DSS group), WGP (WGP group), WGPN (WGPN group), and WGPA (WGPA group), respectively. Both WGP and WGPA alleviated the colitis symptoms and colon structure changes of colitis rats. They decreased the disease activity index (DAI) scores and improved colon health; reduced colon damage and recovered the intestinal barrier via regulating the tight-junction-related proteins (ZO-1 and Occludin); downregulated inflammatory cytokines (IL-1β, IL-2, IL-6, and IL-17) and inhibited the TLR4/MyD88/NF-κB-signaling pathway in the colon; regulated the diversity and composition of gut microbiota, especially the relative abundance of Ruminococcus; enhanced the production of SCFAs. In conclusion, WGP exerted a protective effect against colitis with its acidic fraction (WGPA) as an effective fraction. The results support the utilization and investigation of ginseng polysaccharides as a potential intervention strategy for the prevention of colitis. Full article
Show Figures

Figure 1

17 pages, 2767 KiB  
Article
Comparison of Flavonoid O-Glycoside, C-Glycoside and Their Aglycones on Antioxidant Capacity and Metabolism during In Vitro Digestion and In Vivo
by Liangqin Xie, Zeyuan Deng, Jie Zhang, Huanhuan Dong, Wei Wang, Banghuai Xing and Xiaoru Liu
Foods 2022, 11(6), 882; https://doi.org/10.3390/foods11060882 - 20 Mar 2022
Cited by 54 | Viewed by 4872
Abstract
Flavonoids are well known for their extensive health benefits. However, few studies compared the differences between flavonoid O-glycoside and C-glycoside. In this work, flavonoid O-glycoside (isoquercitrin), C-glycoside (orientin), and their aglycones (quercetin and luteolin) were chosen to compare their differences on antioxidant activities [...] Read more.
Flavonoids are well known for their extensive health benefits. However, few studies compared the differences between flavonoid O-glycoside and C-glycoside. In this work, flavonoid O-glycoside (isoquercitrin), C-glycoside (orientin), and their aglycones (quercetin and luteolin) were chosen to compare their differences on antioxidant activities and metabolism during in vitro digestion and in vivo. In vitro digestion, the initial antioxidant activity of the two aglycones was very high; however, they both decreased more sharply than their glycosides in the intestinal phase. The glycosidic bond of flavonoid O-glycoside was broken in the gastric and intestinal stage, while the C-glycoside remained unchanged. In vivo, flavonoid O-glycoside in plasma was more elevated than C-glycoside on the antioxidant activity; however, flavonoid C-glycoside in urine was higher than O-glycoside. These results indicate that differences of flavonoid glycosides and their aglycones on antioxidant activity are closely related to their structural characteristics and metabolism in different samples. Aglycones possessed higher activity but unstable structures. On the contrary, the sugar substituents reduced the activity of flavonoids while improving their stability and helping to maintain antioxidant activities after digestion. Especially the C-glycoside was more stable because the stability of the C–C bond is higher than that of the C–O bond, which contributes to the difference between flavonoid O-glycoside and C-glycoside on the absorption and metabolism in vivo. This study provided a new perspective for comparing flavonoid O-glycoside, flavonoid C-glycoside, and their aglycones on their structure–activity relationship and metabolism. Full article
(This article belongs to the Special Issue Plant-Based Food and Human Digestion Health)
Show Figures

Figure 1

13 pages, 2722 KiB  
Article
Effects of Ultrasonic Treatment on the Structure, Functional Properties of Chickpea Protein Isolate and Its Digestibility In Vitro
by Shihua Kang, Jian Zhang, Xiaobing Guo, Yongdong Lei and Mei Yang
Foods 2022, 11(6), 880; https://doi.org/10.3390/foods11060880 - 19 Mar 2022
Cited by 69 | Viewed by 4076
Abstract
This study evaluated the effects of different levels of ultrasonic power (200, 400, 600 W) and treatment time (0, 10, 15 and 30 min) on the structure, emulsification characteristics, and in vitro digestibility of chickpea protein isolate (CPI). The changes in surface hydrophobicity [...] Read more.
This study evaluated the effects of different levels of ultrasonic power (200, 400, 600 W) and treatment time (0, 10, 15 and 30 min) on the structure, emulsification characteristics, and in vitro digestibility of chickpea protein isolate (CPI). The changes in surface hydrophobicity of CPI indicated that ultrasound treatment exposed more hydrophobic amino acid residues. The analysis of sulfhydryl content and zeta potential showed that ultrasound caused the disulfide bond of CPI to be opened, releasing more negatively charged groups, and the solution was more stable. In addition, Fourier Transform Infrared Spectroscopy (FT-IR) and intrinsic fluorescence spectroscopy showed that ultrasound changes the secondary and tertiary structure of CPI, which is due to molecular expansion and stretching, exposing internal hydrophobic groups. The emulsification and foaming stability of CPI were significantly improved after ultrasonic treatment. Ultrasonic treatment had a minor effect on the solubility, foaming capacity and in vitro digestibility of CPI. All the results revealed that the ultrasound was a promising way to improve the functional properties of CPI. Full article
Show Figures

Graphical abstract

Back to TopTop