Next Issue
Volume 12, August
Previous Issue
Volume 12, June
 
 

Photonics, Volume 12, Issue 7 (July 2025) – 115 articles

Cover Story (view full-size image): The recent pandemic raised awareness of monitoring human vital signs. However, the popular heart rate monitoring method cannot reflect one’s arterial health. This spurred research into developing high-fidelity non-invasive pulse waveform sensors, which provide crucial data like blood pressure, arterial stiffness, and vascular aging. Among these, optical fiber sensors (OFSs) excel due to their electromagnetic interference resistance, multi-parameter monitoring capability, and biocompatibility. This paper reviews recent OFS advancements for vital sign measurement, focusing on pulse waveform analysis. In addition, it addresses current OFS challenges in this monitoring and explores future development opportunities. This technology shows significant potential for both clinical and personal non-invasive pulse waveform monitoring. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 3671 KiB  
Article
Method for Suppressing Scintillation in Up-Link Optical Communication Using Optical Pin-like Beams Propagating Through Atmospheric Turbulence
by Rong Wang, Bin Lan, Chao Liu, Kaihe Zhang, Jiaxin Zhou, Xueying Li, Tianjun Dai and Hao Xian
Photonics 2025, 12(7), 739; https://doi.org/10.3390/photonics12070739 - 20 Jul 2025
Viewed by 255
Abstract
Free space optical communication (FSOC) systems operating in the space–atmosphere channel are susceptible to severe turbulence-induced scintillation, particularly in up-link configurations where the adaptive optics (AO) pre-correction becomes ineffective due to anisoplanatic constraints. This study presents a novel scintillation suppression strategy utilizing self-focusing [...] Read more.
Free space optical communication (FSOC) systems operating in the space–atmosphere channel are susceptible to severe turbulence-induced scintillation, particularly in up-link configurations where the adaptive optics (AO) pre-correction becomes ineffective due to anisoplanatic constraints. This study presents a novel scintillation suppression strategy utilizing self-focusing optical pin-like beams (OPBs) with tailored phase modulation, combining theoretical derivation and numerical simulation. It is found that increasing the shape factor γ and modulation depth C elevates the average received power and reduces the scintillation index at the focal point. Meanwhile, quantitative evaluation of the five OPB configurations shows that the parameter set γ = 1.4 and C = 7 × 10−5 gives a peak scintillation suppression efficiency. It shows that turbulence induced scintillation is suppressed by 44% with the turbulence intensity D/r0 = 10, demonstrating exceptional effectiveness in up-link transmission. The findings demonstrate that OPB with optimized γ and C establish an approach for uplink FSOC, which is achieved through suppressed scintillation and stabilized power reception. Full article
Show Figures

Figure 1

21 pages, 18540 KiB  
Article
Nonlocal Interactions in Metasurfaces Harnessed by Neural Networks
by Yongle Zhou, Qi Xu, Yikun Liu, Emiliano R. Martins, Haowen Liang and Juntao Li
Photonics 2025, 12(7), 738; https://doi.org/10.3390/photonics12070738 - 19 Jul 2025
Viewed by 322
Abstract
Optical metasurfaces enable compact, lightweight and planar optical devices. Their performances, however, are still limited by design approximations imposed by their macroscopic dimensions. To address this problem, we propose a neural network-based multi-stage gradient optimization method to efficiently modulate nonlocal interactions between meta-atoms, [...] Read more.
Optical metasurfaces enable compact, lightweight and planar optical devices. Their performances, however, are still limited by design approximations imposed by their macroscopic dimensions. To address this problem, we propose a neural network-based multi-stage gradient optimization method to efficiently modulate nonlocal interactions between meta-atoms, which is one of the major effects neglected by current design methods. Our strategy allows for the use of these interactions as an additional design dimension to enhance the performance of metasurfaces and can be used to optimize large-scale metasurfaces with multiple parameters. As an example of application, we design a meta-hologram with a zero-order energy suppressed to 26% (theoretically) and 57% (experimentally) of its original value. Our results suggest that neural networks can be used as a powerful design tool for the next generation of high-performance metasurfaces with complex functionalities. Full article
Show Figures

Figure 1

19 pages, 1854 KiB  
Article
Non-Destructive Discrimination and Traceability of Exocarpium Citrus grandis Aging Years via Feature-Optimized Hyperspectral Imaging and Broad Learning System
by Wenqi Liu and Shihua Zhong
Photonics 2025, 12(7), 737; https://doi.org/10.3390/photonics12070737 - 19 Jul 2025
Viewed by 305
Abstract
Exocarpium Citrus grandis is a traditional Chinese medicinal and edible herb whose pharmacological efficacy is closely tied to its aging duration. The accurate discrimination of aging years is essential for quality control but remains challenging due to limitations in current analytical techniques. This [...] Read more.
Exocarpium Citrus grandis is a traditional Chinese medicinal and edible herb whose pharmacological efficacy is closely tied to its aging duration. The accurate discrimination of aging years is essential for quality control but remains challenging due to limitations in current analytical techniques. This study proposes a novel feature-optimized classification framework that integrates hyperspectral imaging (HSI) with a Broad Learning System (BLS). Bilateral spectral data (side A and side B) were collected to capture more comprehensive sample information. A combination of normalization (NOR) preprocessing and the Iterative Variable Importance for Spectral Subset Selection Algorithm (iVISSA) was found to be optimal. The NOR–iVISSA–BLS model achieved classification accuracies of 94.09 ± 1.01% (side A) and 95.10 ± 0.82% (side B). Furthermore, cross-validation between the two sides (A→B: 94.92%, B→A: 94.11%) confirmed the model’s robustness and generalizability. This dual-side spectral validation strategy offers a rapid, nondestructive, and reliable solution for the vintage authentication of Exocarpium Citrus grandis, contributing to the modernization of quality control in medicinal foodstuffs. Full article
Show Figures

Figure 1

14 pages, 2402 KiB  
Article
On-Chip Mid-Infrared Dual-Band Wavelength Splitting with Integrated Metalens and Enhanced Bandwidth
by Deming Hu, Qi Zhang, Zhibin Ye, Xuan-Ming Duan and Yang Zhang
Photonics 2025, 12(7), 736; https://doi.org/10.3390/photonics12070736 - 19 Jul 2025
Viewed by 213
Abstract
On-chip spectral splitting structures with compact footprints hold tremendous potential for next-generation molecular sensing applications in the mid-infrared region. Here, we propose and theoretically investigate a carefully designed structure comprising a tilt grating and metalenses for dual-band spectral splitting with enhanced bandwidth. The [...] Read more.
On-chip spectral splitting structures with compact footprints hold tremendous potential for next-generation molecular sensing applications in the mid-infrared region. Here, we propose and theoretically investigate a carefully designed structure comprising a tilt grating and metalenses for dual-band spectral splitting with enhanced bandwidth. The tilt grating serves to separate the wavelength bands, and the metalenses following the grating guarantee a smooth transition of light into single-mode waveguides, giving rise to transmittances of 73.59% at 4 μm and 68.74% at 11 μm. The use of this tandem structure results in a significant footprint reduction and a remarkable 25.8% bandwidth enhancement over conventional approaches. The proposed spectral splitting scheme, with its broad wavelength range applicability, unlocks new pathways for on-chip simultaneous multi-target molecule detection. Full article
(This article belongs to the Special Issue Infrared Optoelectronic Materials and Devices)
Show Figures

Figure 1

23 pages, 7773 KiB  
Article
Strengthening-Effect Assessment of Smart CFRP-Reinforced Steel Beams Based on Optical Fiber Sensing Technology
by Bao-Rui Peng, Fu-Kang Shen, Zi-Yi Luo, Chao Zhang, Yung William Sasy Chan, Hua-Ping Wang and Ping Xiang
Photonics 2025, 12(7), 735; https://doi.org/10.3390/photonics12070735 - 18 Jul 2025
Viewed by 292
Abstract
Carbon fiber-reinforced polymer (CFRP) laminates have been widely coated on aged and damaged structures for recovering or enhancing their structural performance. The health conditions of the coated composite structures have been given high attention, as they are critically important for assessing operational safety [...] Read more.
Carbon fiber-reinforced polymer (CFRP) laminates have been widely coated on aged and damaged structures for recovering or enhancing their structural performance. The health conditions of the coated composite structures have been given high attention, as they are critically important for assessing operational safety and residual service life. However, the current problem is the lack of an efficient, long-term, and stable monitoring technique to characterize the structural behavior of coated composite structures in the whole life cycle. For this reason, bare and packaged fiber Bragg grating (FBG) sensors have been specially developed and designed in sensing networks to monitor the structural performance of CFRP-coated composite beams under different loads. Some optical fibers have also been inserted in the CFRP laminates to configure the smart CFRP component. Detailed data interpretation has been conducted to declare the strengthening process and effect. Finite element simulation and simplified theoretical analysis have been conducted to validate the experimental testing results and the deformation profiles of steel beams before and after the CFRP coating has been carefully checked. Results indicate that the proposed FBG sensors and sensing layout can accurately reflect the structural performance of the composite beam structure, and the CFRP coating can share partial loads, which finally leads to the downward shift in the centroidal axis, with a value of about 10 mm. The externally bonded sensors generally show good stability and high sensitivity to the applied load and temperature-induced inner stress variation. The study provides a straightforward instruction for the establishment of a structural health monitoring system for CFRP-coated composite structures in the whole life cycle. Full article
Show Figures

Figure 1

10 pages, 3012 KiB  
Article
A Perovskite-Based Photoelectric Synaptic Transistor with Dynamic Nonlinear Response
by Jiahui Liu, Zunxian Yang, Yujie Zheng and Wenkun Su
Photonics 2025, 12(7), 734; https://doi.org/10.3390/photonics12070734 - 18 Jul 2025
Viewed by 221
Abstract
Nonlinear characteristics are essential for neuromorphic devices to process high-dimensional and unstructured data. However, enabling a device to realize a nonlinear response under the same stimulation condition is challenging as this involves two opposing processes: simultaneous charge accumulation and recombination. In this study, [...] Read more.
Nonlinear characteristics are essential for neuromorphic devices to process high-dimensional and unstructured data. However, enabling a device to realize a nonlinear response under the same stimulation condition is challenging as this involves two opposing processes: simultaneous charge accumulation and recombination. In this study, a hybrid transistor based on a mixed-halide perovskite was fabricated to achieve dynamic nonlinear changes in synaptic plasticity. The utilization of a light-induced mixed-bandgap structure within the mixed perovskite film has been demonstrated to increase the recombination paths of photogenerated carriers of the hybrid film, thereby promoting the formation of nonlinear signals in the device. The constructed heterojunction optoelectronic synaptic transistor, formed by combining a mixed-halide perovskite with a p-type semiconductor, generates dynamic nonlinear decay responses under 400 nm light pulses with an intensity as low as 0.02 mW/cm2. Furthermore, it has been demonstrated that nonlinear photocurrent growth can be achieved under 650 nm light pulses. It is important to note that this novel nonlinear response is characterized by its dynamism. These improvements provide a novel method for expanding the modulation capability of optoelectronic synaptic devices for synaptic plasticity. Full article
(This article belongs to the Special Issue Polaritons Nanophotonics: Physics, Materials and Applications)
Show Figures

Figure 1

19 pages, 2875 KiB  
Review
Streamlining ICI Transformed as a Nonnegative System
by David Hyland
Photonics 2025, 12(7), 733; https://doi.org/10.3390/photonics12070733 - 18 Jul 2025
Viewed by 121
Abstract
More than seventy-five years ago, R. Hanbury Brown and R. Q. Twiss performed the first experiments in quantum optics. At the outset, their results showed great promise for the field of astronomical science, featuring inexpensive hardware, immunity to atmospheric turbulence, and enormous interferometry [...] Read more.
More than seventy-five years ago, R. Hanbury Brown and R. Q. Twiss performed the first experiments in quantum optics. At the outset, their results showed great promise for the field of astronomical science, featuring inexpensive hardware, immunity to atmospheric turbulence, and enormous interferometry baselines. This was put to good use for the determination of stellar diameters up to the present time. However, for two-dimensional imaging with faint objects, the integration times are prohibitive. Recently, in a sequence of papers, the present author developed a stochastic search algorithm to remove this roadblock, reducing millions of hours to minutes or seconds. Also, the author’s paper entitled “The Rise of the Brown-Twiss Effect” summarized the search algorithm and emphasized the mathematical proofs of the algorithm. The current algorithm is a sequence of six lines of code. The goal of the present article is to streamline the algorithm in the form of a discrete-time dynamic system and to reduce the size of the state space. The previous algorithm used initial conditions that were randomly assorted pixel intensities. The intensities were mutually statistically independent and uniformly distributed over the range 0,δ, where δ is a (very small) positive constant. The present formulation employs a transformation requiring the uniformly distributed phase of the fast Fourier transform of the cross correlations of the data as initial conditions. We shall see that this strategy results in the simplest discrete-time dynamic system capable for exploring the alternate features and benefits of compartmental nonnegative dynamic systems. Full article
(This article belongs to the Special Issue Optical Imaging and Measurements: 2nd Edition)
Show Figures

Figure 1

28 pages, 5787 KiB  
Review
Silicon-Based On-Chip Light Sources: A Review
by Yongqi Yang, Jiaqi Yang, Zhouyang Cheng, Shuyan Zhang, Zhen Yang, Shengchuang Bai and Rongping Wang
Photonics 2025, 12(7), 732; https://doi.org/10.3390/photonics12070732 - 18 Jul 2025
Viewed by 430
Abstract
Silicon-based on-chip light sources are important since they can provide a compact solution for various applications in the field of high-speed optical communications, high-precision sensing, quantum information processing, and so on. We review the progress of silicon-based on-chip light sources in various materials. [...] Read more.
Silicon-based on-chip light sources are important since they can provide a compact solution for various applications in the field of high-speed optical communications, high-precision sensing, quantum information processing, and so on. We review the progress of silicon-based on-chip light sources in various materials. We provide some key parameters like pump thresholds, output powers, and pump schemes of on-chip lasers based on various materials. Finally, we point out the existing issues in the current investigations and possible solutions in the future. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

38 pages, 2401 KiB  
Review
Mie Coefficients
by Henk F. Arnoldus
Photonics 2025, 12(7), 731; https://doi.org/10.3390/photonics12070731 - 18 Jul 2025
Viewed by 229
Abstract
We consider the scattering of electromagnetic radiation by a spherical particle, known as Mie scattering. The electric and magnetic fields are represented by multipole fields, and the amplitudes are the Mie scattering coefficients. Properties of the particle are mainly contained in these coefficients. [...] Read more.
We consider the scattering of electromagnetic radiation by a spherical particle, known as Mie scattering. The electric and magnetic fields are represented by multipole fields, and the amplitudes are the Mie scattering coefficients. Properties of the particle are mainly contained in these coefficients. We have studied the dependence of these coefficients on the various parameters, with an emphasis on the dependence on the particle radius. Central to this discussion is what is known as the ‘Mie circle’. Without absorption in the particle or the embedding medium, the Mie scattering coefficients lie on this universal circle in the complex plane. We have studied the location of the Mie scattering coefficients on this circle as a function of the particle radius. The Mie circle also serves as a reference for the case when there is absorption in the particle or the medium. In the limit of a small particle, a peculiar divergence appears in the expression for the Mie coefficients, known as the Fröhlich resonance. We show that this apparent singularity is a consequence of the fact that the limit of a small particle fails in the neighborhood of this resonance, and we derive an expression for the correct small-particle limit in the neighborhood of this resonance. Full article
Show Figures

Figure 1

28 pages, 6374 KiB  
Review
Recent Progress in GaN-Based High-Bandwidth Micro-LEDs and Photodetectors for High-Speed Visible Light Communication
by Handan Xu, Jiakang Ai, Tianlin Deng, Yuandong Ruan, Di Sun, Yue Liao, Xugao Cui and Pengfei Tian
Photonics 2025, 12(7), 730; https://doi.org/10.3390/photonics12070730 - 18 Jul 2025
Viewed by 566
Abstract
Visible light communication (VLC) is an emerging communication technology that integrates lighting and communication, offering significant advantages in terms of data transmission rates and broad application prospects. With advancements in semiconductor technology, micro-light-emitting diodes (micro-LEDs) have emerged as one of the most promising [...] Read more.
Visible light communication (VLC) is an emerging communication technology that integrates lighting and communication, offering significant advantages in terms of data transmission rates and broad application prospects. With advancements in semiconductor technology, micro-light-emitting diodes (micro-LEDs) have emerged as one of the most promising light sources for high-speed VLC systems, owing to their high brightness, low power consumption, and high modulation bandwidth. Recent developments have also seen substantial progress in high-bandwidth GaN-based visible light detectors, which complement the transmission capabilities of micro-LEDs. This paper reviews the latest advancements in micro-LEDs as high-speed transmitters for VLC, detailing their capabilities in terms of bandwidth, data rates, modulation techniques, and diverse applications, including structured lighting systems that combine positioning, communication, and illumination. Additionally, the advantages of using micro-LEDs in GaN-based photodetectors (PDs) are discussed, highlighting their potential in enhancing bandwidth and data rates and facilitating high-speed communications across multifunctional applications. Therefore, this review will benefit the further development of micro-LEDs and their application in 6G communication and global interconnect. Full article
(This article belongs to the Special Issue New Advances in Optical Wireless Communication)
Show Figures

Figure 1

12 pages, 2993 KiB  
Article
Integrated Multiband-Mode Multiplexing Photonic Lantern for Selective Mode Excitation and Preservation
by Li Zhao, Ting Yu, Yunhao Chen and Jianing Tang
Photonics 2025, 12(7), 729; https://doi.org/10.3390/photonics12070729 - 17 Jul 2025
Viewed by 238
Abstract
We propose and experimentally demonstrate an Integrated Multiband-Mode Multiplexing Photonic Lantern (IM3PL) that enables the selective excitation of high-order modes and stable modal preservation across multiple wavelength bands. As a proof-of-concept configuration, the IM3PL integrates a custom-designed input fiber array composed of three [...] Read more.
We propose and experimentally demonstrate an Integrated Multiband-Mode Multiplexing Photonic Lantern (IM3PL) that enables the selective excitation of high-order modes and stable modal preservation across multiple wavelength bands. As a proof-of-concept configuration, the IM3PL integrates a custom-designed input fiber array composed of three 980 nm single-mode fibers (SMFs) and two few-mode fibers (FMFs) operating at 1310 nm and 1550 nm, respectively. Simulations verify that 980 nm input signals can selectively excite LP01, LP11a, and LP11b modes at the FMF output, while the modal integrity of high-order linear polarized modes is preserved at 1310 nm and 1550 nm. The fabricated IM3PL device is experimentally validated via near-field pattern measurements, confirming the selective excitation at 980 nm and low-loss, mode-preserving transmission at the signal bands. This work offers a scalable and reconfigurable solution for multiband high-order-mode multiplexing, with promising applications in mode-division multiplexed fiber communication systems and multiband high-mode fiber lasers. Full article
Show Figures

Figure 1

14 pages, 2681 KiB  
Article
Waveguide-Assisted Magneto-Optical Effects in 1D Garnet/Co/Au Plasmonic Crystals
by Tatiana Murzina, Andrey Dotsenko, Irina Kolmychek, Vladimir Novikov, Nikita Gusev, Ilya Fedotov and Sergei Gusev
Photonics 2025, 12(7), 728; https://doi.org/10.3390/photonics12070728 - 17 Jul 2025
Viewed by 227
Abstract
Magneto-plasmonic structures have been a subject of tremendous attention of researchers in recent decades as they provide unique approaches regarding the efficient control of optical, magneto-optical, and nonlinear-optical effects. Among others, magneto-plasmonic crystals (MPCs) have become one of the most studied structures, known [...] Read more.
Magneto-plasmonic structures have been a subject of tremendous attention of researchers in recent decades as they provide unique approaches regarding the efficient control of optical, magneto-optical, and nonlinear-optical effects. Among others, magneto-plasmonic crystals (MPCs) have become one of the most studied structures, known for their high-quality tunable resonant optical properties. Here, we present the results of experimental and numerical studies on the functional magneto-optical (MO) response of planar 1D plasmonic crystals composed of Co/Au stripes of submicron period on the surface of a 3 μm thick rare-earth garnet layer. The experimental and numerical studies confirm that the wavelength–angular spectra of such structures contain a set of tunable resonant features in their optical and magneto-optical response, associated with the excitation of (i) surface plasmon polaritons at the Co/Au grating–garnet interface, as well as (ii) waveguide (WG) modes propagating in the garnet slab. A comparison of the MO effects in the transversal and longitudinal magnetization of the plasmonic structures is presented. We show that the most efficient Fano-type MPC magneto-optical response is realized for the WG modes of the first order for the longitudinal magnetization of the structure. Further perspectives regarding the optimization of this type of plasmonic crystal are discussed. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

16 pages, 9618 KiB  
Article
Scattering of Radiation by a Periodic Structure of Circular and Elliptical Microcavities in a Multimode Optical Waveguide
by Alexandra Yu. Petukhova, Anatolii V. Perminov, Mikhail A. Naparin and Victor V. Krishtop
Photonics 2025, 12(7), 727; https://doi.org/10.3390/photonics12070727 - 17 Jul 2025
Viewed by 263
Abstract
We developed a mathematical model to examine the scattering of radiation by a periodic structure of circular and elliptical microcavities formed in a planar optical waveguide. The waveguide simulates the behaviour of a 62.5/125 µm multimode optical fibre. The calculations focused on the [...] Read more.
We developed a mathematical model to examine the scattering of radiation by a periodic structure of circular and elliptical microcavities formed in a planar optical waveguide. The waveguide simulates the behaviour of a 62.5/125 µm multimode optical fibre. The calculations focused on the intensity distribution of scattered light with a wavelength of 1310 nm along the periodic structure, i.e., along the side surface of the waveguide, as a function of the microcavity dimensions and their spatial arrangement within the waveguide core. The optimal geometrical parameters of the microstructure, ensuring the most uniform light scattering, were identified. The model is valid for multimode optical fibres containing strictly periodic structures of microcavities with spherical or elliptical cross-sections that scatter laser radiation in all directions. One potential application of such fibres is as light sources in medical probes for surgical procedures requiring additional illumination and uniform irradiation of affected tissues. Furthermore, the findings of this study offer significant potential for the development of sensing elements for fibre-optic sensors. The findings of this study will facilitate the design of scattering structures with microcavities that ensure a highly uniform scattering pattern. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

16 pages, 2133 KiB  
Article
Effects of Chromatic Dispersion on BOTDA Sensor
by Qingwen Hou, Mingjun Kuang, Jindong Wang, Jianping Guo and Zhengjun Wei
Photonics 2025, 12(7), 726; https://doi.org/10.3390/photonics12070726 - 17 Jul 2025
Viewed by 206
Abstract
This study investigates the influence of chromatic dispersion on the performance of Brillouin optical time-domain analysis (BOTDA) sensors, particularly under high-pump-power conditions, where nonlinear effects become significant. By incorporating dispersion terms into the coupled amplitude equations of stimulated Brillouin scattering (SBS), we theoretically [...] Read more.
This study investigates the influence of chromatic dispersion on the performance of Brillouin optical time-domain analysis (BOTDA) sensors, particularly under high-pump-power conditions, where nonlinear effects become significant. By incorporating dispersion terms into the coupled amplitude equations of stimulated Brillouin scattering (SBS), we theoretically analyzed the dispersion-induced pulse broadening effect and its impact on the Brillouin gain spectrum (BGS). Numerical simulations revealed that dispersion leads to a moderate broadening of pump pulses, resulting in slight changes to BGS characteristics, including increased peak power and reduced linewidth. To explore the interplay between dispersion and nonlinearity, we built a gain-based BOTDA experimental system and tested two types of fibers, namely standard single-mode fiber (SMF) with anomalous dispersion and dispersion-compensating fiber (DCF) with normal dispersion. Experimental results show that SMF is more prone to modulation instability (MI), which significantly degrades the signal-to-noise ratio (SNR) of the BGS. In contrast, DCF effectively suppresses MI and provides a more stable Brillouin signal. Despite SMF exhibiting narrower BGS linewidths, DCF achieves a higher SNR, aligning with theoretical predictions. These findings highlight the importance of fiber dispersion properties in BOTDA design and suggest that using normally dispersive fibers like DCF can improve sensing performance in long-range, high-power applications. Full article
Show Figures

Figure 1

11 pages, 1461 KiB  
Article
Global–Local Cooperative Optimization in Photonic Inverse Design Algorithms
by Mingzhe Li, Tong Wang, Yi Zhang, Yulin Shen, Jie Yang, Ke Zhang, Dehui Pan and Ming Xin
Photonics 2025, 12(7), 725; https://doi.org/10.3390/photonics12070725 - 17 Jul 2025
Viewed by 302
Abstract
We developed the Global–Local Integrated Topology inverse design algorithm (denoted as the GLINT algorithm), which employs a trajectory-based optimization strategy with waveguide–substrate material-flipping structural modifications, enabling the direct optimization of discrete waveguide–substrate binary structures. Compared to the conventional Direct Binary Search (DBS), the [...] Read more.
We developed the Global–Local Integrated Topology inverse design algorithm (denoted as the GLINT algorithm), which employs a trajectory-based optimization strategy with waveguide–substrate material-flipping structural modifications, enabling the direct optimization of discrete waveguide–substrate binary structures. Compared to the conventional Direct Binary Search (DBS), the GLINT algorithm not only significantly enhances computational efficiency through its global search–local refinement framework but also achieves a superior 20 nm × 20 nm optimization resolution while maintaining its optimization speed—substantially advancing the design capability. Utilizing this algorithm, we designed and experimentally demonstrated a 3.5 µm × 3.5 µm dual-port wavelength division multiplexer (WDM), achieving a minimum crosstalk of −11.3 dB and a 2 µm × 2 µm 90-degree bending waveguide exhibiting a 0.31–0.52 dB insertion loss over the 1528–1600 nm wavelength range, both fabricated on silicon-on-insulator (SOI) wafers. Additionally, a 4.5 µm × 4.5 µm three-port WDM structure was also designed and simulated, demonstrating crosstalk as low as −36.5 dB. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

9 pages, 902 KiB  
Article
Flat Top Non-Polarizing Optical Bandpass Filtering in Form of Planar Optical Waveguide
by Jianhua Liu and Ping Jiang
Photonics 2025, 12(7), 724; https://doi.org/10.3390/photonics12070724 - 17 Jul 2025
Viewed by 228
Abstract
To obtain a flat top shaped passband in a conventional thin-film-based optical bandpass filter (OBF), it needs a large number of constitutional layers of thin films, which makes the film deposition systems more complicated and accumulates errors in film growth. A flat top [...] Read more.
To obtain a flat top shaped passband in a conventional thin-film-based optical bandpass filter (OBF), it needs a large number of constitutional layers of thin films, which makes the film deposition systems more complicated and accumulates errors in film growth. A flat top and polarization-independent optical bandpass filter structure is proposed based on experimentally verified polarization independency in the form of a prism-pair coupled planar optical waveguide (POW). The POW is composed of two waveguide stacks, which consists of nine planar thin-film layers. Theoretical simulations show that the flat band top spans about 5 nm with transmittance over 97.8%. The passband is designed to be centered at 632.8 nm, the He-Ne laser wavelength, and the FWHM (full width at half maximum) bandwidth is about 35 nm. Within 0.5° tuning for the incident angle of the light, the passband could be shifted within 50 nm, while its transmittance fluctuates only less than 1% and the passband shape distorts only slightly. This type of OBF is potentially applicable in various fields of optical and laser spectroscopies. Full article
Show Figures

Figure 1

11 pages, 7216 KiB  
Article
Low-Finesse Fabry–Perot Cavity Design Based on a Reflective Sphere
by Ju Wang, Ye Gao, Jinlong Yu, Hao Luo, Xuemin Su, Xu Han, Yang Gao, Ben Cai and Chuang Ma
Photonics 2025, 12(7), 723; https://doi.org/10.3390/photonics12070723 - 17 Jul 2025
Viewed by 226
Abstract
Low-finesse Fabry–Perot (F–P) cavities, widely applied in the field of micro-displacement measurement, offer significant advantages in reducing the influence of higher-order reflections and improving the accuracy of measurement systems. Generally, an F–P cavity finesse of 0.5 is required to achieve high-precision micro-displacement measurements. [...] Read more.
Low-finesse Fabry–Perot (F–P) cavities, widely applied in the field of micro-displacement measurement, offer significant advantages in reducing the influence of higher-order reflections and improving the accuracy of measurement systems. Generally, an F–P cavity finesse of 0.5 is required to achieve high-precision micro-displacement measurements. However, in optical design, low-finesse cavities impose strict requirements on reflectivity, and maintaining fine stability during cavity movement is challenging. Achieving ideal orthogonal interference with a finesse of 0.5 thus presents considerable difficulties. This study proposes a novel low-finesse F–P cavity design that employs a high-reflectivity spherical reflector and the end face of a fiber collimator as the reflective surfaces of the cavity. By utilizing beam divergence characteristics and geometric parameters, a structure with a finesse of approximately 0.5 is quantitatively designed, enabling a simplified implementation without the need for angular alignment. Compared with conventional approaches, this method eliminates the need for precise angular alignment of the reflective surfaces, significantly simplifying implementation. The experimental results show that, under fixed receiving field angles and beam radii of the fiber collimators, ideal orthogonal interference can be achieved by selecting the radius of the reflective sphere. Under varying working distances, the average finesse values of the interference spectra measured by Collimators 1 and 2 are 0.496 and 0.502, respectively, both close to the theoretical design value of 0.5, thereby meeting the design requirements. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

17 pages, 4685 KiB  
Article
Development of an Automated Phase-Shifting Interferometer Using a Homemade Liquid-Crystal Phase Shifter
by Zhenghao Song, Lin Xu, Jing Wang, Xitong Liang and Jun Dai
Photonics 2025, 12(7), 722; https://doi.org/10.3390/photonics12070722 - 16 Jul 2025
Viewed by 302
Abstract
In this paper, an automatic phase-shifting interferometer has been developed using a homemade liquid-crystal phase shifter, which demonstrates a low-cost, fully automated technical solution for measuring the phase information of optical waves in devices. Conventional phase-shifting interferometers usually rely on PZT piezoelectric phase [...] Read more.
In this paper, an automatic phase-shifting interferometer has been developed using a homemade liquid-crystal phase shifter, which demonstrates a low-cost, fully automated technical solution for measuring the phase information of optical waves in devices. Conventional phase-shifting interferometers usually rely on PZT piezoelectric phase shifters, which are complex, require additional half-inverse and half-transparent optics to build the optical path, and are expensive. To overcome these limitations, we used a laboratory-made liquid-crystal waveplate as a phase shifter and integrated it into a Mach–Zehnder phase-shifting interferometer. The system is controlled by an STM32 microcontroller and self-developed measurement software, and it utilizes a four-step phase-shift interferometry algorithm and the CPULSI phase-unwrapping algorithm to achieve automatic phase measurements. Phase test experiments using a standard plano-convex lens and a homemade liquid-crystal grating as test objects demonstrate the feasibility and accuracy of the device by the fact that the measured focal lengths are in good agreement with the nominal values, and the phase distributions of the gratings are also in good agreement with the predefined values. This study validates the potential of liquid-crystal-based phase shifters for low-cost, fully automated optical phase measurements, providing a simpler and cheaper alternative to conventional methods. Full article
Show Figures

Figure 1

9 pages, 2042 KiB  
Communication
A 1 × 4 Silica-Based GMZI Thermo-Optic Switch with a Wide Bandwidth and Low Crosstalk
by Yanshuang Wang
Photonics 2025, 12(7), 721; https://doi.org/10.3390/photonics12070721 - 16 Jul 2025
Viewed by 209
Abstract
The growing demand for communication capacity has driven advancements in optical switches. However, measurement procedures for large-scale switching arrays become more complex as the number of units increases. Multi-port optical switches can reduce the measurement complexity. In this work, we demonstrate a 1 [...] Read more.
The growing demand for communication capacity has driven advancements in optical switches. However, measurement procedures for large-scale switching arrays become more complex as the number of units increases. Multi-port optical switches can reduce the measurement complexity. In this work, we demonstrate a 1 × 4 thermo-optic switch fabricated on a silica platform, based on a Generalized Mach–Zehnder Interferometer (GMZI) structure with a wide bandwidth and low crosstalk. The device enables flexible switching among four output channels, achieving a crosstalk below −15 dB over the 1500–1580 nm wavelength range and an insertion loss of −6.51 dB at 1550 nm. Full article
(This article belongs to the Special Issue Advances in Integrated Photonics)
Show Figures

Figure 1

22 pages, 5418 KiB  
Article
TickRS: A High-Speed Gapless Signal Sampling Method for Rolling-Shutter Optical Camera Communication
by Yongfeng Hong, Xiangting Xie and Xingfa Shen
Photonics 2025, 12(7), 720; https://doi.org/10.3390/photonics12070720 - 16 Jul 2025
Viewed by 151
Abstract
Using the rolling-shutter mechanism to enhance the signal sampling frequency of Optical Camera Communication (OCC) is a low-cost solution, but its periodic sampling interruptions may cause signal loss, and existing solutions often compromise communication rate and distance. To address this, this paper proposes [...] Read more.
Using the rolling-shutter mechanism to enhance the signal sampling frequency of Optical Camera Communication (OCC) is a low-cost solution, but its periodic sampling interruptions may cause signal loss, and existing solutions often compromise communication rate and distance. To address this, this paper proposes NoGap-RS, a no-gap sampling method, theoretically addressing the signal loss issue at longer distances from a perspective of CMOS exposure timing. Experiments show that NoGap-OOK, a OCC system based on NoGap-RS and On-Off key modulation, can achieve a communication rate of 6.41 Kbps at a distance of 3 m, with a BER of 105 under indoor artificial light. This paper further proposes TickRS, a time slot division method, innovatively addressing the overlap that occurs during consecutive-row exposures to further enhance communication rate. Experiments show that TickRS-CSK, a OCC system based on TickRS and Color-Shift Key, can achieve a communication rate of 20.09 Kbps at a distance of 3.6 m, with a BER of 102 under indoor natural light. Full article
Show Figures

Figure 1

11 pages, 3627 KiB  
Article
The Influence of Traps on the Self-Heating Effect and THz Response of GaN HEMTs
by Huichuan Fan, Xiaoyun Wang, Xiaofang Wang and Lin Wang
Photonics 2025, 12(7), 719; https://doi.org/10.3390/photonics12070719 - 16 Jul 2025
Viewed by 248
Abstract
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum [...] Read more.
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum relaxation time and the carrier lifetime. A simulation-based exploration of this mechanism provides significant scientific value for enhancing device performance through self-heating mitigation and THz response optimization. An AlGaN/GaN heterojunction HEMT model was established, with trap concentrations ranging from 0 to 5×1017 cm3. The analysis reveals that traps significantly enhance channel current (achieving 3× gain at 1×1017 cm3) via new energy levels that prolong carrier lifetime. However, elevated trap concentrations (>1×1016 cm3) exacerbate self-heating-induced current collapse, reducing the min-to-max current ratio to 0.9158. In THz response characterization, devices exhibit a distinct DC component (Udc) under non-resonant detection (ωτ1). At a trap concentration of 1×1015 cm3, Udc peaks at 0.12 V when VgDC=7.8 V. Compared to trap-free devices, a maximum response attenuation of 64.89% occurs at VgDC=4.9 V. Furthermore, Udc demonstrates non-monotonic behavior with concentration, showing local maxima at 4×1015 cm3 and 7×1015 cm3, attributed to plasma wave damping and temperature-gradient-induced electric field variations. This research establishes trap engineering guidelines for GaN HEMTs: a concentration of 4×1015 cm3 optimally enhances conductivity while minimizing adverse impacts on both self-heating and the THz response, making it particularly suitable for high-sensitivity terahertz detectors. Full article
Show Figures

Figure 1

14 pages, 2149 KiB  
Article
Gain Characteristics of Hybrid Waveguide Amplifiers in SiN Photonics Integration with Er-Yb:Al2O3 Thin Film
by Ziming Dong, Guoqing Sun, Yuqing Zhao, Yaxin Wang, Lei Ding, Liqin Tang and Yigang Li
Photonics 2025, 12(7), 718; https://doi.org/10.3390/photonics12070718 - 16 Jul 2025
Viewed by 283
Abstract
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient [...] Read more.
Integrated optical waveguide amplifiers, with their compact footprint, low power consumption, and scalability, are the basis for optical communications. The realization of high gain in such integrated devices is made more challenging by the tight optical constraints. In this work, we present efficient amplification in an erbium–ytterbium-based hybrid slot waveguide consisting of a silicon nitride waveguide and a thin-film active layer/electron-beam resist. The electron-beam resist as the upper cladding layer not only possesses the role of protecting the waveguide but also has tighter optical confinement in the vertical cross-section direction. On this basis, an accurate and comprehensive dynamic model of an erbium–ytterbium co-doped amplifier is realized by introducing quenched ions. A modal gain of above 20 dB is achieved at the signal wavelength of 1530 nm in a 1.4 cm long hybrid slot waveguide, with fractions of quenched ions fq = 30%. In addition, the proposed hybrid waveguide amplifiers exhibit higher modal gain than conventional air-clad amplifiers under the same conditions. Endowing silicon nitride photonic integrated circuits with efficient amplification enriches the integration of various active functionalities on silicon. Full article
Show Figures

Figure 1

12 pages, 5633 KiB  
Article
Study on Joint Intensity in Real-Space and k-Space of SFS Super-Resolution Imaging via Multiplex Illumination Modulation
by Xiaoyu Yang, Haonan Zhang, Feihong Lin, Xu Liu and Qing Yang
Photonics 2025, 12(7), 717; https://doi.org/10.3390/photonics12070717 - 16 Jul 2025
Viewed by 222
Abstract
This paper studied the general mechanism of spatial-frequency-shift (SFS) super-resolution imaging based on multiplex illumination modulation. The theory of SFS joint intensity was first proposed. Experiments on parallel slots with discrete spatial frequency (SF) distribution and V-shape slots with continuous SF distribution were [...] Read more.
This paper studied the general mechanism of spatial-frequency-shift (SFS) super-resolution imaging based on multiplex illumination modulation. The theory of SFS joint intensity was first proposed. Experiments on parallel slots with discrete spatial frequency (SF) distribution and V-shape slots with continuous SF distribution were carried out, and their real-space images and k-space images were obtained. The influence of single illumination with different SFS and mixed illumination with various combinations on SFS super-resolution imaging was analyzed. The phenomena of sample SF coverage were discussed. The SFS super-resolution imaging characteristics based on low-coherence illumination and highly localized light fields were discovered. The phenomenon of image magnification during SFS super-resolution imaging process was discussed. The differences and connections between the SF spectrum of objects and the k-space images obtained in SFS super-resolution imaging process were explained. This provides certain support for optimization of high-throughput SFS super-resolution imaging. Full article
Show Figures

Figure 1

12 pages, 3406 KiB  
Article
Singular Value Decomposition-Assisted Holographic Generation of High-Quality Cylindrical Vector Beams Through Few-Mode Fibers
by Angel Cifuentes, Miguel Varga and Gabriel Molina-Terriza
Photonics 2025, 12(7), 716; https://doi.org/10.3390/photonics12070716 - 16 Jul 2025
Viewed by 246
Abstract
Full control of the light field at the tip of the fiber holds the possibility of producing structured illumination patterns such as LG-beams or vector light fields, which have important applications in different fields such as imaging and quantum technologies. In this work, [...] Read more.
Full control of the light field at the tip of the fiber holds the possibility of producing structured illumination patterns such as LG-beams or vector light fields, which have important applications in different fields such as imaging and quantum technologies. In this work, we show how, by measuring the transmission matrix (TM) and shaping the input of a few-mode fiber, we are able to produce cylindrical vector beams at the fiber output. We use singular value decomposition (SVD) to analyze the TM and use the singular vectors as the basis for beam shaping. We demonstrate the method in three different commercially available fibers supporting 6, 12 and 16 modes each. Full article
(This article belongs to the Special Issue Vortex Beams: Transmission, Scattering and Application)
Show Figures

Figure 1

8 pages, 2367 KiB  
Article
Microwave-Controlled Spectroscopy Evolution for Different Rydberg States
by Yinglong Diao, Haoliang Hu, Xiaofei Li, Zhibo Li, Feitong Zeng, Yanbin Chen and Shuhang You
Photonics 2025, 12(7), 715; https://doi.org/10.3390/photonics12070715 - 16 Jul 2025
Viewed by 214
Abstract
In this paper, a series of electromagnetically-induced-transparent (EIT) spectra of different Rydberg states, controlled by microwaves, in rubidium (Rb) thermal vapor are presented. The novel evolution regularity for different Rydberg states can be found by experimentally detected transmitted EIT spectra, which can reveal [...] Read more.
In this paper, a series of electromagnetically-induced-transparent (EIT) spectra of different Rydberg states, controlled by microwaves, in rubidium (Rb) thermal vapor are presented. The novel evolution regularity for different Rydberg states can be found by experimentally detected transmitted EIT spectra, which can reveal the primary quantum number of different Rydberg states and how to influence microwave control spectroscopy evolution regularity, and which can pave the way in order to address the challenge of selecting Rydberg states for applications in Rydberg microwave field detection. This is helpful for the development of measuring standards of the microwave field in Rydberg states. Full article
Show Figures

Figure 1

13 pages, 2189 KiB  
Article
A Distributed Microwave Signal Transmission System for Arbitrary Multi-Node Download
by Ju Wang, Xuemin Su, Jinlong Yu, Hao Luo, Ye Gao, Xu Han and Changsheng Huang
Photonics 2025, 12(7), 714; https://doi.org/10.3390/photonics12070714 - 16 Jul 2025
Viewed by 201
Abstract
A stable microwave signal transmission system for a distributed system that is capable of simultaneous downloads at multiple arbitrary nodes within the optical path is proposed. The download module, which is based on optical circulators and optical couplers, can be inserted at any [...] Read more.
A stable microwave signal transmission system for a distributed system that is capable of simultaneous downloads at multiple arbitrary nodes within the optical path is proposed. The download module, which is based on optical circulators and optical couplers, can be inserted at any node position within the transmission optical path to complete the downloading of frequency-synchronization signals. Experimentally, a distributed frequency-synchronization system with multiple download nodes is demonstrated over 40 km of optical fiber. Experimental results show that the signal has been downlink-transferred from different download modules with the standard deviation of phase jitter being 1°@10 GHz at 1 h through 40-km optical fiber. Moreover, the standard deviation of phase jitter between downloaded signals from any two download modules is also better than 1°@10 GHz at 1 h. In addition, the Allan Deviation is better than 1012@1 h for the download module. Full article
Show Figures

Figure 1

10 pages, 1296 KiB  
Article
High-Sensitivity Dynamic Detection of Dissolved Acetylene in Transformer Oil Based on High-Power Quartz-Enhanced Photoacoustic Spectroscopy Sensing System
by Yuxiang Wu, Tiehua Ma, Chenhua Liu, Yashan Fan, Shuai Shi, Songjie Guo, Yu Wang, Xiangjun Xu, Guqing Guo, Xuanbing Qiu, Zhijin Shang and Chuanliang Li
Photonics 2025, 12(7), 713; https://doi.org/10.3390/photonics12070713 - 16 Jul 2025
Viewed by 266
Abstract
To enable the highly sensitive detection of acetylene (C2H2) dissolved in transformer oil, a high-power quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing system is proposed. A standard 32.7 kHz quartz tuning fork (QTF) was employed as an acoustic transducer, coupled with [...] Read more.
To enable the highly sensitive detection of acetylene (C2H2) dissolved in transformer oil, a high-power quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing system is proposed. A standard 32.7 kHz quartz tuning fork (QTF) was employed as an acoustic transducer, coupled with an optimized acoustic resonator to enhance the acoustic signal. The laser power was boosted to 150 mW using a C-band erbium-doped fiber amplifier (EDFA), achieving a detection limit of 469 ppb for C2H2 with an integration time of 1 s. The headspace degassing method was utilized to extract dissolved gases from the transformer oil, and the equilibrium process for the release of dissolved C2H2 was successfully monitored using the developed high-power QEPAS system. This approach provides reliable technical support for the real-time monitoring of the operational safety of power transformers. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

20 pages, 3269 KiB  
Article
Simulation Investigation of Quantum FSO–Fiber System Using the BB84 QKD Protocol Under Severe Weather Conditions
by Meet Kumari and Satyendra K. Mishra
Photonics 2025, 12(7), 712; https://doi.org/10.3390/photonics12070712 - 14 Jul 2025
Viewed by 308
Abstract
In response to the increasing demands for reliable, fast, and secure communications beyond 5G scenarios, the high-capacity networks have become a focal point. Quantum communication is at the forefront of this research, offering unmatched throughput and security. A free space optics (FSO) communication [...] Read more.
In response to the increasing demands for reliable, fast, and secure communications beyond 5G scenarios, the high-capacity networks have become a focal point. Quantum communication is at the forefront of this research, offering unmatched throughput and security. A free space optics (FSO) communication system integrated with fiber-end is designed and investigated using the Bennett–Brassard 1984 quantum key distribution (BB84-QKD) protocol. Simulation results show that reliable transmission can be achieved over a 10–15 km fiber length with a signal power of −19.54 dBm and high optical-to-signal noise of 72.28–95.30 dB over a 550 m FSO range under clear air, haze, fog, and rain conditions at a data rate of 1 Gbps. Also, the system using rectilinearly and circularly polarized signals exhibits a Stokes parameter intensity of −4.69 to −35.65 dBm and −7.7 to −35.66 dBm Stokes parameter intensity, respectively, over 100–700 m FSO range under diverse weather conditions. Likewise, for the same scenario, an FSO range of 100 m incorporating 2.5–4 mrad beam divergence provides the Stokes power intensity of −6.03 to −11.1 dBm and −9.04 to −14.12 dBm for rectilinearly and circularly polarized signals, respectively. Moreover, compared to existing works, this work allows faithful and secure signal transmission in free space, considering FSO–fiber link losses. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

21 pages, 2217 KiB  
Article
AI-Based Prediction of Visual Performance in Rhythmic Gymnasts Using Eye-Tracking Data and Decision Tree Models
by Ricardo Bernardez-Vilaboa, F. Javier Povedano-Montero, José Ramon Trillo, Alicia Ruiz-Pomeda, Gema Martínez-Florentín and Juan E. Cedrún-Sánchez
Photonics 2025, 12(7), 711; https://doi.org/10.3390/photonics12070711 - 14 Jul 2025
Viewed by 246
Abstract
Background/Objective: This study aims to evaluate the predictive performance of three supervised machine learning algorithms—decision tree (DT), support vector machine (SVM), and k-nearest neighbors (KNN) in forecasting key visual skills relevant to rhythmic gymnastics. Methods: A total of 383 rhythmic gymnasts aged 4 [...] Read more.
Background/Objective: This study aims to evaluate the predictive performance of three supervised machine learning algorithms—decision tree (DT), support vector machine (SVM), and k-nearest neighbors (KNN) in forecasting key visual skills relevant to rhythmic gymnastics. Methods: A total of 383 rhythmic gymnasts aged 4 to 27 years were evaluated in various sports centers across Madrid, Spain. Visual assessments included clinical tests (near convergence point accommodative facility, reaction time, and hand–eye coordination) and eye-tracking tasks (fixation stability, saccades, smooth pursuits, and visual acuity) using the DIVE (Devices for an Integral Visual Examination) system. The dataset was split into training (70%) and testing (30%) subsets. Each algorithm was trained to classify visual performance, and predictive performance was assessed using accuracy and macro F1-score metrics. Results: The decision tree model demonstrated the highest performance, achieving an average accuracy of 92.79% and a macro F1-score of 0.9276. In comparison, the SVM and KNN models showed lower accuracies (71.17% and 78.38%, respectively) and greater difficulty in correctly classifying positive cases. Notably, the DT model outperformed the others in predicting fixation stability and accommodative facility, particularly in short-duration fixation tasks. Conclusion: The decision tree algorithm achieved the highest performance in predicting short-term fixation stability, but its effectiveness was limited in tasks involving accommodative facility, where other models such as SVM and KNN outperformed it in specific metrics. These findings support the integration of machine learning in sports vision screening and suggest that predictive modeling can inform individualized training and performance optimization in visually demanding sports such as rhythmic gymnastics. Full article
Show Figures

Figure 1

20 pages, 1609 KiB  
Article
Research on Networking Protocols for Large-Scale Mobile Ultraviolet Communication Networks
by Leitao Wang, Zhiyong Xu, Jingyuan Wang, Jiyong Zhao, Yang Su, Cheng Li and Jianhua Li
Photonics 2025, 12(7), 710; https://doi.org/10.3390/photonics12070710 - 14 Jul 2025
Viewed by 223
Abstract
Ultraviolet (UV) communication, characterized by non-line-of-sight (NLOS) scattering, holds substantial potential for enabling communication networking in unmanned aerial vehicle (UAV) formations within strong electromagnetic interference environments. This paper proposes a networking protocol for large-scale mobile ultraviolet communication networks (LSM-UVCN). In large-scale networks, the [...] Read more.
Ultraviolet (UV) communication, characterized by non-line-of-sight (NLOS) scattering, holds substantial potential for enabling communication networking in unmanned aerial vehicle (UAV) formations within strong electromagnetic interference environments. This paper proposes a networking protocol for large-scale mobile ultraviolet communication networks (LSM-UVCN). In large-scale networks, the proposed protocol establishes multiple non-interfering transmission paths based on a connection matrix simultaneously, ensuring reliable space division multiplexing (SDM) and optimizing the utilization of network channel resources. To address frequent network topology changes in mobile scenarios, the protocol employs periodic maintenance of the connection matrix, significantly reducing the adverse impacts of node mobility on network performance. Simulation results demonstrate that the proposed protocol achieves superior performance in large-scale mobile UV communication networks. By dynamically adjusting the connection matrix update frequency, it adapts to varying node mobility intensities, effectively minimizing control overhead and data loss rates while enhancing network throughput. This work underscores the protocol’s adaptability to dynamic network environments, providing a robust solution for high-reliability communication requirements in complex electromagnetic scenarios, particularly for UAV swarm applications. The integration of SDM and adaptive matrix maintenance highlights its scalability and efficiency, positioning it as a viable technology for next-generation wireless communication systems in challenging operational conditions. Full article
(This article belongs to the Special Issue Free-Space Optical Communication and Networking Technology)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop