Open AccessArticle
Impact of LD Spectra on Efficiency of Yb-Doped Fiber Laser
by
Fengyun Li, Yi Shi, Chun Zhang, Qiuhui Chu, Lingli Huang, Haoyu Zhang, Qiang Shu, Yu Wen, Xingchen Jiang, Zixiang Gao, Honghuan Lin and Rumao Tao
Viewed by 333
Abstract
The spectral characteristics of pump laser diodes (LDs) introduce significant ambiguity into the performance evaluation of high-power ytterbium-doped fiber lasers (YDFLs), obscuring their intrinsic efficiency and hindering reliable system design. Here, we introduce a rigorous quantitative framework that decouples these pump-induced effects by
[...] Read more.
The spectral characteristics of pump laser diodes (LDs) introduce significant ambiguity into the performance evaluation of high-power ytterbium-doped fiber lasers (YDFLs), obscuring their intrinsic efficiency and hindering reliable system design. Here, we introduce a rigorous quantitative framework that decouples these pump-induced effects by referencing laser performance to the absorbed, rather than the launched, pump power. Our analysis demonstrates that the widely reported discrepancies in conventional optical-to-optical (OO) and slope efficiencies are governed almost entirely by variations in pump absorption, while the influence of the quantum defect is negligible. This approach provides a robust metric for intrinsic laser performance that is independent of the LD’s spectral properties, proving particularly valuable for systems pumped by non-wavelength-stabilized LDs (nWS-LDs). We uncover a non-monotonic evolution of the unabsorbed residual pump power, revealing that the peak thermal load on system components occurs at an intermediate operational state, not at maximum pump power. This finding challenges conventional thermal management strategies and is critical for ensuring the long-term operational reliability of high-power YDFLs.
Full article
►▼
Show Figures