Simulation Investigation of Quantum FSO–Fiber System Using the BB84 QKD Protocol Under Severe Weather Conditions
Abstract
1. Introduction
1.1. Related Works
1.2. Motivation and Contributions
- Current schemes are ineffective in handling high-speed transmission over an integrated fiber–FSO link considering free-space beam divergence, additional losses, and geometric losses.
- Several existing methods result in unsatisfactory system performance in terms of optical signal-to-noise ratio (OSNR) and signal quality at the receiver.
- An integrated fiber–FSO-based QKD system using the BB84 protocol for beyond fiber-to-the-x scenarios is designed.
- In various existing BB84-QKD schemes, the effect of guided (fiber) and unguided (FSO) channels on different polarization states (rectilinear and circular) has not been explored. Polarization integrity can be verified at the receiver in terms of signal quality, and quantum bit error rate (QBER). Thus, the system’s performance is investigated for different polarization states over an integrated fiber–FSO link under distinct weather conditions in terms of Quality-factor (Q-factor), OSNR, signal power, noise, and QBER.
- In addition, to provide a complete description of the polarization state in the proposed system and to allow real-time monitoring and compensation of polarization distortions with minimal errors in QKD, Stokes parameters are evaluated.
- Further, in FSO links, the transmitted beam naturally diverges over distance, decreasing OSNR, reducing received power, increasing alignment losses, increasing atmospheric exposure, and thus reducing signal quality. Large beam divergence can distort polarization and consequently, reduce detection efficiency. Therefore, the impact of varied beam divergence is investigated under diverse weather conditions.
- The performance and reliability of the proposed system are verified through a comparative analysis with existing QKD-based systems, based on various performance parameters.
2. Proposed Design
3. Results and Discussion
3.1. Channel Model
- Geometric loss: Diffraction, or geometric loss, refers to the channel loss owing to the beam spread effect when a signal propagates from one point to another point. Mathematically, geometric loss is defined as [40]:
- Atmospheric loss: When a QKD signal passes via the Earth’s atmosphere, turbulence, absorption, and scattering are the three primary effects that should be considered. For low atmospheric windows (at 1550 nm), absorption loss can be hugely reduced. Absorption and scattering due to dust, haze, and water vapor particles contribute to atmospheric losses. The QKD/FSO link under different weather conditions can be represented as [39]:
- Maximum achievable fiber transmission distance considering distinct weather conditions.
- Maximum achievable FSO distance considering distinct weather conditions.
- Impact of various weather conditions on system performance using diverse polarization states.
- Effect of beam divergence on the system’s performance under diverse weather conditions.
3.2. Maximum Achievable Fiber Transmission Distance Considering Distinct Weather Conditions
3.3. Maximum Achievable FSO Distance Considering Distinct Weather Conditions
3.4. Impact of Various Weather Scenarios on System Performance Using Diverse Polarization States
3.5. Effect of Beam Divergence on the System’s Performance in Varied Weather Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chehimi, M.; Elhattab, M.; Saad, W.; Vardoyan, G.; Panigrahy, N.K.; Assi, C.; Towsley, D. Reconfigurable Intelligent Surface (RIS)-Assisted Entanglement Distribution in FSO Quantum Networks. IEEE Trans. Wirel. Commun. 2025, 24, 3132–3148. [Google Scholar] [CrossRef]
- Gümüş, K.; Frazão, J.d.R.; van Vliet, V.; van der Heide, S.; van den Hout, M.; Liga, G.; Gültekin, Y.C.; Albores-Mejia, A.; Bradley, T.; Alvarado, A.; et al. Rate-Adaptive Reconciliation for Experimental Continuous-Variable Quantum Key Distribution with Discrete Modulation over a Free-Space Optical Link. J. Light. Technol. 2024, 43, 3564–3573. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, A.; Hu, S.; Ni, W.; Wang, X.; Hossain, E.; Hanzo, L. Towards Quantum-Native Communication Systems: New Developments, Trends, and Challenges. arXiv 2023, arXiv:2311.05239. [Google Scholar]
- Nawaz, S.J.; Member, S. Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future. IEEE Access 2019, 7, 46317–46350. [Google Scholar] [CrossRef]
- Chou, H.; Ha, V.N.; Al-hraishawi, H.; Garces-socarras, L.M.; Gonzalez-rios, J.L.; Merlano-duncan, J.C.; Chatzinotas, S. Satellite-Based Quantum Network: Security and Challenges over Atmospheric Channel. arXiv 2023, arXiv:2308.00011. [Google Scholar]
- Yuan, H.; Fowler, D.S.; Maple, C.; Epiphaniou, G. Analysis of Outage Performance in a 6G-V2X Communications System Utilising Free—Space Optical Quantum Key Distribution. IET Quantum Commun. 2023, 4, 191–199. [Google Scholar] [CrossRef]
- Chakraborty, M.; Mukherjee, A.; Nag, A.; Chandra, S. Hybrid Quantum Noise Model to Compute Gaussian Quantum Channel Capacity. IEEE Access 2024, 12, 14671–14689. [Google Scholar] [CrossRef]
- Doolittle, B.; Leditzky, F.; Chitambar, E. Operational Nonclassicality in Quantum Communication Networks. arXiv 2024, arXiv:2403.02988. [Google Scholar]
- Joshi, S.K.; Gündoğan, M.; Brougham, T.; Lowndes, D.; Mazzarella, L.; Krutzik, M.; Villoresi, P.; Mohapatra, S.; Dequal, D.; Vallone, G.; et al. Advances in Space Quantum Communications. IET Quantum Commun. 2021, 2, 182–217. [Google Scholar] [CrossRef]
- Fowler, D.S.; Maple, C.; Epiphaniou, G. A Practical Implementation of Quantum-Derived Keys for Secure Vehicle-to-Infrastructure Communications. Veehicles 2023, 5, 1586–1604. [Google Scholar] [CrossRef]
- Rezai, M.; Salehi, J.A. Quantum CDMA Communication Systems. IEEE Trans. Inf. Theory 2021, 67, 5526–5547. [Google Scholar] [CrossRef]
- Cozzolino, D.; Lio, B.D.; Bacco, D.; Oxenløwe, L.K. High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges. Adv. Quantum Technol. 2019, 2, 1900038. [Google Scholar] [CrossRef]
- Xie, Y.M.; Lu, Y.S.; Weng, C.X.; Cao, X.Y.; Jia, Z.Y.; Bao, Y.; Wang, Y.; Fu, Y.; Yin, H.L.; Chen, Z.B. Breaking the Rate-Loss Bound of Quantum Key Distribution with Asynchronous Two-Photon Interference. PRX Quantum 2022, 3, 020315. [Google Scholar] [CrossRef]
- Li, C.L.; Yin, H.L.; Chen, Z.B. Asynchronous Quantum Repeater Using Multiple Quantum Memory. Rep. Prog. Phys. 2024, 87, 127901. [Google Scholar] [CrossRef]
- Williams, C.J.; Tang, X.; Hiekkero, M.; Rouzaud, J.; Lu, R.; Goedecke, A.; Migdall, A.; Mink, A.; Nakassis, A.; Pibida, L.; et al. A High Speed Quantum Communication Testbed. Proc. SPIE 2002, 4821, 421–426. [Google Scholar]
- Vu, M.Q.; Member, S.; Le, H.D.; Pham, T.V.; Pham, A.T.; Member, S. Design of Satellite-Based FSO/QKD Systems Using GEO/LEOs for Multiple Wireless Users. IEEE Photonics J. 2023, 15, 7303314. [Google Scholar] [CrossRef]
- Endo, H.; Sasaki, T.; Takeoka, M.; Fujiwara, M. Line-of-Sight Quantum Key Distribution with Differential Phase Shift Keying Line-of-Sight Quantum Key Distribution with Differential Phase Shift Keying. New J. Phys. 2022, 24, 025008. [Google Scholar] [CrossRef]
- Zhao, H.; Alouini, M. On the Performance of Quantum Key Distribution FSO Systems Under a Generalized Pointing Error Model. IEEE Commun. Lett. 2019, 23, 1801–1805. [Google Scholar] [CrossRef]
- Arnon, S. Quantum Key Distribution by a Free-Space MIMO System. J. Light. Technol. 2006, 24, 3114–3120. [Google Scholar] [CrossRef]
- Kamran, M.; Khan, D.; Malik, T.; Arfeen, A. Quantum Key Distribution over Free Space Optic (FSO) Channel Using Higher Order Gaussian Beam Spatial Modes. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 3335–3351. [Google Scholar] [CrossRef]
- Harun, N.Z.; Zukarnain, Z.A.; Hanapi, Z.M.; Ahmad, I.; Khodr, M.F. MQC-MB: Multiphoton Quantum Communication Using Multiple-Beam Concept in Free Space Optical Channel. Symmetry 2020, 13, 66. [Google Scholar] [CrossRef]
- Vu, M.Q.; Le, H.D.; Pham, T.V.; Pham, A.T. Toward Practical Entanglement-Based Satellite FSO/QKD Systems Using Dual-Threshold/Direct Detection. IEEE Access 2022, 10, 113260–113274. [Google Scholar] [CrossRef]
- Hosseinidehaj, N.; Malaney, R. Quantum Key Distribution over Combined Atmospheric Fading Channels. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 7413–7419. [Google Scholar]
- Alshaer, N.; Moawad, A.; Ismail, T. Reliability and Security Analysis of an Entanglement-Based QKD Protocol in a Dynamic Ground-to-UAV FSO Communications System. IEEE Access 2021, 9, 168052–168067. [Google Scholar] [CrossRef]
- Alshaer, N.; Ismail, T. Performance Evaluation and Security Analysis of UAV-Based FSO/CV-QKD System Employing DP-QPSK/CD. IEEE Photonics J. 2022, 14, 7324911. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Le, H.T.; Pham, H.T.T.; Mai, V.; Dang, N.T. Enhancing Design and Performance Analysis of Satellite Entanglement-Based CV-QKD/FSO Systems. IEEE Access 2023, 11, 112097–112107. [Google Scholar] [CrossRef]
- Atieh, A.; Buhari, A.; Raytchev, M. QKD Over FSO Under Different Weather Conditions Using OptiSystem Software. In Proceedings of the 2023 Photonics North (PN), Montreal, QC, Canada, 12–15 June 2023; p. 10223140. [Google Scholar]
- Berikaa, E.; Cavaliere, F.; Zhang, J.; Gutiérrez-castrejón, R.; Giorgi, L.; Errico, A.D. Adapting the Classical Optical Communication Simulation Framework for Continuous-Variable Quantum Key Distribution Simulations. In Proceedings of the 25th International Conference on Optical Network Design and Modelling (ONDM 2021), Gothenburg, Sweden, 28 June–1 July 2021; pp. 1–4. [Google Scholar]
- Kundu, N.K.; McKay, M.R.; Murch, R.; Mallik, R.K. Intelligent Reflecting Surface-Assisted Free Space Optical Quantum Communications. IEEE Trans. Wirel. Commun. 2023, 23, 5079–5093. [Google Scholar] [CrossRef]
- Roy, A.; Kar, S.; Thakur, M.; Riaz, S.N.; Sarkar, S. Fabrication of Measurement Device Independent Quantum Key Distribution Protocol on Optisystem. In Proceedings of the 2023 8th International Conference on Computers and Devices for Communication, CODEC 2023, Kolkata, India, 14–16 December 2023; p. 10466195. [Google Scholar]
- Al-Mohammed, H.A.; Yaacoub, E.; Abualsaud, K.; Al-Maadeed, S.A. Using Quantum Key Distribution with Free Space Optics to Secure Communications in High-Speed Trains. IEEE Access 2024, 12, 43560–43574. [Google Scholar] [CrossRef]
- Trinh, P.V.; Pham, T.V.; Dang, N.T.; Nguyen, H.V.; Ng, S.X.; Pham, A.T. Design and Security Analysis of Quantum Key Distribution Protocol over Free-Space Optics Using Dual-Threshold Direct-Detection Receiver. IEEE Access 2018, 6, 4159–4175. [Google Scholar] [CrossRef]
- Mallick, B.; Parida, P.; Nayak, C.; Khalifa, T.; Panda, M.K.; Ali, N.; Patil, G.U.; Prasad, B. Multi-Channel Multi-Protocol Quantum Key Distribution System for Secure Image Transmission in Healthcare. IEEE Access 2025, 13, 62476–62505. [Google Scholar] [CrossRef]
- Mantey, S.T.; Fernandes, M.A.; Fernandes, G.M.; Silva, N.A.; Guiomar, F.P.; Monteiro, P.; Pinto, A.N.; Muga, N.J. On the Coexistence of Quantum and Classical Signal Transmission Over Turbulent FSO Channels. J. Light. Technol. 2025, 43, 1043–1050. [Google Scholar] [CrossRef]
- Arya, V. Realization of 32 × 4 × 40 Gbps PDM/MDM-FSO System Using Orbital Angular Momentum Beams. J. Opt. Commun. 2025, 8, 1–8. [Google Scholar] [CrossRef]
- Galaktionov, I.; Sheldakova, J.; Nikitin, A.; Samarkin, V.; Parfenov, V.; Kudryashov, A. Laser Beam Focusing through a Moderately Scattering Medium Using a Bimorph Mirror. Opt. Express 2020, 28, 38061. [Google Scholar] [CrossRef]
- Berrocal, E.; Sedarsky, D.L.; Paciaroni, M.E.; Meglinski, I.V.; Linne, M.A. Laser Light Scattering in Turbid Media Part I: Experimental and Simulated Results for the Spatial Intensity Distribution. Opt. Express 2007, 15, 10649. [Google Scholar] [CrossRef]
- Szymanski, W.W.; Mazzucco, R. Laser Beam Propagation in Multiply Scattering Droplet Aerosols-Comparison of Theoretical Models and Experimental Data. J. Aerosol Sci. 1999, 30, 6–7. [Google Scholar] [CrossRef]
- Zhang, C.; Tello, A.; Zanforlin, U.; Buller, G.S.; Donaldson, R. Link Loss Analysis for a Satellite Quantum Communication Down-Link. In Proceedings of the Emerging Imaging and Sensing Technologies for Security and Defence V; and Advanced Manufacturing Technologies for Micro- and Nanosystems in Security and Defence III, Online, 21–25 September 2020; pp. 18–29. [Google Scholar]
- Behera, S.R.; Sinha, U. Estimating the Link Budget of Satellite-Based Quantum Key Distribution (QKD) for Uplink Transmission through the Atmosphere. EPJ Quantum Technol. 2024, 11, 1–26. [Google Scholar] [CrossRef]
- Ahmad Anas, S.B.; Hamat, F.H.; Hitam, S.; Sahbudin, R.K.Z. Hybrid Fiber-to-the-x and Free Space Optics for High Bandwidth Access Networks. Photonic Netw. Commun. 2012, 23, 33–39. [Google Scholar] [CrossRef]
- Yu, S.; Ding, J.; Fu, Y.; Ma, J.; Tan, L.; Wang, L. Novel Approximate and Asymptotic Expressions of the Outage Probability and BER in Gamma–Gamma Fading FSO Links with Generalized Pointing Errors. Opt. Commun. 2019, 435, 289–296. [Google Scholar] [CrossRef]
- Niaz, A.; Qamar, F.; Ali, M.; Farhan, R.; Islam, M.K. Performance Analysis of Chaotic FSO Communication System under Different Weather Conditions. Trans. Emerg. Telecommun. Technol. 2019, 30, 1–13. [Google Scholar] [CrossRef]
- Yeh, C.H.; Xie, Y.R.; Luo, C.M.; Chow, C.W. Integration of FSO Traffic in Ring-Topology Bidirectional Fiber Access Network with Fault Protection. IEEE Commun. Lett. 2020, 24, 589–592. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Vallejo, L.; Bohata, J.; Ortega, B.; Ghassemlooy, Z.; Zvanovec, S. Wideband QAM-over-SMF/Turbulent FSO Downlinks in a PON Architecture for Ubiquitous Connectivity. Opt. Commun. 2020, 475, 126281. [Google Scholar] [CrossRef]
- Al Naboulsi, M. Fog Attenuation Prediction for Optical and Infrared Waves. Opt. Eng. 2004, 43, 319. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Lacis, A. Scattering, Absorption, and Emission of Light by Small Particles; Cambridge University Press: Cambridge, UK, 2002; ISBN 0 521 78252 X. [Google Scholar]
- Kim, I.I.; McArthur, B.; Korevaar, E.J. Comparison of Laser Beam Propagation at 785 Nm and 1550 Nm in Fog and Haze for Optical Wireless Communications. In Optical Wireless Communications III; SPIE Press: Bellingham, WA, USA, 2001; Volume 4214, pp. 26–37. [Google Scholar]
- Andrews, L.C.; Beason, M.K. Laser Beam Propagation in Random Media: New and Advanced Topics; SPIE Press: Bellingham, WA, USA, 2023; ISBN 9781510656505. [Google Scholar]
- Agrawal, G.P. Applications of Nonlinear Fiber Optics; Academic Press: Cambridge, MA, USA, 2008; ISBN 9780123743022. [Google Scholar]
- Ding, Y.-Y.; Chen, H.; Wang, S.; He, D.-Y.; Yin, Z.-Q.; Chen, W.; Zhou, Z.; Guo, G.-C.; Han, Z.-F. Polarization Variations in Installed Fibers and Their Influence on Quantum Key Distribution Systems. Opt. Express 2017, 25, 27923. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Majumder, S.; Jain, A.; Singh, D.K. Quantum BER Estimation Modelling and Analysis for Satellite-Based Quantum Key Distribution Scenarios. IET Quantum Commun. 2024, 5, 157–163. [Google Scholar] [CrossRef]
- Bonato, C.; Tomaello, A.; Deppo, V.D.; Naletto, G.; Villoresi, P. Feasibility of Satellite Quantum Key Distribution. New J. Phys. 2009, 11, 045017. [Google Scholar] [CrossRef]
- Roy, A.; Maitra, A.; Pal, S.K. Experimental Simulation of Two Pulses and Three Pulses Coherent One Way Quantum Key Distribution Protocol in Noisy/Noiseless and Wired/Wireless Environment. arXiv 2024, arXiv:2409.14909. [Google Scholar]
- Singh, H.; Sohi, B.A.S.; Gupta, A. Designing and Performance Evaluation of Metamaterial Inspired Antenna for 4G and 5G Applications. Int. J. Electron. 2021, 108, 1035–1057. [Google Scholar] [CrossRef]
- Singh, H. Transmission Line Modeling of Metamaterial for Different Fractional Band Width. Mater. Today Proc. 2021, 37, 3615–3619. [Google Scholar] [CrossRef]
- Silberschmidt, V.; Singh, H.; Rajput, S.; Sharma, A. Metaheuristics-Based Materials Optimization Enhancing Materials Applications; Elsevier: Amsterdam, The Netherlands, 2025; Volume i, ISBN 9780443291623. [Google Scholar]
- Singh, H. A Review on High Frequency Communication. In Proceedings of the 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 7–9 October 2021; pp. 1722–1727. [Google Scholar]
- Dutta, T.; Safinezhad, A.; Zhuldybina, M.; Llamas-Garro, I.; Velázquez-González, J.S.; Sharma, A.K.; Ung, B.; Mishra, S.K. Advances in Integrated Quantum Photonics for Quantum Sensing and Communication. J. Mater. Chem. C 2025, 13, 11521–11561. [Google Scholar] [CrossRef]
Alice | Bob | Comment | ||||
---|---|---|---|---|---|---|
Bit | Basis | State | Basis | State | Bit | |
1 | r | V | r | H | 0 | Discard |
0 | r | H | c | R | 0 | Discard |
1 | r | V | c | L | 1 | Discard |
0 | c | R | r | V | 1 | Discard |
1 | c | L | r | H | 0 | Discard |
1 | c | L | c | V | 1 | 1 (Match) |
0 | c | R | c | R | 0 | 0 (Match) |
Parameters | Values | Unit |
---|---|---|
Input power | 5 | dBm |
Frequency | 193.1 | THz |
Data rate | 1 | Gbps |
Optical attenuator | 0.1 | dB |
Linear polarizer angle | 0, 90 | deg |
Circular polarizer type | Right, Left | |
Weather conditions | 0.22 (clear air), 5.8 (rain), 4.2 (haze), 20 (fog) | dB/km |
FSO range | 100–700 | m |
Aperture diameter | 10 (Tx), 20 (Rx) | cm |
Beam divergence | 2–4 | mrad |
Tx/Rx additional loss | 0.01 | dB |
Geometric loss | Yes | |
Turbulence | 10−17 (weak) | m−2/3 |
SMF length | 10–15 | km |
Attenuation | 0.2 | dB/km |
Dispersion | 16.75 | ps/nm/km |
Shot noise | Yes | |
Dark current | 10 | nA |
Temperature | 298 | K |
Thermal noise | 10−22 | W/Hz |
Responsivity | 1 | A/W |
Filter bandwidth | 0.75 × Bit rate | Hz |
Atmospheric Condition | Attenuation (dB/km) | Particle Size | Particle Concentration | Scattering Coefficient (km−1) | Absorption Coefficient (km−1) | Extinction Coefficient (km−1) | Standard Model |
---|---|---|---|---|---|---|---|
Fog (Light) | 20 | ~1–10 µm | ~107–108 particles/m3 | ~1.0–3.0 | ~0.1–0.5 | ~1.1–3.5 | Kim Model |
Rain (Moderate, 12.5 mm/h) | 5.8 | ~0.5–1.2 mm | ~104–105 droplets/m3 | ~0.93 | ~0.43 | 1.36 | Kruse Model |
Haze (Urban) | 4.2 | ~0.5–2.5 µm | ~106–108 particles/m3 | 0.85 | 0.11 | 0.096 | Beer–Lambert Law and Kim Model |
Weather | Rectilinear | Circular | ||
---|---|---|---|---|
Signal Power (dBm) | Noise Power (dBm) | Signal Power (dBm) | Noise Power (dBm) | |
Clear air | −19.54 | −71.19 | −22.55 | −74.20 |
Haze | −21.13 | −72.78 | −24.14 | −75.79 |
Rain | −21.77 | −73.42 | −24.78 | −76.43 |
Fog | −27.45 | −79.10 | −30.46 | −82.11 |
Ref. | Year | Implementation | Range | Data Rate | Beam Divergence | Input Power | FSO Losses | QKD Protocol | Atmospheric Conditions | Channel Model | Complexity and Cost |
---|---|---|---|---|---|---|---|---|---|---|---|
[18] | 2019 | Simulation (Monte Carlo) | - | - | - | - | - | - | - | Generalized pointing error | High |
[28] | 2021 | Simulation (OptiSystem) | 40 km (fiber) | 50 Mbps | - | 12 dBm | - | Grosshans– Grangier 2002 | - | - | Moderate |
[24] | 2021 | Simulation (Monte Carlo) | 500 m (FSO) | - | - | - | - | - | Moderate-to-strong turbulence | Gamma-Gamma | High |
[22] | 2022 | Numerical | - | 1 Gbps | - | - | - | CV | Weak-to- moderate turbulence | Log-normal | High |
[25] | 2022 | Simulation (Monte Carlo) | 500 m (FSO) | - | 2.5 mrad | 4 dBm | - | - | 13.8 dB/km | - | High |
[26] | 2023 | Numerical | 600 km (FSO) | 1 Gbps | 0.4 mrad | - | - | - | Weak turbulence | Fisher–Snedecor distribution | High |
[29] | 2023 | Theoretical | 2 km (FSO) | ~100 Mbps | - | - | - | CV-/DV QKD | Weak turbulence | Log-normal | High |
[30] | 2023 | Simulation (OptiSystem) | 150 km (fiber) | 267 bps | - | - | - | BB84 | - | - | High |
[27] | 2023 | Simulation (OptiSystem) | 480 m (FSO) | - | - | - | - | BB84 | Clear air, haze, rain, fog | - | Moderate |
[31] | 2024 | Experiment | - | 1.25 Gbps | 0.06 mrad | - | - | - | Haze, fog | - | High |
[54] | 2024 | Simulation (OptiSystem) | 120 km (fiber) | 1 Gbps | - | 10 dBm | - | Coherent One-Way | Very clear Clear air, haze, rain, fog | - | Moderate |
[33] | 2025 | Simulation (OptiSystem) | 50 km (fiber) + 10 km (FSO) | 10 Gbps | - | 20 dBm | - | BB84 | Clear air, light haze, and moderate and dense fog | - | High |
This work | Simulation (OptiSystem) | 700 m (FSO) + 15 km (fiber) | 1 Gbps | 4 mrad | 5 dBm | Geometric, Additional | BB84 | Clear air, fog, rain, haze, weak turbulence | Gamma- Gamma | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, M.; Mishra, S.K. Simulation Investigation of Quantum FSO–Fiber System Using the BB84 QKD Protocol Under Severe Weather Conditions. Photonics 2025, 12, 712. https://doi.org/10.3390/photonics12070712
Kumari M, Mishra SK. Simulation Investigation of Quantum FSO–Fiber System Using the BB84 QKD Protocol Under Severe Weather Conditions. Photonics. 2025; 12(7):712. https://doi.org/10.3390/photonics12070712
Chicago/Turabian StyleKumari, Meet, and Satyendra K. Mishra. 2025. "Simulation Investigation of Quantum FSO–Fiber System Using the BB84 QKD Protocol Under Severe Weather Conditions" Photonics 12, no. 7: 712. https://doi.org/10.3390/photonics12070712
APA StyleKumari, M., & Mishra, S. K. (2025). Simulation Investigation of Quantum FSO–Fiber System Using the BB84 QKD Protocol Under Severe Weather Conditions. Photonics, 12(7), 712. https://doi.org/10.3390/photonics12070712