Nonlocal Interactions in Metasurfaces Harnessed by Neural Networks
Abstract
1. Introduction
2. Method
3. Result
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. The Design of Meta-Atoms and Macrocell
Diameter (nm) | 126 | 146 | 156 | 166 | 174 | 182 | 198 | 224 |
Phase (rad) | −5π/8 | −3π/8 | −π/8 | π/8 | 3π/8 | 5π/8 | 7π/8 | −7π/8 |
Transmittance | 0.98 | 0.93 | 0.85 | 0.82 | 0.85 | 0.90 | 0.91 | 0.93 |
Appendix B. Neural Network Architecture
Appendix C. The Definition of the Target Complex Amplitude Distribution
Appendix D. The Definition of Discretization Functions
Diameter (nm) | 126 | 146 | 156 | 166 | 174 | 182 | 198 | 224 | ||||||||
Normalized diameter | 0.186 | 0.329 | 0.400 | 0.471 | 0.529 | 0.586 | 0.700 | 0.886 | ||||||||
ai | 0.143 | 0.071 | 0.071 | 0.057 | 0.057 | 0.114 | 0.186 | |||||||||
bi | 0.257 | 0.364 | 0.436 | 0.500 | 0.557 | 0.643 | 0.793 |
Position (nm) | −36 | −27 | −18 | −9 | 0 | 9 | 18 | 27 | 36 | |||||||||
Normalized position | −1 | −0.75 | −0.5 | −0.25 | 0 | 0.25 | 0.5 | 0.75 | 1 | |||||||||
ei | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | ||||||||||
fi | −0.875 | −0.625 | −0.375 | −0.125 | 0.125 | 0.375 | 0.625 | 0.875 |
Appendix E. Prediction Results Compared with Simulation Results
Appendix F. Calculation Time Efficiency
Structure Size (μm × μm) | Number of Pixels | Optimization Time (mins) | Simulation Time (mins) |
---|---|---|---|
87.5 × 87.5 | 250 × 250 | 52 | 600 |
350 × 350 | 1000 × 1000 | 227 | --- |
Appendix G. Optimization with Eight Fixed Values for the Nanopillar Diameter and a 1 nm Step Size for the Nanopillar Positions
Appendix H. The Fabrication Process and the Optical Measurement
Appendix I. Optimization of Beam Deflector and Nonlocal Interactions
Diameter (nm) | Original | 166 | 182 | 224 | 146 |
Optimized | 167 | 188 | 226 | 151 |
Appendix J. Influence of Diameter Deviations
Appendix K. Influence of Smaller Dataset
References
- Chen, J.; Ye, X.; Gao, S.; Chen, Y.; Zhao, Y.; Huang, C.; Qiu, K.; Zhu, S.; Li, T. Planar wide-angle-imaging camera enabled by metalens array. Optica 2022, 9, 431–437. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Sanjeev, V.; Khorasaninejad, M.; Shi, Z.; Lee, E.; Capasso, F. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 2018, 13, 220–226. [Google Scholar] [CrossRef]
- Chang, S.; Zhang, L.; Duan, Y.; Rahman, M.T.; Islam, A.; Ni, X. Achromatic metalenses for full visible spectrum with extended group delay control via dispersion-matched layers. Nat. Commun. 2024, 15, 9627. [Google Scholar] [CrossRef]
- You, X.; Ako, R.T.; Sriram, S.; Withayachumnankul, W. 3D Terahertz Confocal Imaging with Chromatic Metasurface. Laser Photonics Rev. 2025, 19, 2401011. [Google Scholar] [CrossRef]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, Y.; Zheng, X.; Ji, R.; Xie, X.; Song, K.; Lin, F.; Li, N.; Jiang, Z.; Liu, C.; et al. Decimeter-depth and polarization addressable color 3D meta-holography. Nat. Commun. 2024, 15, 8242. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Peng, M.; He, H.; Yu, D.; Ou, K.; Wang, Q.; Luo, X.; Hu, Y.; Jing, H.; Duan, H. Polarization-Independent Dispersive Complex-Amplitude Modulation via Anisotropic Metasurfaces. Laser Photonics Rev. 2025, 19, 2401398. [Google Scholar] [CrossRef]
- Deng, M.; Kanwal, S.; Wang, Z.; Cai, C.; Cheng, Y.; Guan, J.; Hu, G.; Wang, J.; Wen, J.; Chen, L. Dielectric Metasurfaces for Broadband Phase-Contrast Relief-Like Imaging. Nano Lett. 2024, 24, 14641–14647. [Google Scholar] [CrossRef]
- He, H.; Zhang, Y.; Shao, Y.; Zhang, Y.; Geng, G.; Li, J.; Li, X.; Wang, Y.; Bian, L.; Zhang, J.; et al. Meta-Attention Network Based Spectral Reconstruction with Snapshot Near-Infrared Metasurface. Adv. Mater. 2024, 36, 2313357. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, J.; Su, R.; Yao, B.; Fang, H.; Li, K.; Zhou, L.; Liu, J.; Stellinga, D.; Reardon, C.P.; et al. Efficient Silicon Metasurfaces for Visible Light. ACS Photonics 2017, 4, 544–551. [Google Scholar] [CrossRef]
- Overvig, A.; Alù, A. Diffractive Nonlocal Metasurfaces. Laser Photonics Rev. 2022, 16, 2100633. [Google Scholar] [CrossRef]
- Gigli, C.; Li, Q.; Chavel, P.; Leo, G.; Brongersma, M.L.; Lalanne, P. Fundamental Limitations of Huygens’ Metasurfaces for Optical Beam Shaping. Laser Photonics Rev. 2021, 15, 2000448. [Google Scholar] [CrossRef]
- Hsu, L.; Dupré, M.; Ndao, A.; Yellowhair, J.; Kanté, B. Local phase method for designing and optimizing metasurface devices. Opt. Express 2017, 25, 24974–24982. [Google Scholar] [CrossRef]
- Yao, J.; Lai, F.; Fan, Y.; Wang, Y.; Huang, S.; Leng, B.; Liang, Y.; Lin, R.; Chen, S.; Chen, M.K.; et al. Nonlocal meta-lens with Huygens’ bound states in the continuum. Nat. Commun. 2024, 15, 6543. [Google Scholar] [CrossRef]
- Malek, S.C.; Overvig, A.C.; Alù, A.; Yu, N. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces. Light Sci. Appl. 2022, 11, 246. [Google Scholar] [CrossRef] [PubMed]
- Adam, O.; Andrea, A. Wavefront-selective Fano resonant metasurfaces. Adv. Photonics 2021, 3, 26002. [Google Scholar]
- Zhou, Z.; Zhang, X.; Qin, H.; Gao, Z.; Zhang, Y.; Huang, C.; Fang, F.; Lu, Y.; Kou, J. Inverse Design of Multiplexable Meta-Devices for Imaging and Processing. ACS Photonics 2025, 12, 246–252. [Google Scholar] [CrossRef]
- Ji, A.; Song, J.; Li, Q.; Xu, F.; Tsai, C.; Tiberio, R.C.; Cui, B.; Lalanne, P.; Kik, P.G.; Miller, D.A.B.; et al. Quantitative phase contrast imaging with a nonlocal angle-selective metasurface. Nat. Commun. 2022, 13, 7848. [Google Scholar] [CrossRef]
- Sell, D.; Yang, J.; Doshay, S.; Yang, R.; Fan, J.A. Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries. Nano Lett. 2017, 17, 3752–3757. [Google Scholar] [CrossRef]
- Gershnabel, E.; Chen, M.; Mao, C.; Wang, E.W.; Lalanne, P.; Fan, J.A. Reparameterization Approach to Gradient-Based Inverse Design of Three-Dimensional Nanophotonic Devices. ACS Photonics 2023, 10, 815–823. [Google Scholar] [CrossRef]
- Bayati, E.; Pestourie, R.; Colburn, S.; Lin, Z.; Johnson, S.G.; Majumdar, A. Inverse designed extended depth of focus meta-optics for broadband imaging in the visible. Nanophotonics 2022, 11, 2531–2540. [Google Scholar] [CrossRef]
- Mansouree, M.; McClung, A.; Samudrala, S.; Arbabi, A. Large-Scale Parametrized Metasurface Design Using Adjoint Optimization. ACS Photonics 2021, 8, 455–463. [Google Scholar] [CrossRef]
- Chung, H.; Miller, O.D. High-NA achromatic metalenses by inverse design. Opt. Express 2020, 28, 6945–6965. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liang, H.; Long, Y.; Zhou, Y.; Sun, Q.; Wu, Q.; Fu, X.; Martins, E.R.; Krauss, T.F.; Li, J.; et al. Metalenses with Polarization-Insensitive Adaptive Nano-Antennas. Laser Photonics Rev. 2022, 16, 2200268. [Google Scholar] [CrossRef]
- Zhou, Y.; Mao, C.; Gershnabel, E.; Chen, M.; Fan, J.A. Large-Area, High-Numerical-Aperture, Freeform Metasurfaces. Laser Photonics Rev. 2024, 18, 2300988. [Google Scholar] [CrossRef]
- Kanmaz, T.B.; Ozturk, E.; Demir, H.V.; Gunduz-Demir, C. Deep-learning-enabled electromagnetic near-field prediction and inverse design of metasurfaces. Optica 2023, 10, 1373–1382. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Ma, Z. Deep-Learning-Based Metasurface Design Method Considering Near-Field Couplings. IEEE J. Multiscale Multiphys. Comput. Technol. 2023, 8, 40–48. [Google Scholar] [CrossRef]
- An, S.; Zheng, B.; Shalaginov, M.Y.; Tang, H.; Li, H.; Zhou, L.; Dong, Y.; Haerinia, M.; Agarwal, A.M.; Rivero-Baleine, C.; et al. Deep Convolutional Neural Networks to Predict Mutual Coupling Effects in Metasurfaces. Adv. Opt. Mater. 2022, 10, 2102113. [Google Scholar] [CrossRef]
- Ma, Y.; Kolb, J.F.; Ihalage, A.A.; Andy, A.S.; Hao, Y. Incorporating Meta-Atom Interactions in Rapid Optimization of Large-Scale Disordered Metasurfaces Based on Deep Interactive Learning. Adv. Photonics Res. 2023, 4, 2200099. [Google Scholar] [CrossRef]
- Ha, Y.; Luo, Y.; Pu, M.; Zhang, F.; He, Q.; Jin, J.; Xu, M.; Guo, Y.; Li, X.; Li, X.; et al. Physics-data-driven intelligent optimization for large-aperture metalenses. Opto-Electron. Adv. 2023, 6, 230133. [Google Scholar] [CrossRef]
- Khoram, E.; Wu, Z.; Qu, Y.; Zhou, M.; Yu, Z. Graph Neural Networks for Metasurface Modeling. ACS Photonics 2023, 10, 892–899. [Google Scholar] [CrossRef]
- Zhelyeznyakov, M.V.; Brunton, S.; Majumdar, A. Deep Learning to Accelerate Scatterer-to-Field Mapping for Inverse Design of Dielectric Metasurfaces. ACS Photonics 2021, 8, 481–488. [Google Scholar] [CrossRef]
- Wu, O.; Qian, C.; Fan, Z.; Zhu, X.; Chen, H. General Characterization of Intelligent Metasurfaces with Graph Coupling Network. Laser Photonics Rev. 2025, 19, 2400979. [Google Scholar] [CrossRef]
- Fu, R.; Deng, L.; Guan, Z.; Chang, S.; Tao, J.; Li, Z.; Zheng, G. Zero-order-free meta-holograms in a broadband visible range. Photonics Res. 2020, 8, 723–728. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, J.; Wang, Y.; Pu, M.; Li, X.; Zhao, Z.; Gao, P.; Wang, C.; Luo, X. Metasurface-based broadband hologram with high tolerance to fabrication errors. Sci. Rep. 2016, 6, 19856. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Cheng, C.; Zhan, Z.; Zhang, Z.; Cui, G.; Zhou, Y.; Zeng, X.; Gao, S.; Choi, D.; Cheng, C.; et al. Dielectric Supercell Metasurfaces for Generating Focused Higher-Order Poincaré Beams with the Residual Copolarization Component Eliminated. ACS Photonics 2024, 11, 204–217. [Google Scholar] [CrossRef]
- He, G.; Zheng, Y.; Zhou, C.; Li, S.; Shi, Z.; Deng, Y.; Zhou, Z. Multiplexed manipulation of orbital angular momentum and wavelength in metasurfaces based on arbitrary complex-amplitude control. Light Sci. Appl. 2024, 13, 98. [Google Scholar] [CrossRef]
- Ren, H.; Fang, X.; Jang, J.; Bürger, J.; Rho, J.; Maier, S.A. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol. 2020, 15, 948–955. [Google Scholar] [CrossRef]
- So, S.; Kim, J.; Badloe, T.; Lee, C.; Yang, Y.; Kang, H.; Rho, J. Multicolor and 3D Holography Generated by Inverse-Designed Single-Cell Metasurfaces. Adv. Mater. 2023, 35, 2208520. [Google Scholar] [CrossRef]
- Xiong, B.; Liu, Y.; Xu, Y.; Deng, L.; Chen, C.; Wang, J.; Peng, R.; Lai, Y.; Liu, Y.; Wang, M. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 2023, 379, 294–299. [Google Scholar] [CrossRef]
- Qu, G.; Yang, W.; Song, Q.; Liu, Y.; Qiu, C.; Han, J.; Tsai, D.; Xiao, S. Reprogrammable meta-hologram for optical encryption. Nat. Commun. 2020, 11, 5484. [Google Scholar] [CrossRef]
- Wei, W.; Tang, P.; Shao, J.; Zhu, J.; Zhao, X.; Wu, C. End-to-end design of metasurface-based complex-amplitude holograms by physics-driven deep neural networks. Nanophotonics 2022, 11, 2921–2929. [Google Scholar] [CrossRef]
- Pang, H.; Wang, J.; Cao, A.; Deng, Q. High-accuracy method for holographic image projection with suppressed speckle noise. Opt. Express 2016, 24, 22766–22776. [Google Scholar] [CrossRef]
- Gao, H.; Fan, X.; Wang, Y.; Liu, Y.; Wang, X.; Xu, K.; Deng, L.; Zeng, C.; Li, T.; Xia, J.; et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron. Sci. 2023, 2, 220026. [Google Scholar] [CrossRef]
- Huo, P.; Tan, L.; Jin, Y.; Zhang, Y.; Liu, M.; Lin, P.; Zhang, S.; Wang, Y.; Ren, H.; Lu, Y.; et al. Broadband and parallel multiple-order optical spatial differentiation enabled by Bessel vortex modulated metalens. Nat. Commun. 2024, 15, 9045. [Google Scholar] [CrossRef]
- Fröch, J.E.; Huang, L.; Zhou, Z.; Tara, V.; Fang, Z.; Colburn, S.; Zhan, A.; Choi, M.; Manna, A.; Tang, A.; et al. Full color visible imaging with crystalline silicon meta-optics. Light Sci. Appl. 2025, 14, 217. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Xu, Q.; Liu, Y.; Martins, E.R.; Liang, H.; Li, J. Nonlocal Interactions in Metasurfaces Harnessed by Neural Networks. Photonics 2025, 12, 738. https://doi.org/10.3390/photonics12070738
Zhou Y, Xu Q, Liu Y, Martins ER, Liang H, Li J. Nonlocal Interactions in Metasurfaces Harnessed by Neural Networks. Photonics. 2025; 12(7):738. https://doi.org/10.3390/photonics12070738
Chicago/Turabian StyleZhou, Yongle, Qi Xu, Yikun Liu, Emiliano R. Martins, Haowen Liang, and Juntao Li. 2025. "Nonlocal Interactions in Metasurfaces Harnessed by Neural Networks" Photonics 12, no. 7: 738. https://doi.org/10.3390/photonics12070738
APA StyleZhou, Y., Xu, Q., Liu, Y., Martins, E. R., Liang, H., & Li, J. (2025). Nonlocal Interactions in Metasurfaces Harnessed by Neural Networks. Photonics, 12(7), 738. https://doi.org/10.3390/photonics12070738