Recent Progress in Integrated Photonics

A special issue of Photonics (ISSN 2304-6732). This special issue belongs to the section "Optoelectronics and Optical Materials".

Deadline for manuscript submissions: 20 September 2025 | Viewed by 3052

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Opto-Electronics Information Technology of Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
Interests: integrated photonics; quantum photonics; nano-opto-electro-mechanical systems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to invite you to contribute to this Special Issue on "Recent Progress in Integrated Photonics", a rapidly evolving field with significant implications for modern technology. Integrated photonics enables the manipulation of light on chip-scale platforms, making it central to the future of communication, computing, and sensing technologies. As the demand for faster, more efficient systems grows, the integration of photonics into compact platforms is becoming increasingly critical.

This Special Issue aims to bring together cutting-edge research on the latest developments in integrated photonics, with a focus on material innovations, device architectures, and hybrid integration strategies. Topics of interest include advancements in photonic devices and systems for applications ranging from telecommunications to quantum information processing. The scope of this collection aligns with the journal's focus on innovations in applied optics, photonics, and nanotechnology, and we welcome contributions that explore both theoretical and practical aspects of this field.

We invite original research articles and reviews. Research areas may include (but are not limited to) the following:

  • Integrated photonic devices and systems;
  • Photonic integration with electronics;
  • Quantum photonics on integrated platforms;
  • Hybrid integration of photonic materials;
  • Photonic materials and their applications in integrated systems;
  • Applications of integrated photonics in telecommunications, sensing, and data processing.

We look forward to receiving your contributions.

Dr. Xiaoyan Zhou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Photonics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • integrated photonics
  • photonic integration
  • quantum photonics
  • photonic devices
  • photonic materials
  • telecommunications
  • hybrid integration
  • data processing
  • sensing technologies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 1461 KiB  
Article
Global–Local Cooperative Optimization in Photonic Inverse Design Algorithms
by Mingzhe Li, Tong Wang, Yi Zhang, Yulin Shen, Jie Yang, Ke Zhang, Dehui Pan and Ming Xin
Photonics 2025, 12(7), 725; https://doi.org/10.3390/photonics12070725 - 17 Jul 2025
Viewed by 151
Abstract
We developed the Global–Local Integrated Topology inverse design algorithm (denoted as the GLINT algorithm), which employs a trajectory-based optimization strategy with waveguide–substrate material-flipping structural modifications, enabling the direct optimization of discrete waveguide–substrate binary structures. Compared to the conventional Direct Binary Search (DBS), the [...] Read more.
We developed the Global–Local Integrated Topology inverse design algorithm (denoted as the GLINT algorithm), which employs a trajectory-based optimization strategy with waveguide–substrate material-flipping structural modifications, enabling the direct optimization of discrete waveguide–substrate binary structures. Compared to the conventional Direct Binary Search (DBS), the GLINT algorithm not only significantly enhances computational efficiency through its global search–local refinement framework but also achieves a superior 20 nm × 20 nm optimization resolution while maintaining its optimization speed—substantially advancing the design capability. Utilizing this algorithm, we designed and experimentally demonstrated a 3.5 µm × 3.5 µm dual-port wavelength division multiplexer (WDM), achieving a minimum crosstalk of −11.3 dB and a 2 µm × 2 µm 90-degree bending waveguide exhibiting a 0.31–0.52 dB insertion loss over the 1528–1600 nm wavelength range, both fabricated on silicon-on-insulator (SOI) wafers. Additionally, a 4.5 µm × 4.5 µm three-port WDM structure was also designed and simulated, demonstrating crosstalk as low as −36.5 dB. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

12 pages, 2545 KiB  
Article
Optical Characteristics of GaAs Spherical Quantum Dots Based on Single and Double Quartic Anharmonic Potentials: The Role of Structural Parameters
by Najah Abdullah Alashqar, Walid Belhadj, Najla S. Al-Shameri, Hassen Dakhlaoui, Fatih Ungan and Sake Wang
Photonics 2025, 12(7), 675; https://doi.org/10.3390/photonics12070675 - 4 Jul 2025
Viewed by 261
Abstract
This is a numerical investigation of optical and electronic characteristics of GaAs spherical quantum dots based on single and double quartic potentials and presenting a hydrogenic impurity at their center. The radial Schrödinger equation was solved using the finite difference method (FDM) to [...] Read more.
This is a numerical investigation of optical and electronic characteristics of GaAs spherical quantum dots based on single and double quartic potentials and presenting a hydrogenic impurity at their center. The radial Schrödinger equation was solved using the finite difference method (FDM) to obtain the energy levels and the wavefunctions. These physical quantities were then used to compute the dipole matrix elements, the total optical absorption coefficient (TOAC), and the binding energies. The impact of the structural parameters in the confining potentials on the red and blue shifts of the TOAC is discussed in the presence and absence of hydrogenic impurity. Our results indicate that the structural parameter k in both potentials plays a crucial role in tuning the TOAC. In the case of single quartic potential, increasing k produces a blue shift; however, its augmentation in the case of double quartic potential displays a blue shift at first, and then a red shift. Furthermore, the augmentation of the parameter k can control the binding energies of the two lowest states, (1s) and (1p). In fact, enlarging this parameter reduces the binding energies and converges them to constant values. In general, the modification of the potential’s parameters, which can engender two shapes of confining potentials (single quartic and double quartic), enables the experimenters to control the desired energy levels and consequently to adjust and select the suitable TOAC between the two lowest energy states (ground (1s) and first excited (1p)). Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

17 pages, 4222 KiB  
Article
Grooved High-Reflective Films for Ultraviolet Emission Enhancement
by Hengrui Zhang, Zhanhua Huang and Lin Zhang
Photonics 2025, 12(7), 644; https://doi.org/10.3390/photonics12070644 - 25 Jun 2025
Viewed by 250
Abstract
Conventional ultraviolet microplasma sources typically lack a back-reflection structure, resulting in radiative power loss from the backside. To enhance the emission efficiency of ultraviolet microplasma devices around 220 nm, we propose a multilayer reflective coating composed of alternating high- and low-refractive-index layers of [...] Read more.
Conventional ultraviolet microplasma sources typically lack a back-reflection structure, resulting in radiative power loss from the backside. To enhance the emission efficiency of ultraviolet microplasma devices around 220 nm, we propose a multilayer reflective coating composed of alternating high- and low-refractive-index layers of Al2O3 and SiO2, within a V-shaped groove. Key structural parameters, including the number of alternating film layer pairs, groove width, and light source position, are investigated to show their effects on ultraviolet reflection characteristics. The results show that reducing the groove width greatly enhances light reflection. When the groove width is 6.5 μm, the device exhibits a reflection efficiency of 47.82% and power enhancement of 91.66%, representing improvements of 2.5-fold and 4.2-fold, respectively, compared to non-optimized cases. Device performance is also influenced by the offset of the light source, which is more sensitive along the horizontal direction. This study provides a practical solution for developing high-efficiency ultraviolet emission devices. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

9 pages, 4016 KiB  
Communication
Longitudinal Polarization Vortices Generated via Terahertz Ring Resonator
by Mingyu Ji, Tengjiao Wang and Jingya Xie
Photonics 2025, 12(5), 505; https://doi.org/10.3390/photonics12050505 - 18 May 2025
Viewed by 406
Abstract
Vortex beams characterized by helical phase wavefronts enable innovative explorations of optical and physical interactions. This work experimentally realizes longitudinally polarized vortices with arbitrary topological charges in terahertz (THz) frequencies using a silicon ring resonator integrated with a second-order diffraction grating. The implemented [...] Read more.
Vortex beams characterized by helical phase wavefronts enable innovative explorations of optical and physical interactions. This work experimentally realizes longitudinally polarized vortices with arbitrary topological charges in terahertz (THz) frequencies using a silicon ring resonator integrated with a second-order diffraction grating. The implemented configuration enables flexible topological charge manipulation in longitudinally polarized electric fields through the excitation of quasi-transverse-magnetic (TM) waveguide modes with different frequencies. By employing a terahertz near-field measurement system, the spatial intensity patterns and phase characteristics of emitted waves are quantitatively analyzed via a precision probe. This strategy shows promising potential for applications in particle manipulation techniques and advanced imaging technologies. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

10 pages, 7014 KiB  
Communication
Impact of Non-Vertical Sidewalls on Bandgap Properties of Lithium Niobate Photonic Crystals
by Peyman Bagheri, Xiaoyan Zhou and Lin Zhang
Photonics 2025, 12(5), 410; https://doi.org/10.3390/photonics12050410 - 24 Apr 2025
Viewed by 385
Abstract
We investigate the influence of non-vertical sidewall angles on the band structure characteristics of thin-film lithium niobate (LN) photonic crystals (PhCs), considering both suspended LN membranes and LN on insulator (LNOI) configurations. Utilizing the gap-to-midgap ratio as a figure-of-merit, we observe a 34% [...] Read more.
We investigate the influence of non-vertical sidewall angles on the band structure characteristics of thin-film lithium niobate (LN) photonic crystals (PhCs), considering both suspended LN membranes and LN on insulator (LNOI) configurations. Utilizing the gap-to-midgap ratio as a figure-of-merit, we observe a 34% reduction for a suspended LN PhC with 60° sidewall angles compared to the one with vertical sidewalls and a more substantial 73% reduction for LNOI PhCs with 70° sidewall angles. We address this challenge through the optimization of geometrical parameters of PhC unit cells with non-vertical sidewalls, taking fabrication feasibility into account. Our work provides a design guideline for the development of realistic LN PhC devices for future large-scale LN photonic circuits. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Graphical abstract

10 pages, 3146 KiB  
Article
Compact Nanolaser Relying on Bound States in the Continuum with Simultaneous Pump and Emission Enhancement
by Yifei Ma, Jingyuan Ji, Xiaoyan Zhou and Lin Zhang
Photonics 2025, 12(3), 247; https://doi.org/10.3390/photonics12030247 - 10 Mar 2025
Viewed by 574
Abstract
Bound states in the continuum (BICs), characterized by high-Q modes, have demonstrated exceptional capabilities for enhancing light-matter interactions and, when combined with gain media, can enable compact lasers with low threshold power. However, conventional BIC lasers typically rely on the emitting light forming [...] Read more.
Bound states in the continuum (BICs), characterized by high-Q modes, have demonstrated exceptional capabilities for enhancing light-matter interactions and, when combined with gain media, can enable compact lasers with low threshold power. However, conventional BIC lasers typically rely on the emitting light forming a BIC mode, leading to vertical emission, and often lack mechanisms to enhance pump efficiency. In this work, we propose a photonic crystal laser design that incorporates high-Q modes at both pump and emitting wavelengths. The pump light at 980 nm is designed to form a BIC state near the Γ-point, while the emitting light at 1550 nm is confined within a bandgap-defined cavity mode at the M-point, allowing efficient in-plane emission. This design leads to a compact footprint of 19.7 × 17.1 μm2 and predicts a significant reduction in threshold power compared with a laser with a single resonance at the emission wavelength, providing a promising approach for developing compact on-chip lasers with significantly improved efficiency. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

Review

Jump to: Research

28 pages, 5787 KiB  
Review
Silicon-Based On-Chip Light Sources: A Review
by Yongqi Yang, Jiaqi Yang, Zhouyang Cheng, Shuyan Zhang, Zhen Yang, Shengchuang Bai and Rongping Wang
Photonics 2025, 12(7), 732; https://doi.org/10.3390/photonics12070732 - 18 Jul 2025
Viewed by 186
Abstract
Silicon-based on-chip light sources are important since they can provide a compact solution for various applications in the field of high-speed optical communications, high-precision sensing, quantum information processing, and so on. We review the progress of silicon-based on-chip light sources in various materials. [...] Read more.
Silicon-based on-chip light sources are important since they can provide a compact solution for various applications in the field of high-speed optical communications, high-precision sensing, quantum information processing, and so on. We review the progress of silicon-based on-chip light sources in various materials. We provide some key parameters like pump thresholds, output powers, and pump schemes of on-chip lasers based on various materials. Finally, we point out the existing issues in the current investigations and possible solutions in the future. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

Back to TopTop