Gain Characteristics of Hybrid Waveguide Amplifiers in SiN Photonics Integration with Er-Yb:Al2O3 Thin Film
Abstract
1. Introduction
2. Structure Design and Simulation Optimization
2.1. Characterization of the Hybrid Slot Waveguide
2.2. Optimization of the Hybrid Slot Waveguide
3. Amplification Performances
3.1. Dynamic Modeling
3.2. Numerical Simulation of Optical Amplification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poole, S.; Payne, D.; Mears, R.; Fermann, M.; Laming, R. Fabrication and characterization of low-loss optical fibers containing rare-earth ions. J. Light. Technol. 1986, 4, 870–876. [Google Scholar] [CrossRef]
- Bradley, J.D.B.; Pollnau, M. Erbium-doped integrated waveguide amplifiers and laser. Laser Photon. Rev. 2011, 5, 368–403. [Google Scholar] [CrossRef]
- Zhang, H.; He, Y.; Zhu, S.; Zhou, X.; Zhang, L. Atomic-layer engineered erbium-doped waveguide amplifier with a 14.4 dB net gain. ACS Photonics 2025, 12, 674–683. [Google Scholar] [CrossRef]
- Zhou, J.; Liang, Y.; Liu, Z.; Chu, W.; Zhang, H.; Yin, D.; Fang, Z.; Wu, R.; Zhang, J.; Chen, W.; et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator. Laser Photon. Rev. 2021, 15, 2100030. [Google Scholar] [CrossRef]
- Wang, C.; Song, J.; Ao, Z.; Yang, S.; Li, Y.; Li, X.; Zhu, N.; Chen, Q.; Li, Z. High-gain waveguide amplifiers in Ge25Sb10S65 photonics heterogeneous integration with erbium-doped Al2O3 thin films. Laser Photon. Rev. 2023, 18, 2300893. [Google Scholar] [CrossRef]
- Tao, S.; Song, H.; Zhao, D.; Yang, Y.; Wang, S.; Yan, J.; Wei, J.; Wang, X.; Qin, G.; Wang, F. Strip loaded waveguide amplifiers based on erbium-doped nanocomposites with 17 dB internal net gain. Opt. Express 2024, 32, 7931–7939. [Google Scholar] [CrossRef] [PubMed]
- Rönn, J.; Zhang, W.; Autere, A.; Leroux, X.; Pakarinen, L.; Alonso-Ramos, C.; Säynätjoki, A.; Lipsanen, H.; Vivien, L.; Cassan, E.; et al. Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides. Nat. Commun. 2019, 10, 432. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wan, L.; Gao, S.; Zhu, K.; Zhang, M.; Li, Y.; Huang, X.; Li, Z. On-chip waveguide amplifiers for multi-band optical communications: A review and challenge. J. Light. Technol. 2022, 40, 3364–3373. [Google Scholar] [CrossRef]
- Zhu, D.; Shao, L.; Yu, M.; Cheng, R.; Desiatov, B.; Xin, C.; Hu, Y.; Holzgrafe, J.; Ghosh, S.; Shams-Ansari, A.; et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 2021, 13, 242–352. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, S.; Gao, R.; Zhang, H.; Lin, J.; Fang, Z.; Wu, R.; Wang, M.; Wang, Z.; Hang, Y.; et al. Erbium-ytterbium codoped thin-film lithium niobate integrated waveguide amplifier with a 27 dB internal net gain. Opt. Lett. 2023, 48, 4344–4347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yan, J.; Wang, C.; Sun, T.; Cao, Z.; Xu, C.; Qin, G.; Wang, F.; Zhang, D. Design of a few-mode erbium-ytterbium co-doped polymer optical waveguide amplifier with low differential modal gain. J. Light. Technol. 2021, 39, 3201–3216. [Google Scholar] [CrossRef]
- Xu, X.; Inaba, T.; Tsuchizawa, T.; Ishizawa, A.; Sanada, H.; Tawara, T.; Omi, H.; Oguri, K.; Gotoh, H. Low-loss erbium-incorporated rare-earth oxide waveguides on Si with bound states in the continuum and the large optical signal enhancement in them. Opt. Express 2021, 29, 41132–41143. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, R.; Wang, W.; Yan, K.; Yang, Z.; Song, M.; Wu, D.; Xu, P.; Wang, X.; Wang, R. On-chip Er-doped Ta2O5 waveguide amplifiers with a high internal net gain. Opt. Lett. 2023, 48, 5799–5802. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Bowers, J.E. Recent progress in heterogeneous III-V-onsilicon photonic integration. Light Adv. Manuf. 2021, 2, 59–83. [Google Scholar] [CrossRef]
- Xiang, C.; Jin, W.; Bowers, J.E. Silicon nitride passive and active photonic integrated circuits: Trends and prospects. Photonics Res. 2022, 10, 82–96. [Google Scholar] [CrossRef]
- Li, Z.; Wang, R.N.; Lihachev, G.; Zhang, J.; Tan, Z.; Churaev, M.; Kuznetsov, N.; Siddharth, A.; Bereyhi, M.J.; Riemensberger, J.; et al. High density lithium niobate photonic integrated circuits. Nat. Commun. 2023, 14, 4856. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.S.; Gondarenko, A.; Foster, M.A.; Turner-Foster, A.C.; Gaeta, A.L.; Lipson, M. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics 2009, 4, 37–40. [Google Scholar] [CrossRef]
- Moss, D.J.; Morandotti, R.; Gaeta, A.L.; Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 2013, 7, 597–607. [Google Scholar] [CrossRef]
- Liu, J.; Huang, G.; Wang, R.N.; He, J.; Raja, A.S.; Liu, T.; Engelsen, N.J.; Kippenberg, T.J. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 2021, 12, 2236. [Google Scholar] [CrossRef] [PubMed]
- Purnawirman; Sun, J.; Adam, T.N.; Leake, G.; Leake, G.; Coolbaugh, D.; Bradley, J.D.B.; Hosseini, E.S.; Watts, M.R. C-and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities. Opt. Lett. 2013, 38, 1760–1762. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Dijkstra, M.; Korterik, J.; Offerhaus, H.; García-Blanco, S.M. High-gain waveguide amplifiers in Si3N4 technology via double-layer monolithic integration. Photonics Res. 2020, 8, 1634–1641. [Google Scholar] [CrossRef]
- Frankis, H.C.; Mbonde, H.M.; Bonneville, D.B.; Zhang, C.; Mateman, R.; Leinse, A.; Bradley, J.D.B. Erbium-doped TeO2-coated Si3N4 waveguide amplifiers with 5 dB net gain. Photonics Res. 2020, 8, 127–134. [Google Scholar] [CrossRef]
- Rönn, J.; Zhang, J.; Zhang, W.; Tu, Z.; Matikainen, A.; Leroux, X.; Durán-Valdeiglesias, E.; Vulliet, N.; Boeuf, F.; Alonso-Ramos, C. Erbium-doped hybrid waveguide amplifiers with net optical gain on a fully industrial 300 mm silicon nitride photonic platform. Opt. Express 2020, 28, 27919–27926. [Google Scholar] [CrossRef] [PubMed]
- Chrysostomidis, T.; Roumpos, I.; Fotiadis, K.; Mu, J.; Manolis, A.; Vagionas, C.; Dijkstra, M.; Blanco, S.G.; Alexoudi, T.; Vyrsokinos, K. 480 Gbps WDM transmission through an Al2O3:Er3+ waveguide amplifier. J. Light. Technol. 2022, 40, 735–743. [Google Scholar] [CrossRef]
- Vagionas, C.; Tsakyridis, A.; Chrysostomidis, T.; Roumpos, I.; Fotiadis, K.; Manolis, A.; Mu, J.; Dijkstra, M.; Blanco, S.G.; Oldenbeuving, R.M.; et al. Lossless 1×4 silicon photonic ROADM based on a monolithic integrated erbium doped waveguide amplifier on a Si3N4 Platform. J. Light. Technol. 2022, 40, 1718–1725. [Google Scholar] [CrossRef]
- Riemensberger, J.; Kuznetsov, N.; Liu, J.; He, J.; Wang, R.N.; Kippenberg, T.J. A photonic integrated continuous-travelling-wave parametric amplifier. Nature 2022, 612, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Zhao, Y.; Wang, Y.; Wei, W.; Ding, L.; Tang, L.; Li, Y. Gain optimization of an erbium-ytterbium co-doped amplifier via a Si3N4 photonic platform. Opt. Express 2023, 31, 35419–35430. [Google Scholar] [CrossRef] [PubMed]
- Crawford, J.H., Jr. Defects and defect processes in ionic oxides: Where do we stand today? Nucl. Instrum. Meth. B. 1984, 1, 159–165. [Google Scholar] [CrossRef]
- Evans, B.D.; Pogatshnik, G.J.; Chen, Y. Optical properties of lattice defects in α-Al2O3. Nucl. Instrum. Meth. B. 1994, 91, 258–262. [Google Scholar] [CrossRef]
- Xu, X.; Fili, V.; Szuba, W.; Hiraishi, M.; Inaba, T.; Tawara, T.; Omi, H.; Gotoh, H. Epitaxial single-crystal rare-earth oxide in horizontal slot waveguide for silicon-based integrated active photonic devices. Optics. Express 2020, 28, 14448–14460. [Google Scholar] [CrossRef] [PubMed]
- Kempf, E.; Romeo, P.R.; Gassenq, A.; Taute, A.; Chantraine, P.; John, J.; Belarouci, A.; Monfray, S.; Boeuf, F.; Charette, P.G. SiN half-etch horizontal slot waveguides for integrated photonics: Numerical modeling, fabrication, and characterization of passive components. Opt. Express 2022, 30, 4202–4214. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Li, X.; He, J.; Fan, Y.; Dan, Y.; Wang, J. Design of an optical slot waveguide amplifier based on Er3+-doped tellurite glass. Chin. Opt. Lett. 2023, 21, 011404. [Google Scholar] [CrossRef]
- Kita, D.M.; Michon, J.; Johnson, S.G.; Hu, J. Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing? Optica 2018, 5, 1046–1054. [Google Scholar] [CrossRef]
- Sultanova, N.; Kasarova, S.; Nikolov, I. Dispersion properties of optical polymers. Acta Phys. Pol. A 2009, 116, 585–587. [Google Scholar] [CrossRef]
- Bonneville, D.B.; Frankis, H.C.; Wang, R.; Bradley, J.D.B. Erbium-ytterbium co-doped aluminium oxide waveguide amplifiers fabricated by reactive co-sputtering and wet chemical etching. Opt. Express 2020, 28, 30130–30140. [Google Scholar] [CrossRef] [PubMed]
- Luke, K.; Okawachi, Y.; Lamont, M.R.E.; Gaeta, A.L.; Lipson, M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 2015, 40, 4823–4826. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.Z. Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy. J. Non-Cryst. Solids 1998, 223, 158–163. [Google Scholar] [CrossRef]
- Agazzi, L.; Worhoff, K.; Pollnau, M. Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+. J. Phys. Chem. C 2013, 117, 6759–6776. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, S.; Wang, X.; He, Y.; Zhou, Z.; Zhou, L.; Wu, K. High-gain erbium silicate waveguide amplifier and a low-threshold, high-efficiency laser. Opt. Express 2018, 26, 16689–16707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, W.; Wang, F.; Zhao, D.; Qu, C.; Wang, X.; Yi, Y.; Cassan, E.; Zhang, D. High-gain polymer optical waveguide amplifiers based on core-shell NaYF4/NaLuF4: Yb3+, Er3+ NPs-PMMA covalent-linking nanocomposites. Sci. Rep. 2016, 6, 36729. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qiu, Z.; Ji, X.; Lukashchuk, A.; He, J.; Riemensberger, J.; Hafermann, M.; Wang, R.N.; Liu, J.; Ronning, C.; et al. A photonic integrated circuit-based erbium-doped amplifier. Science 2022, 376, 1309–1313. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhou, P.; Wang, X.; He, Y. A low-fabrication-temperature, high-gain chip-scale waveguide amplifier. Sci. China Inform. Sci. 2022, 65, 162405. [Google Scholar] [CrossRef]
- Tao, S.; Yan, J.; Song, H.; Wei, J.; Fu, Y.; Zhao, D.; Wang, F.; Zhang, D. Modeling and simulation of erbium-ytterbium co-doped optical waveguide amplifiers with dual-wavelength pumping at 980 nm and 1480 nm. J. Phy. D. Appl. Phys. 2023, 56, 344003. [Google Scholar] [CrossRef]
- Zhou, C.; He, X.; Xiao, M.; Ma, D.; Chen, W.; Zhou, Z. Design of an on-chip wavelength conversion device assisted by an erbium-ytterbium co-doped waveguide amplifier. Front. Optoelectron. 2024, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Ma, D.; Zhou, C.; Xiao, M.; Chen, W.; Zhou, Z. On-chip integrated few-mode erbium–ytterbium co-doped waveguide amplifiers. Photonics Res. 2024, 12, 1067–1077. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, G.; Zhang, S.; Gao, D.; Sun, Y.; Wang, F. Gain characteristics of the hybrid slot waveguide amplifiers integrated with NaYF4:Er3+ NPs-PMMA covalently linked nanocomposites. RSC Adv. 2020, 10, 11148–11155. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Wu, K.; Xiang, J.; Xiao, Z.; Li, T.; Li, C.; Chen, J. Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 1–8. [Google Scholar] [CrossRef]
- Liang, Y.; Zhou, J.; Liu, Z.; Zhang, H.; Fang, Z.; Zhou, Y.; Yin, D.; Lin, J.; Yu, J.; Wu, R.; et al. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching. Nanophotonics 2022, 11, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wu, H.; Wu, H.; Zhang, L.; Pan, G.H.; Luo, Y.; Hao, Z.; Zhang, J. The important round-trip energy transfer for excitation of the red emission in the Er3+/Yb3+ System. J. Phys. Chem. Lett. 2025, 16, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Tu, L.; Huang, H.; Wei, H.; Zhang, Q.; Zhou, B. Manipulating energy migration in nanoparticles toward tunable photochromic upconversion. Nat. Commun. 2024, 15, 10890. [Google Scholar] [CrossRef] [PubMed]
- Cooke, D.W.; Roberts, H.E.; Alexander, C., Jr. Thermoluminescence and emission spectra of uv-grade Al2O3 from 90 to 500 K. J. Appl. Phys. 1978, 49, 3451–3457. [Google Scholar] [CrossRef]
- Kotomin, E.A.; Popov, A.I. Radiation-induced point defects in simple oxides. Nucl. Instrum. Meth. B. 1998, 141, 1–15. [Google Scholar] [CrossRef]
- Rani, G.; Sahare, P.D. Effect of phase transitions on thermoluminescence characteristics of nanocrystalline alumina. Nucl. Instrum. Meth. B. 2013, 311, 71–77. [Google Scholar] [CrossRef]
- Ananchenko, D.V.; Nikiforov, S.V.; Kuzovkov, V.N.; Popov, A.I.; Ramazanova, G.R.; Batalov, R.I.; Bayazitov, R.M.; Novikov, H.A. Radiation-induced defects in sapphire single crystals irradiated by a pulsed ion beam. Nucl. Instrum. Meth. B. 2020, 466, 1–7. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Er concentration | NEr | 3 × 1020 cm−3 |
Yb concentration | NYb | 2.4 × 1021 cm−3 |
Lifetime of state 4I13/2 | τ21 | 5 ms |
Lifetime of state 4I11/2 | τ32 | 0.1 ms |
Lifetime of state 4I9/2 | τ43 | 1 μs |
Lifetime of state 2F5/2 | 2 ms | |
Lifetime of quenched ions | τq | 1 μs |
Er pump absorption cross section | σ13p | 2.58 × 10−21 cm2 |
Er signal emission cross section | σ21s | 9.83 × 10−21 cm2 |
Er signal absorption cross section | σ12s | 8.95 × 10−21 cm2 |
Yb pump emission cross section | 1.2 × 10−20 cm2 | |
Yb pump absorption cross section | 1.2 × 10−20 cm2 | |
ASE emission cross section | σ21,ASE | 4 × 10−21 cm2 |
ASE absorption cross section | σ12,ASE | 6 × 10−21 cm2 |
First order CUC coefficient | C24 | 4.1 × 10−17 cm3s−1 |
Second order CUC coefficient | C35 | 4.1 × 10−17 cm3s−1 |
Cross-relaxation coefficient | C14 | 3.4 × 10−16 cm3s−1 |
Fraction of quenched ions | fq | 0, 15%, 30% |
Pump propagation loss | α0p | 2.3 dB/cm |
Signal propagation loss | α0s | 0.6 dB/cm |
Waveguide /Active Material | Active Region Length (cm) | Erbium Concentration (cm−3) | Gain (dB) | Method | Reference |
---|---|---|---|---|---|
SiN/Er:Al2O3 | 0.12 | 4.9 × 1021 | 1.98 | Exp. | [7] |
SiN/Er:TeO2 | 6.7 | 2.5 × 1020 | 5 | Exp. | [22] |
SiN/Er:Al2O3 | 0.16 | 3.88 × 1021 | 3.13 | Exp. | [23] |
Si/Er:Polymer | 1.5 | 1.3 × 1021 | 5.78 | Theo. | [46] |
Er:LiNO3 | 3.6 | 1.9 × 1020 | 18 | Exp. | [4] |
Er:LiNO3 | 2.58 | 7.2 × 1019 | 16 | Exp. | [47] |
Si/Er:TeO2 | 4 | 2.2 × 1020 | 15.21 | Theo. | [32] |
Er:Yb co-doped | 1 | 1.644 × 1021 | 18.77 | Theo. | [44] |
HSQ/Er:Al2O3 | 9.31 | 2.5 × 1020 | 14.4 | Exp. | [3] |
SiN/Er:Al2O3 | 1.4 | 3 × 1020 | 20 | Theo. | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Sun, G.; Zhao, Y.; Wang, Y.; Ding, L.; Tang, L.; Li, Y. Gain Characteristics of Hybrid Waveguide Amplifiers in SiN Photonics Integration with Er-Yb:Al2O3 Thin Film. Photonics 2025, 12, 718. https://doi.org/10.3390/photonics12070718
Dong Z, Sun G, Zhao Y, Wang Y, Ding L, Tang L, Li Y. Gain Characteristics of Hybrid Waveguide Amplifiers in SiN Photonics Integration with Er-Yb:Al2O3 Thin Film. Photonics. 2025; 12(7):718. https://doi.org/10.3390/photonics12070718
Chicago/Turabian StyleDong, Ziming, Guoqing Sun, Yuqing Zhao, Yaxin Wang, Lei Ding, Liqin Tang, and Yigang Li. 2025. "Gain Characteristics of Hybrid Waveguide Amplifiers in SiN Photonics Integration with Er-Yb:Al2O3 Thin Film" Photonics 12, no. 7: 718. https://doi.org/10.3390/photonics12070718
APA StyleDong, Z., Sun, G., Zhao, Y., Wang, Y., Ding, L., Tang, L., & Li, Y. (2025). Gain Characteristics of Hybrid Waveguide Amplifiers in SiN Photonics Integration with Er-Yb:Al2O3 Thin Film. Photonics, 12(7), 718. https://doi.org/10.3390/photonics12070718