Next Issue
Volume 12, January
Previous Issue
Volume 11, November
 
 

Toxins, Volume 11, Issue 12 (December 2019) – 58 articles

Cover Story (view full-size image): The evaluation of biological activity for conotoxins isolated from the venom of predatory marine snails of the genus Conus is difficult and prohibitive in many research environments. A common component of cone snail venom is α-conotoxins that act on nicotinic acetylcholine receptors. A qualitative screening method employing PC12 cells for the rapid detection of dopamine release from ligand activation or suppression of α7, α3β2, or α3β4-nicotinic acetylcholine receptor subtypes was evaluated. This PC12 cell-based assay proved useful as a screening tool for toxin-influenced receptor activity. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
23 pages, 1793 KiB  
Article
Intraspecific Variability in the Toxin Production and Toxin Profiles of In Vitro Cultures of Gambierdiscus polynesiensis (Dinophyceae) from French Polynesia
by Sébastien Longo, Manoella Sibat, Jérôme Viallon, Hélène Taiana Darius, Philipp Hess and Mireille Chinain
Toxins 2019, 11(12), 735; https://doi.org/10.3390/toxins11120735 - 17 Dec 2019
Cited by 42 | Viewed by 4679
Abstract
Ciguatera poisoning (CP) is a foodborne disease caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the genera Gambierdiscus and Fukuyoa. The toxin production and toxin profiles were explored in four clones of G. polynesiensis originating from [...] Read more.
Ciguatera poisoning (CP) is a foodborne disease caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the genera Gambierdiscus and Fukuyoa. The toxin production and toxin profiles were explored in four clones of G. polynesiensis originating from different islands in French Polynesia with contrasted CP risk: RIK7 (Mangareva, Gambier), NHA4 (Nuku Hiva, Marquesas), RAI-1 (Raivavae, Australes), and RG92 (Rangiroa, Tuamotu). Productions of CTXs, maitotoxins (MTXs), and gambierone group analogs were examined at exponential and stationary growth phases using the neuroblastoma cell-based assay and liquid chromatography–tandem mass spectrometry. While none of the strains was found to produce known MTX compounds, all strains showed high overall P-CTX production ranging from 1.1 ± 0.1 to 4.6 ± 0.7 pg cell−1. In total, nine P-CTX analogs were detected, depending on strain and growth phase. The production of gambierone, as well as 44-methylgamberione, was also confirmed in G. polynesiensis. This study highlighted: (i) intraspecific variations in toxin production and profiles between clones from distinct geographic origins and (ii) the noticeable increase in toxin production of both CTXs, in particular CTX4A/B, and gambierone group analogs from the exponential to the stationary phase. Full article
Show Figures

Figure 1

13 pages, 1286 KiB  
Article
Staphylococcus aureus Pneumonia: Preceding Influenza Infection Paves the Way for Low-Virulent Strains
by Stefanie Deinhardt-Emmer, Karoline Frieda Haupt, Marina Garcia-Moreno, Jennifer Geraci, Christina Forstner, Mathias Pletz, Christina Ehrhardt and Bettina Löffler
Toxins 2019, 11(12), 734; https://doi.org/10.3390/toxins11120734 - 17 Dec 2019
Cited by 19 | Viewed by 4387
Abstract
Staphylococcus aureus is a facultative pathogenic bacterium that colonizes the nasopharyngeal area of healthy individuals, but can also induce severe infection, such as pneumonia. Pneumonia caused by mono- or superinfected S. aureus leads to high mortality rates. To establish an infection, S. aureus [...] Read more.
Staphylococcus aureus is a facultative pathogenic bacterium that colonizes the nasopharyngeal area of healthy individuals, but can also induce severe infection, such as pneumonia. Pneumonia caused by mono- or superinfected S. aureus leads to high mortality rates. To establish an infection, S. aureus disposes of a wide variety of virulence factors, which can vary between clinical isolates. Our study aimed to characterize pneumonia isolates for their virulent capacity. For this, we analyzed isolates from colonization, pneumonia due to S. aureus, and pneumonia due to S. aureus/influenza virus co-infection. A total of 70 strains were analyzed for their virulence genes and the host–pathogen interaction was analyzed through functional assays in cell culture systems. Strains from pneumonia due to S. aureus mono-infection showed enhanced invasion and cytotoxicity against professional phagocytes than colonizing and co-infecting strains. This corresponded to the high presence of cytotoxic components in pneumonia strains. By contrast, strains obtained from co-infection did not exhibit these virulence characteristics and resembled strains from colonization, although they caused the highest mortality rate in patients. Taken together, our results underline the requirement of invasion and toxins to cause pneumonia due to S. aureus mono-infection, whereas in co-infection even low-virulent strains can severely aggravate pneumonia. Full article
(This article belongs to the Special Issue Staphylococcus aureus Toxins: Promoter or Handicap during Infection)
Show Figures

Figure 1

13 pages, 8640 KiB  
Article
Deoxynivalenol Induces Inflammatory Injury in IPEC-J2 Cells via NF-κB Signaling Pathway
by Xichun Wang, Yafei Zhang, Jie Zhao, Li Cao, Lei Zhu, Yingying Huang, Xiaofang Chen, Sajid Ur Rahman, Shibin Feng, Yu Li and Jinjie Wu
Toxins 2019, 11(12), 733; https://doi.org/10.3390/toxins11120733 - 16 Dec 2019
Cited by 30 | Viewed by 3956
Abstract
The aim of this study was to investigate the effects of deoxynivalenol (DON) exposure on the inflammatory injury nuclear factor kappa-B (NF-κB) pathway in intestinal epithelial cells (IPEC-J2 cells) of pig. The different concentrations of DON (0, 125, 250, 500, 1000, 2000 ng/mL) [...] Read more.
The aim of this study was to investigate the effects of deoxynivalenol (DON) exposure on the inflammatory injury nuclear factor kappa-B (NF-κB) pathway in intestinal epithelial cells (IPEC-J2 cells) of pig. The different concentrations of DON (0, 125, 250, 500, 1000, 2000 ng/mL) were added to the culture solution for treatment. The NF-κB pathway inhibitor pyrrolidine dithiocarbamate (PDTC) was used as a reference. The results showed that when the DON concentration increased, the cell density decreased and seemed damaged. With the increase of DON concentration in the culture medium, the action of diamine oxidase (DAO) in the culture supernatant also increased. The activities of IL-6, TNF-α, and NO in the cells were increased with the increasing DON concentration. The relative mRNA expression of IL-1β and IL-6 were increased in the cells. The mRNA relative expression of NF-κB p65, IKKα, and IKKβ were upregulated with the increasing of DON concentration, while the relative expression of IκB-α mRNA was downregulated. At the same time, the expression of NF-κB p65 protein increased gradually in the cytoplasm and nucleus with a higher concentration of DON. These results showed that DON could change the morphology of IPEC-J2 cells, destroy its submicroscopic structure, and enhance the permeability of cell membrane, as well as upregulate the transcription of some inflammatory factors and change the expression of NF-κB-related gene or protein in cells. Full article
(This article belongs to the Special Issue Mycotoxins Occurence in Feed and Their Influence on Animal Health)
Show Figures

Graphical abstract

14 pages, 4775 KiB  
Article
The Peptide Venom Composition of the Fierce Stinging Ant Tetraponera aethiops (Formicidae: Pseudomyrmecinae)
by Valentine Barassé, Axel Touchard, Nathan Téné, Maurice Tindo, Martin Kenne, Christophe Klopp, Alain Dejean, Elsa Bonnafé and Michel Treilhou
Toxins 2019, 11(12), 732; https://doi.org/10.3390/toxins11120732 - 14 Dec 2019
Cited by 13 | Viewed by 4583
Abstract
In the mutualisms involving certain pseudomyrmicine ants and different myrmecophytes (i.e., plants sheltering colonies of specialized “plant-ant” species in hollow structures), the ant venom contributes to the host plant biotic defenses by inducing the rapid paralysis of defoliating insects and causing intense pain [...] Read more.
In the mutualisms involving certain pseudomyrmicine ants and different myrmecophytes (i.e., plants sheltering colonies of specialized “plant-ant” species in hollow structures), the ant venom contributes to the host plant biotic defenses by inducing the rapid paralysis of defoliating insects and causing intense pain to browsing mammals. Using integrated transcriptomic and proteomic approaches, we identified the venom peptidome of the plant-ant Tetraponera aethiops (Pseudomyrmecinae). The transcriptomic analysis of its venom glands revealed that 40% of the expressed contigs encoded only seven peptide precursors related to the ant venom peptides from the A-superfamily. Among the 12 peptide masses detected by liquid chromatography-mass spectrometry (LC–MS), nine mature peptide sequences were characterized and confirmed through proteomic analysis. These venom peptides, called pseudomyrmecitoxins (PSDTX), share amino acid sequence identities with myrmeciitoxins known for their dual offensive and defensive functions on both insects and mammals. Furthermore, we demonstrated through reduction/alkylation of the crude venom that four PSDTXs were homo- and heterodimeric. Thus, we provide the first insights into the defensive venom composition of the ant genus Tetraponera indicative of a streamlined peptidome. Full article
(This article belongs to the Special Issue Venom Proteomics and Transcriptomics)
Show Figures

Graphical abstract

20 pages, 7541 KiB  
Article
The Cytotoxicity Effect of Resveratrol: Cell Cycle Arrest and Induced Apoptosis of Breast Cancer 4T1 Cells
by Hong Wu, Liang Chen, Feifei Zhu, Xu Han, Lindan Sun and Keping Chen
Toxins 2019, 11(12), 731; https://doi.org/10.3390/toxins11120731 - 13 Dec 2019
Cited by 117 | Viewed by 11805
Abstract
Resveratrol, a natural polyterpenoid, can scavenge reactive oxygen species in vivo to carry out the functions of antioxidation and antiaging. Resveratrol’s anti-cancer capability has attracted widespread attention, but its molecular mechanism has not been systematically explained. In this study, by comparing the activity [...] Read more.
Resveratrol, a natural polyterpenoid, can scavenge reactive oxygen species in vivo to carry out the functions of antioxidation and antiaging. Resveratrol’s anti-cancer capability has attracted widespread attention, but its molecular mechanism has not been systematically explained. In this study, by comparing the activity of normal cell lines and cancer cell lines after treating with resveratrol, it was found that resveratrol has more significant cytotoxicity in cancer cell lines. Resveratrol could play a toxic role through inducing apoptosis of the cancer cell in a time- and concentration-dependent manner. A total of 330 significantly differential genes were identified through large-scale transcriptome sequencing, among which 103 genes were upregulated and 227 genes were downregulated. Transcriptome and qRT-PCR data proved that a large number of genes related to cell cycle were differentially expressed after the treatment of resveratrol. The changes of cell cycle phases at different time points after treating with resveratrol were further detected, and it was found that the cells were arrested in the S phase because of the percentage of cells in S phase increased and cells in G1/G0 phase decreased. In conclusion, resveratrol can inhibit the proliferation of 4T1 cancer cells by inhibiting cell cycle and inducing apoptosis. Full article
(This article belongs to the Special Issue Basic Research for the Potential Use of Plant Toxins)
Show Figures

Figure 1

14 pages, 10085 KiB  
Article
AflSte20 Regulates Morphogenesis, Stress Response, and Aflatoxin Biosynthesis of Aspergillus flavus
by Ding Li, Ling Qin, Yinchun Wang, Qingchen Xie, Na Li, Shihua Wang and Jun Yuan
Toxins 2019, 11(12), 730; https://doi.org/10.3390/toxins11120730 - 13 Dec 2019
Cited by 14 | Viewed by 2838
Abstract
Various signaling pathways in filamentous fungi help cells receive and respond to environmental information. Previous studies have shown that the mitogen-activated protein kinase (MAPK) pathway is phosphorylation-dependent and activated by different kinase proteins. Serine/threonine kinase plays a very important role in the MAPK [...] Read more.
Various signaling pathways in filamentous fungi help cells receive and respond to environmental information. Previous studies have shown that the mitogen-activated protein kinase (MAPK) pathway is phosphorylation-dependent and activated by different kinase proteins. Serine/threonine kinase plays a very important role in the MAPK pathway. In this study, we selected the serine/threonine kinase AflSte20 in Aspergillus flavus for functional study. By constructing Aflste20 knockout mutants and complemented strains, it was proven that the Aflste20 knockout mutant (ΔAflste20) showed a significant decrease in growth, sporogenesis, sclerotinogenesis, virulence, and infection compared to the WT (wild type) and complemented strain (ΔAflste20C). Further research indicated that ΔAflste20 has more sensitivity characteristics than WT and ΔAflste20C under various stimuli such as osmotic stress and other types of environmental stresses. Above all, our study showed that the mitogen-activated kinase AflSte20 plays an important role in the growth, conidia production, stress response and sclerotia formation, as well as aflatoxin biosynthesis, in A. flavus. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

12 pages, 1376 KiB  
Article
Measurement of Microcystin and Nodularin Activity in Human Urine by Immunocapture-Protein Phosphatase 2A Assay
by Rebekah E. Wharton, Brady R. Cunningham, Adam M. Schaefer, Sophia M. Guldberg, Elizabeth I. Hamelin and Rudolph C. Johnson
Toxins 2019, 11(12), 729; https://doi.org/10.3390/toxins11120729 - 13 Dec 2019
Cited by 15 | Viewed by 8305
Abstract
Microcystins (MC) and nodularin (NOD) are toxins released by cyanobacteria during harmful algal blooms. They are potent inhibitors of protein phosphatases 1 and 2A (PP1 and PP2A) and cause a variety of adverse symptoms in humans and animals if ingested. More than 250 [...] Read more.
Microcystins (MC) and nodularin (NOD) are toxins released by cyanobacteria during harmful algal blooms. They are potent inhibitors of protein phosphatases 1 and 2A (PP1 and PP2A) and cause a variety of adverse symptoms in humans and animals if ingested. More than 250 chemically diverse congeners of MCs have been identified, but certified reference materials are only available for a few. A diagnostic test that does not require each reference material for detection is necessary to identify human exposures. To address this need, our lab has developed a method that uses an antibody to specifically isolate MCs and NOD from urine prior to detection via a commercially available PP2A kit. This assay quantitates the summed inhibitory activity of nearly all MCs and NOD on PP2A relative to a common MC congener, microcystin-LR (MC-LR). The quantitation range for MC-LR using this method is from 0.050–0.500 ng/mL. No background responses were detected in a convenience set of 50 individual urines. Interday and intraday % accuracies ranged from 94%–118% and relative standard deviations were 15% or less, meeting FDA guidelines for receptor binding assays. The assay detected low levels of MCs in urines from three individuals living in close proximity to harmful algal blooms (HABs) in Florida. Full article
Show Figures

Graphical abstract

17 pages, 341 KiB  
Review
The Therapeutic Effects and Pathophysiology of Botulinum Toxin A on Voiding Dysfunction Due to Urethral Sphincter Dysfunction
by Yao-Lin Kao, Kuan-Hsun Huang, Hann-Chorng Kuo and Yin-Chien Ou
Toxins 2019, 11(12), 728; https://doi.org/10.3390/toxins11120728 - 13 Dec 2019
Cited by 20 | Viewed by 3794
Abstract
Neurogenic and non-neurogenic urethral sphincter dysfunction are common causes of voiding dysfunction. Injections of botulinum toxin A (BoNT-A) into the urethral sphincter have been used to treat urethral sphincter dysfunction (USD) refractory to conventional treatment. Since its first use for patients with detrusor [...] Read more.
Neurogenic and non-neurogenic urethral sphincter dysfunction are common causes of voiding dysfunction. Injections of botulinum toxin A (BoNT-A) into the urethral sphincter have been used to treat urethral sphincter dysfunction (USD) refractory to conventional treatment. Since its first use for patients with detrusor sphincter dyssynergia in 1988, BoNT-A has been applied to various causes of USD, including dysfunctional voiding, Fowler’s syndrome, and poor relaxation of the external urethral sphincter. BoNT-A is believed to decrease urethral resistance via paralysis of the striated sphincter muscle through inhibition of acetylcholine release in the neuromuscular junction. Recovery of detrusor function in patients with detrusor underactivity combined with a hyperactive sphincter also suggested the potential neuromodulation effect of sphincteric BoNT-A injection. A large proportion of patients with different causes of USD report significant improvement in voiding after sphincteric BoNT-A injections. However, patient satisfaction might not increase with an improvement in the symptoms because of concomitant side effects including exacerbated incontinence, urinary urgency, and over-expectation. Nonetheless, in terms of efficacy and safety, BoNT-A is still a reasonable option for refractory voiding function. To date, studies focusing on urethral sphincter BoNT-A injections have been limited to the heterogeneous etiologies of USD. Further well-designed studies are thus needed. Full article
17 pages, 4111 KiB  
Article
Co-Occurrence of DON and Emerging Mycotoxins in Worldwide Finished Pig Feed and Their Combined Toxicity in Intestinal Cells
by Abdullah Khan Khoshal, Barbara Novak, Pascal G. P. Martin, Timothy Jenkins, Manon Neves, Gerd Schatzmayr, Isabelle P. Oswald and Philippe Pinton
Toxins 2019, 11(12), 727; https://doi.org/10.3390/toxins11120727 - 11 Dec 2019
Cited by 49 | Viewed by 5466
Abstract
Food and feed can be naturally contaminated by several mycotoxins, and concern about the hazard of exposure to mycotoxin mixtures is increasing. In this study, more than 800 metabolites were analyzed in 524 finished pig feed samples collected worldwide. Eighty-eight percent of the [...] Read more.
Food and feed can be naturally contaminated by several mycotoxins, and concern about the hazard of exposure to mycotoxin mixtures is increasing. In this study, more than 800 metabolites were analyzed in 524 finished pig feed samples collected worldwide. Eighty-eight percent of the samples were co-contaminated with deoxynivalenol (DON) and other regulated/emerging mycotoxins. The Top 60 emerging/regulated mycotoxins co-occurring with DON in pig feed shows that 48%, 13%, 8% and 12% are produced by Fusarium, Aspergillus, Penicillium and Alternaria species, respectively. Then, the individual and combined toxicity of DON and the 10 most prevalent emerging mycotoxins (brevianamide F, cyclo-(L-Pro-L-Tyr), tryptophol, enniatins A1, B, B1, emodin, aurofusarin, beauvericin and apicidin) was measured at three ratios corresponding to pig feed contamination. Toxicity was assessed by measuring the viability of intestinal porcine epithelial cells, IPEC-1, at 48-h. BRV-F, Cyclo and TRPT did not alter cell viability. The other metabolites were ranked in the following order of toxicity: apicidin > enniatin A1 > DON > beauvericin > enniatin B > enniatin B1 > emodin > aurofusarin. In most of the mixtures, combined toxicity was similar to the toxicity of DON alone. In terms of pig health, these results demonstrate that the co-occurrence of emerging mycotoxins that we tested with DON does not exacerbate toxicity. Full article
(This article belongs to the Special Issue Mycotoxins Occurence in Feed and Their Influence on Animal Health)
Show Figures

Figure 1

22 pages, 2633 KiB  
Article
Analysis of Pyrrolizidine Alkaloids in Queensland Honey: Using Low Temperature Chromatography to Resolve Stereoisomers and Identify Botanical Sources by UHPLC-MS/MS
by Natasha L. Hungerford, Steve J. Carter, Shalona R. Anuj, Benjamin L. L. Tan, Darina Hnatko, Christopher L. Martin, Elipsha Sharma, Mukan Yin, Thao T. P. Nguyen, Kevin J. Melksham and Mary T. Fletcher
Toxins 2019, 11(12), 726; https://doi.org/10.3390/toxins11120726 - 11 Dec 2019
Cited by 24 | Viewed by 5081
Abstract
Pyrrolizidine alkaloids (PAs) are a diverse group of plant secondary metabolites with known varied toxicity. Consumption of 1,2-unsaturated PAs has been linked to acute and chronic liver damage, carcinogenicity and death, in livestock and humans, making their presence in food of concern to [...] Read more.
Pyrrolizidine alkaloids (PAs) are a diverse group of plant secondary metabolites with known varied toxicity. Consumption of 1,2-unsaturated PAs has been linked to acute and chronic liver damage, carcinogenicity and death, in livestock and humans, making their presence in food of concern to food regulators in Australia and internationally. In this survey, honey samples sourced from markets and shops in Queensland (Australia), were analysed by high-resolution Orbitrap UHPLC-MS/MS for 30 common PAs. Relationships between the occurrence of pyrrolizidine alkaloids and the botanical origin of the honey are essential as pyrrolizidine alkaloid contamination at up to 3300 ng/g were detected. In this study, the predominant alkaloids detected were isomeric PAs, lycopsamine, indicine and intermedine, exhibiting identical MS/MS spectra, along with lesser amounts of each of their N-oxides. Crucially, chromatographic UHPLC conditions were optimised by operation at low temperature (5 °C) to resolve these key isomeric PAs. Such separation of these isomers by UHPLC, enabled the relative proportions of these PAs present in honey to be compared to alkaloid levels in suspect source plants. Overall plant pyrrolizidine alkaloid profiles were compared to those found in honey samples to help identify the most important plants responsible for honey contamination. The native Australian vines of Parsonsia spp. are proposed as a likely contributor to high levels of lycopsamine in many of the honeys surveyed. Botanical origin information such as this, gained via low temperature chromatographic resolution of isomeric PAs, will be very valuable in identifying region of origin for honey samples. Full article
Show Figures

Graphical abstract

16 pages, 1362 KiB  
Article
The Effect of a Combined Hydrogen Peroxide-MlrA Treatment on the Phytoplankton Community and Microcystin Concentrations in a Mesocosm Experiment in Lake Ludoš
by Dariusz Dziga, Nada Tokodi, Damjana Drobac, Mikołaj Kokociński, Adam Antosiak, Jakub Puchalski, Wojciech Strzałka, Mariusz Madej, Zorica Svirčev and Jussi Meriluoto
Toxins 2019, 11(12), 725; https://doi.org/10.3390/toxins11120725 - 11 Dec 2019
Cited by 17 | Viewed by 3341
Abstract
Harmful cyanobacteria and their toxic metabolites constitute a big challenge for the production of safe drinking water. Microcystins (MC), chemically stable hepatotoxic heptapeptides, have often been involved in cyanobacterial poisoning incidents. A desirable solution for cyanobacterial management in lakes and ponds would eliminate [...] Read more.
Harmful cyanobacteria and their toxic metabolites constitute a big challenge for the production of safe drinking water. Microcystins (MC), chemically stable hepatotoxic heptapeptides, have often been involved in cyanobacterial poisoning incidents. A desirable solution for cyanobacterial management in lakes and ponds would eliminate both excess cyanobacteria and the MC that they potentially produce and release upon lysis. Hydrogen peroxide (H2O2) has recently been advocated as an efficient means of lysing cyanobacteria in lakes and ponds, however H2O2 (at least when used at typical concentrations) cannot degrade MC in environmental waters. Therefore, mesocosm experiments combining the cyanobacteria-lysing effect of H2O2 and the MC-degrading capacity of the enzyme MlrA were set up in the highly eutrophic Lake Ludoš (Serbia). The H2O2 treatment decreased the abundance of the dominant cyanobacterial taxa Limnothrix sp., Aphanizomenon flos-aquae, and Planktothrix agardhii. The intracellular concentration of MC was reduced/eliminated by H2O2, yet the reduction of the extracellular MC could only be accomplished by supplementation with MlrA. However, as H2O2 was found to induce the expression of mcyB and mcyE genes, which are involved in MC biosynthesis, the use of H2O2 as a safe cyanobacteriocide still requires further investigation. In conclusion, the experiments showed that the combined use of H2O2 and MlrA is promising in the elimination of both excess cyanobacteria and their MC in environmental waters. Full article
Show Figures

Figure 1

11 pages, 1350 KiB  
Article
A Rapid Extraction Method Combined with a Monoclonal Antibody-Based Immunoassay for the Detection of Amatoxins
by Candace S. Bever, Robert M. Hnasko, Luisa W. Cheng and Larry H. Stanker
Toxins 2019, 11(12), 724; https://doi.org/10.3390/toxins11120724 - 11 Dec 2019
Cited by 13 | Viewed by 5349
Abstract
Amatoxins (AMAs) are lethal toxins found in a variety of mushroom species. Detection methods are needed to determine the occurrence of AMAs in mushroom species suspected in mushroom poisonings. In this manuscript, we report the generation of novel monoclonal antibodies (mAbs, AMA9G3 and [...] Read more.
Amatoxins (AMAs) are lethal toxins found in a variety of mushroom species. Detection methods are needed to determine the occurrence of AMAs in mushroom species suspected in mushroom poisonings. In this manuscript, we report the generation of novel monoclonal antibodies (mAbs, AMA9G3 and AMA9C12) and the development of a competitive, enzyme-linked immunosorbent assay (cELISA) that is sensitive at 1 ng mL−1 and shows selectivity for α-amanitin (α-AMA) and γ-amanitin (γ-AMA), and less for β-amanitin (β-AMA). In order to decrease the overall time needed for analysis, the extraction procedure for mushrooms was also simplified. A rapid (1 min) extraction procedure of AMAs using solvents as simple as water alone was successfully demonstrated using Amanita mushrooms. Together, the extraction method and the mAb-based ELISA represent a simple and rapid method that readily detects AMAs extracted from mushroom samples. Full article
Show Figures

Graphical abstract

18 pages, 2996 KiB  
Article
Metabolome Variation between Strains of Microcystis aeruginosa by Untargeted Mass Spectrometry
by Marianne Racine, Ammar Saleem and Frances R. Pick
Toxins 2019, 11(12), 723; https://doi.org/10.3390/toxins11120723 - 11 Dec 2019
Cited by 10 | Viewed by 4067
Abstract
Cyanobacteria are notorious for their potential to produce hepatotoxic microcystins (MCs), but other bioactive compounds synthesized in the cells could be as toxic, and thus present interest for characterization. Ultra performance liquid chromatography and high-resolution accurate mass spectrometry (UPLC-QTOF-MS/MS) combined with untargeted analysis [...] Read more.
Cyanobacteria are notorious for their potential to produce hepatotoxic microcystins (MCs), but other bioactive compounds synthesized in the cells could be as toxic, and thus present interest for characterization. Ultra performance liquid chromatography and high-resolution accurate mass spectrometry (UPLC-QTOF-MS/MS) combined with untargeted analysis was used to compare the metabolomes of five different strains of the common bloom-forming cyanobacterium, Microcystis aeruginosa. Even in microcystin-producing strains, other classes of oligopeptides including cyanopeptolins, aeruginosins, and aerucyclamides, were often the more dominant compounds. The distinct and large variation between strains of the same widespread species highlights the need to characterize the metabolome of a larger number of cyanobacteria, especially as several metabolites other than microcystins can affect ecological and human health. Full article
Show Figures

Figure 1

20 pages, 2472 KiB  
Article
Ciguatoxin Occurrence in Food-Web Components of a Cuban Coral Reef Ecosystem: Risk-Assessment Implications
by Lisbet Díaz-Asencio, Rachel J. Clausing, Mark Vandersea, Donaida Chamero-Lago, Miguel Gómez-Batista, Joan I. Hernández-Albernas, Nicolas Chomérat, Gabriel Rojas-Abrahantes, R. Wayne Litaker, Patricia Tester, Jorge Diogène, Carlos M. Alonso-Hernández and Marie-Yasmine Dechraoui Bottein
Toxins 2019, 11(12), 722; https://doi.org/10.3390/toxins11120722 - 11 Dec 2019
Cited by 32 | Viewed by 4774
Abstract
In Cuba, ciguatera poisoning associated with fish consumption is the most commonly occurring non-bacterial seafood-borne illness. Risk management through fish market regulation has existed in Cuba for decades and consists of bans on selected species above a certain weight; however, the actual occurrence [...] Read more.
In Cuba, ciguatera poisoning associated with fish consumption is the most commonly occurring non-bacterial seafood-borne illness. Risk management through fish market regulation has existed in Cuba for decades and consists of bans on selected species above a certain weight; however, the actual occurrence of ciguatoxins (CTXs) in seafood has never been verified. From this food safety risk management perspective, a study site locally known to be at risk for ciguatera was selected. Analysis of the epiphytic dinoflagellate community identified the microalga Gambierdiscus. Gambierdiscus species included six of the seven species known to be present in Cuba (G. caribaeus, G. belizeanus, G. carpenteri, G. carolinianus, G. silvae, and F. ruetzleri). CTX-like activity in invertebrates, herbivorous and carnivorous fishes were analyzed with a radioligand receptor-binding assay and, for selected samples, with the N2A cell cytotoxicity assay. CTX activity was found in 80% of the organisms sampled, with toxin values ranging from 2 to 8 ng CTX3C equivalents g−1 tissue. Data analysis further confirmed CTXs trophic magnification. This study constitutes the first finding of CTX-like activity in marine organisms in Cuba and in herbivorous fish in the Caribbean. Elucidating the structure–activity relationship and toxicology of CTX from the Caribbean is needed before conclusions may be drawn about risk exposure in Cuba and the wider Caribbean. Full article
(This article belongs to the Special Issue Marine Toxins Detection)
Show Figures

Figure 1

20 pages, 2442 KiB  
Article
Proteo-Transcriptomic Characterization of the Venom from the Endoparasitoid Wasp Pimpla turionellae with Aspects on Its Biology and Evolution
by Rabia Özbek, Natalie Wielsch, Heiko Vogel, Günter Lochnit, Frank Foerster, Andreas Vilcinskas and Björn Marcus von Reumont
Toxins 2019, 11(12), 721; https://doi.org/10.3390/toxins11120721 - 10 Dec 2019
Cited by 18 | Viewed by 6055
Abstract
Within mega-diverse Hymenoptera, non-aculeate parasitic wasps represent 75% of all hymenopteran species. Their ovipositor dual-functionally injects venom and employs eggs into (endoparasitoids) or onto (ectoparasitoids) diverse host species. Few endoparasitoid wasps such as Pimpla turionellae paralyze the host and suppress its immune responses, [...] Read more.
Within mega-diverse Hymenoptera, non-aculeate parasitic wasps represent 75% of all hymenopteran species. Their ovipositor dual-functionally injects venom and employs eggs into (endoparasitoids) or onto (ectoparasitoids) diverse host species. Few endoparasitoid wasps such as Pimpla turionellae paralyze the host and suppress its immune responses, such as encapsulation and melanization, to guarantee their offspring’s survival. Here, the venom and its possible biology and function of P. turionellae are characterized in comparison to the few existing proteo-transcriptomic analyses on parasitoid wasp venoms. Multiple transcriptome assembly and custom-tailored search and annotation strategies were applied to identify parasitoid venom proteins. To avoid false-positive hits, only transcripts were finally discussed that survived strict filter settings, including the presence in the proteome and higher expression in the venom gland. P. turionella features a venom that is mostly composed of known, typical parasitoid enzymes, cysteine-rich peptides, and other proteins and peptides. Several venom proteins were identified and named, such as pimplin2, 3, and 4. However, the specification of many novel candidates remains difficult, and annotations ambiguous. Interestingly, we do not find pimplin, a paralytic factor in Pimpla hypochondriaca, but instead a new cysteine inhibitor knot (ICK) family (pimplin2), which is highly similar to known, neurotoxic asilid1 sequences from robber flies. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

16 pages, 1096 KiB  
Review
RTX Toxins Ambush Immunity’s First Cellular Responders
by Laura C. Ristow and Rodney A. Welch
Toxins 2019, 11(12), 720; https://doi.org/10.3390/toxins11120720 - 10 Dec 2019
Cited by 19 | Viewed by 4399
Abstract
The repeats-in-toxin (RTX) family represents a unique class of bacterial exoproteins. The first family members described were toxins from Gram-negative bacterial pathogens; however, additional members included exoproteins with diverse functions. Our review focuses on well-characterized RTX family toxins from Aggregatibacter actinomycetemcomitans (LtxA), Mannheimia [...] Read more.
The repeats-in-toxin (RTX) family represents a unique class of bacterial exoproteins. The first family members described were toxins from Gram-negative bacterial pathogens; however, additional members included exoproteins with diverse functions. Our review focuses on well-characterized RTX family toxins from Aggregatibacter actinomycetemcomitans (LtxA), Mannheimia haemolytica (LktA), Bordetella pertussis (CyaA), uropathogenic Escherichia coli (HlyA), and Actinobacillus pleuropneumoniae (ApxIIIA), as well as the studies that have honed in on a single host cell receptor for RTX toxin interactions, the β2 integrins. The β2 integrin family is composed of heterodimeric members with four unique alpha subunits and a single beta subunit. β2 integrins are only found on leukocytes, including neutrophils and monocytes, the first responders to inflammation following bacterial infection. The LtxA, LktA, HlyA, and ApxIIIA toxins target the shared beta subunit, thereby targeting all types of leukocytes. Specific β2 integrin family domains are required for the RTX toxin’s cytotoxic activity and are summarized here. Research examining the domains of the RTX toxins required for cytotoxic and hemolytic activity is also summarized. RTX toxins attack and kill phagocytic immune cells expressing a single integrin family, providing an obvious advantage to the pathogen. The critical question that remains, can the specificity of the RTX-β2 integrin interaction be therapeutically targeted? Full article
(This article belongs to the Special Issue RTX Toxins)
Show Figures

Figure 1

16 pages, 505 KiB  
Review
RTX Toxins of Animal Pathogens and Their Role as Antigens in Vaccines and Diagnostics
by Joachim Frey
Toxins 2019, 11(12), 719; https://doi.org/10.3390/toxins11120719 - 10 Dec 2019
Cited by 21 | Viewed by 4183
Abstract
Exotoxins play a central role in the pathologies caused by most major bacterial animal pathogens. The large variety of vertebrate and invertebrate hosts in the animal kingdom is reflected by a large variety of bacterial pathogens and toxins. The group of repeats in [...] Read more.
Exotoxins play a central role in the pathologies caused by most major bacterial animal pathogens. The large variety of vertebrate and invertebrate hosts in the animal kingdom is reflected by a large variety of bacterial pathogens and toxins. The group of repeats in the structural toxin (RTX) toxins is particularly abundant among bacterial pathogens of animals. Many of these toxins are described as hemolysins due to their capacity to lyse erythrocytes in vitro. Hemolysis by RTX toxins is due to the formation of cation-selective pores in the cell membrane and serves as an important marker for virulence in bacterial diagnostics. However, their physiologic relevant targets are leukocytes expressing β2 integrins, which act as specific receptors for RTX toxins. For various RTX toxins, the binding to the CD18 moiety of β2 integrins has been shown to be host specific, reflecting the molecular basis of the host range of RTX toxins expressed by bacterial pathogens. Due to the key role of RTX toxins in the pathogenesis of many bacteria, antibodies directed against specific RTX toxins protect against disease, hence, making RTX toxins valuable targets in vaccine research and development. Due to their specificity, several structural genes encoding for RTX toxins have proven to be essential in modern diagnostic applications in veterinary medicine. Full article
(This article belongs to the Special Issue RTX Toxins)
Show Figures

Graphical abstract

18 pages, 4714 KiB  
Article
Regulation of Morphology, Aflatoxin Production, and Virulence of Aspergillus flavus by the Major Nitrogen Regulatory Gene areA
by Opemipo Esther Fasoyin, Kunlong Yang, Mengguang Qiu, Bin Wang, Sen Wang and Shihua Wang
Toxins 2019, 11(12), 718; https://doi.org/10.3390/toxins11120718 - 10 Dec 2019
Cited by 26 | Viewed by 3776
Abstract
Aspergillus flavus is a renowned plant, animal and human pathogen. areA is a global nitrogen regulatory gene of the GATA transcription factor family, shown to be the major nitrogen regulator. In this study, we identified areA in A. flavus and studied its function. [...] Read more.
Aspergillus flavus is a renowned plant, animal and human pathogen. areA is a global nitrogen regulatory gene of the GATA transcription factor family, shown to be the major nitrogen regulator. In this study, we identified areA in A. flavus and studied its function. The AreA protein contained a signatory zinc finger domain, which is extremely conserved across fungal species. Gene deletion (ΔareA) and over-expression (OE::areA) strains were constructed by homologous recombination to elucidate the role of areA in A. flavus. The ΔareA strain was unable to efficiently utilize secondary nitrogen sources for growth of A. flavus, and it had poorly developed conidiophores, when observed on complete medium, resulting in the production of significantly less conidia than the wild-type strain (WT). Aflatoxin B1 (AFB1) production was reduced in ΔareA compared with the WT strain in most conditions tested, and ΔareA had impaired virulence in peanut seeds. areA also played important roles in the sensitivity of A. flavus to osmotic, cell wall and oxidative stresses. Hence, areA was found to be important for the growth, aflatoxin production and pathogenicity of A. flavus. This work sheds light on the function of areA in the regulation of the nitrogen metabolism of A. flavus, and consequently aims at providing new ways for controlling the crossover pathogen, A. flavus. Full article
(This article belongs to the Special Issue Aflatoxins: Food Sources, Occurrence and Toxicological Effects)
Show Figures

Figure 1

14 pages, 4810 KiB  
Article
PirABVP Toxin Binds to Epithelial Cells of the Digestive Tract and Produce Pathognomonic AHPND Lesions in Germ-Free Brine Shrimp
by Vikash Kumar, Lobke De Bels, Liesbeth Couck, Kartik Baruah, Peter Bossier and Wim Van den Broeck
Toxins 2019, 11(12), 717; https://doi.org/10.3390/toxins11120717 - 9 Dec 2019
Cited by 33 | Viewed by 5388
Abstract
Acute hepatopancreatic necrosis disease (AHPND), a newly emergent farmed penaeid shrimp bacterial disease originally known as early mortality syndrome (EMS), is causing havoc in the shrimp industry. The causative agent of AHPND was found to be a specific strain of bacteria, e.g., Vibrio [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), a newly emergent farmed penaeid shrimp bacterial disease originally known as early mortality syndrome (EMS), is causing havoc in the shrimp industry. The causative agent of AHPND was found to be a specific strain of bacteria, e.g., Vibrio and Shewanella sps., that contains pVA1 plasmid (63–70 kb) encoding the binary PirAVP and PirBVP toxins. The PirABVP and toxins are the primary virulence factors of AHPND-causing bacteria that mediates AHPND and mortality in shrimp. Hence, in this study using a germ-free brine shrimp model system, we evaluated the PirABVP toxin-mediated infection process at cellular level, including toxin attachment and subsequent toxin-induced damage to the digestive tract. The results showed that, PirABVP toxin binds to epithelial cells of the digestive tract of brine shrimp larvae and produces characteristic symptoms of AHPND. In the PirABVP-challenged brine shrimp larvae, shedding or sloughing of enterocytes in the midgut and hindgut regions was regularly visualized, and the intestinal lumen was filled with moderately electron-dense cells of variable shapes and sizes. In addition, the observed cellular debris in the intestinal lumen of the digestive tract was found to be of epithelial cell origin. The detailed morphology of the digestive tract demonstrates further that the PirABVP toxin challenge produces focal to extensive necrosis and damages epithelial cells in the midgut and hindgut regions, resulting in pyknosis, cell vacuolisation, and mitochondrial and rough endoplasmic reticulum (RER) damage to different degrees. Taken together, our study provides substantial evidence that PirABVP toxins bind to the digestive tract of brine shrimp larvae and seem to be responsible for generating characteristic AHPND lesions and damaging enterocytes in the midgut and hindgut regions. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

14 pages, 281 KiB  
Article
Knowledge, Attitude and Practice of Malawian Farmers on Pre- and Post-Harvest Crop Management to Mitigate Aflatoxin Contamination in Groundnut, Maize and Sorghum—Implication for Behavioral Change
by Seetha Anitha, Takuji W. Tsusaka, Samuel M.C. Njoroge, Nelson Kumwenda, Lizzie Kachulu, Joseph Maruwo, Norah Machinjiri, Rosemary Botha, Harry W. Msere, Juma Masumba, Angela Tavares, Geoffrey M Heinrich, Moses Siambi and Patrick Okori
Toxins 2019, 11(12), 716; https://doi.org/10.3390/toxins11120716 - 9 Dec 2019
Cited by 24 | Viewed by 5458
Abstract
A knowledge, attitude and practice (KAP) study was conducted in three districts of Malawi to test whether the training had resulted in increased knowledge and adoption of recommended pre- and post-harvest crop management practices, and their contribution to reducing aflatoxin contamination in groundnut, [...] Read more.
A knowledge, attitude and practice (KAP) study was conducted in three districts of Malawi to test whether the training had resulted in increased knowledge and adoption of recommended pre- and post-harvest crop management practices, and their contribution to reducing aflatoxin contamination in groundnut, maize and sorghum. The study was conducted with 900 farmers at the baseline and 624 farmers at the end-line, while 726 and 696 harvested crop samples were collected for aflatoxin testing at the baseline and end-line, respectively. Results show that the knowledge and practice of pre- and post-harvest crop management for mitigating aflatoxin were inadequate among the farmers at the baseline but somewhat improved after the training as shown at the end-line. As a result, despite unfavorable weather, the mean aflatoxin contamination level in their grain samples decreased from 83.6 to 55.8 ppb (p < 0.001). However, it was also noted that increased knowledge did not significantly change farmers’ attitude toward not consuming grade-outs because of economic incentive incompatibility, leaving potential for improving the practices further. This existing gap in the adoption of aflatoxin mitigation practices calls for approaches that take into account farmers’ needs and incentives to attain sustainable behavioral change. Full article
(This article belongs to the Special Issue Mycotoxins in Food: Origin and Management of Risk)
15 pages, 325 KiB  
Article
Selected Trichothecenes in Barley Malt and Beer from Poland and an Assessment of Dietary Risks Associated with their Consumption
by Edyta Ksieniewicz-Woźniak, Marcin Bryła, Agnieszka Waśkiewicz, Tomoya Yoshinari and Krystyna Szymczyk
Toxins 2019, 11(12), 715; https://doi.org/10.3390/toxins11120715 - 9 Dec 2019
Cited by 20 | Viewed by 3319
Abstract
Eighty-seven samples of malt from several Polish malting plants and 157 beer samples from the beer available on the Polish market (in 2018) were tested for Fusarium mycotoxins (deoxynivalenol (DON), nivalenol (NIV)), and their modified forms ((deoxynivalenol-3-glucoside (DON-3G), nivalenol-3-glucoside (NIV-3G), 3-acetyldeoxynivalenol (3-AcDON)). DON [...] Read more.
Eighty-seven samples of malt from several Polish malting plants and 157 beer samples from the beer available on the Polish market (in 2018) were tested for Fusarium mycotoxins (deoxynivalenol (DON), nivalenol (NIV)), and their modified forms ((deoxynivalenol-3-glucoside (DON-3G), nivalenol-3-glucoside (NIV-3G), 3-acetyldeoxynivalenol (3-AcDON)). DON and its metabolite, DON-3G, were found the most, among the samples analyzed; DON and DON-3G were present in 90% and 91% of malt samples, and in 97% and 99% of beer samples, respectively. NIV was found in 24% of malt samples and in 64% of beer samples, and NIV-3G was found in 48% of malt samples and 39% of beer samples. In the malt samples, the mean concentration of DON was 52.9 µg/kg (range: 5.3–347.6 µg/kg) and that of DON-3G was 74.1 µg/kg (range: 4.4–410.3 µg/kg). In the beer samples, the mean concentration of DON was 12.3 µg/L (range: 1.2–156.5 µg/L) and that of DON-3G was 7.1 µg/L (range: 0.6–58.4 µg/L). The concentrations of other tested mycotoxins in the samples of malt and beer were several times lower. The risk of exposure to the tested mycotoxins, following the consumption of beer in Poland, was assessed. The corresponding probable daily intakes (PDIs) remained a small fraction of the tolerable daily intake (TDI). However, in the improbable worst-case scenario, in which every beer bottle consumed would be contaminated with mycotoxins present at the highest level observed among the analyzed beer samples, the PDI would exceed the TDI for DON and its metabolite after the consumption of a single bottle (0.5 L) of beer. Full article
40 pages, 2280 KiB  
Review
Structural Diversity, Characterization and Toxicology of Microcystins
by Noureddine Bouaïcha, Christopher O. Miles, Daniel G. Beach, Zineb Labidi, Amina Djabri, Naila Yasmine Benayache and Tri Nguyen-Quang
Toxins 2019, 11(12), 714; https://doi.org/10.3390/toxins11120714 - 7 Dec 2019
Cited by 282 | Viewed by 12196
Abstract
Hepatotoxic microcystins (MCs) are the most widespread class of cyanotoxins and the one that has most often been implicated in cyanobacterial toxicosis. One of the main challenges in studying and monitoring MCs is the great structural diversity within the class. The full chemical [...] Read more.
Hepatotoxic microcystins (MCs) are the most widespread class of cyanotoxins and the one that has most often been implicated in cyanobacterial toxicosis. One of the main challenges in studying and monitoring MCs is the great structural diversity within the class. The full chemical structure of the first MC was elucidated in the early 1980s and since then, the number of reported structural analogues has grown steadily and continues to do so, thanks largely to advances in analytical methodology. The structures of some of these analogues have been definitively elucidated after chemical isolation using a combination of techniques including nuclear magnetic resonance, amino acid analysis, and tandem mass spectrometry (MS/MS). Others have only been tentatively identified using liquid chromatography-MS/MS without chemical isolation. An understanding of the structural diversity of MCs, the genetic and environmental controls for this diversity and the impact of structure on toxicity are all essential to the ongoing study of MCs across several scientific disciplines. However, because of the diversity of MCs and the range of approaches that have been taken for characterizing them, comprehensive information on the state of knowledge in each of these areas can be challenging to gather. We have conducted an in-depth review of the literature surrounding the identification and toxicity of known MCs and present here a concise review of these topics. At present, at least 279 MCs have been reported and are tabulated here. Among these, about 20% (55 of 279) appear to be the result of chemical or biochemical transformations of MCs that can occur in the environment or during sample handling and extraction of cyanobacteria, including oxidation products, methyl esters, or post-biosynthetic metabolites. The toxicity of many MCs has also been studied using a range of different approaches and a great deal of variability can be observed between reported toxicities, even for the same congener. This review will help clarify the current state of knowledge on the structural diversity of MCs as a class and the impacts of structure on toxicity, as well as to identify gaps in knowledge that should be addressed in future research. Full article
Show Figures

Figure 1

23 pages, 738 KiB  
Review
Critical Analysis of Neuronal Cell and the Mouse Bioassay for Detection of Botulinum Neurotoxins
by Sabine Pellett, William H. Tepp and Eric A. Johnson
Toxins 2019, 11(12), 713; https://doi.org/10.3390/toxins11120713 - 7 Dec 2019
Cited by 17 | Viewed by 5666
Abstract
Botulinum Neurotoxins (BoNTs) are a large protein family that includes the most potent neurotoxins known to humankind. BoNTs delivered locally in humans at low doses are widely used pharmaceuticals. Reliable and quantitative detection of BoNTs is of paramount importance for the clinical diagnosis [...] Read more.
Botulinum Neurotoxins (BoNTs) are a large protein family that includes the most potent neurotoxins known to humankind. BoNTs delivered locally in humans at low doses are widely used pharmaceuticals. Reliable and quantitative detection of BoNTs is of paramount importance for the clinical diagnosis of botulism, basic research, drug development, potency determination, and detection in clinical, environmental, and food samples. Ideally, a definitive assay for BoNT should reflect the activity of each of the four steps in nerve intoxication. The in vivo mouse bioassay (MBA) is the ‘gold standard’ for the detection of BoNTs. The MBA is sensitive, robust, semi-quantitative, and reliable within its sensitivity limits. Potential drawbacks with the MBA include assay-to-assay potency variations, especially between laboratories, and false positives or negatives. These limitations can be largely avoided by careful planning and performance. Another detection method that has gained importance in recent years for research and potency determination of pharmaceutical BoNTs is cell-based assays, as these assays can be highly sensitive, quantitative, human-specific, and detect fully functional holotoxins at physiologically relevant concentrations. A myriad of other in vitro BoNT detection methods exist. This review focuses on critical factors and assay limitations of the mouse bioassay and cell-based assays for BoNT detection. Full article
(This article belongs to the Special Issue Characterization and Quantitative Analysis of Botulinum Neurotoxin)
Show Figures

Figure 1

15 pages, 1906 KiB  
Article
Physiological Effects on Coexisting Microalgae of the Allelochemicals Produced by the Bloom-Forming Cyanobacteria Synechococcus sp. and Nodularia Spumigena
by Sylwia Śliwińska-Wilczewska, Aldo Barreiro Felpeto, Katarzyna Możdżeń, Vitor Vasconcelos and Adam Latała
Toxins 2019, 11(12), 712; https://doi.org/10.3390/toxins11120712 - 6 Dec 2019
Cited by 9 | Viewed by 3174
Abstract
Only a few studies have documented the physiological effects of allelopathy from cyanobacteria against coexisting microalgae. We investigated the allelopathic ability of the bloom-forming cyanobacteria Synechococcus sp. and Nodularia spumigena filtrates on several aspects related to the physiology of the target species: population [...] Read more.
Only a few studies have documented the physiological effects of allelopathy from cyanobacteria against coexisting microalgae. We investigated the allelopathic ability of the bloom-forming cyanobacteria Synechococcus sp. and Nodularia spumigena filtrates on several aspects related to the physiology of the target species: population growth, cell morphology, and several indexes of photosynthesis rate and respiration. The target species were the following: two species of green algae (Oocystis submarina, Chlorella vulgaris) and two species of diatoms (Bacillaria paxillifer, Skeletonema marinoi). These four species coexist in the natural environment with the employed strains of Synechococcus sp. and N. spumigena employed. The tests were performed with single and repeated addition of cyanobacterial cell-free filtrate. We also tested the importance of the growth phase in the strength of the allelopathic effect. The negative effects of both cyanobacteria were the strongest with repeated exudates addition, and generally, Synechococcus sp. and N. spumigena were allelopathic only in the exponential growth phase. O. submarina was not negatively affected by Synechococcus filtrates in any of the parameters studied, while C. vulgaris, B. paxillifer, and S. marinoi were affected in several ways. N. spumigena was characterized by a stronger allelopathic activity than Synechococcus sp., showing a negative effect on all target species. The highest decline in growth, as well as the most apparent cell physical damage, was observed for the diatom S. marinoi. Our findings suggest that cyanobacterial allelochemicals are associated with the cell physical damage, as well as a reduced performance in respiration and photosynthesis system in the studied microalgae which cause the inhibition of the population growth. Moreover, our study has shown that some biotic factors that increase the intensity of allelopathic effects may also alter the ratio between bloom-forming cyanobacteria and some phytoplankton species that occur in the same aquatic ecosystem. Full article
(This article belongs to the Special Issue Biological Role of Cyanotoxins: Experimental and In-Field Evidence)
Show Figures

Figure 1

14 pages, 306 KiB  
Article
Coevolution of Snake Venom Toxic Activities and Diet: Evidence that Ecological Generalism Favours Toxicological Diversity
by Emma-Louise Davies and Kevin Arbuckle
Toxins 2019, 11(12), 711; https://doi.org/10.3390/toxins11120711 - 6 Dec 2019
Cited by 45 | Viewed by 7160
Abstract
Snake venom evolution is typically considered to be predominantly driven by diet-related selection pressures. Most evidence for this is based on lethality to prey and non-prey species and on the identification of prey specific toxins. Since the broad toxicological activities (e.g., neurotoxicity, coagulotoxicity, [...] Read more.
Snake venom evolution is typically considered to be predominantly driven by diet-related selection pressures. Most evidence for this is based on lethality to prey and non-prey species and on the identification of prey specific toxins. Since the broad toxicological activities (e.g., neurotoxicity, coagulotoxicity, etc.) sit at the interface between molecular toxinology and lethality, these classes of activity may act as a key mediator in coevolutionary interactions between snakes and their prey. Indeed, some recent work has suggested that variation in these functional activities may be related to diet as well, but previous studies have been limited in geographic and/or taxonomic scope. In this paper, we take a phylogenetic comparative approach to investigate relationships between diet and toxicological activity classes on a global scale across caenophidian snakes, using the clinically oriented database at toxinology.com. We generally find little support for specific prey types selecting for particular toxicological effects except that reptile-feeders are more likely to be neurotoxic. We find some support for endothermic prey (with higher metabolic rates) influencing toxic activities, but differently from previous suggestions in the literature. More broadly, we find strong support for a general effect of increased diversity of prey on the diversity of toxicological effects of snake venom. Hence, we provide evidence that selection pressures on the toxicological activities of snake venom has largely been driven by prey diversity rather than specific types of prey. These results complement and extend previous work to suggest that specific matching of venom characteristics to prey may occur at the molecular level and translate into venom lethality, but the functional link between those two is not constrained to a particular toxicological route. Full article
(This article belongs to the Special Issue Evolutionary Ecology of Venom)
13 pages, 586 KiB  
Article
Efficacy of the Combined Protective Cultures of Penicillium chrysogenum and Debaryomyces hansenii for the Control of Ochratoxin A Hazard in Dry-Cured Ham
by Eva Cebrián, Mar Rodríguez, Belén Peromingo, Elena Bermúdez and Félix Núñez
Toxins 2019, 11(12), 710; https://doi.org/10.3390/toxins11120710 - 5 Dec 2019
Cited by 34 | Viewed by 3297
Abstract
The ecological conditions during the ripening of dry-cured ham favour the development of moulds on its surface, being frequently the presence of Penicillium nordicum, a producer of ochratoxin A (OTA). Biocontrol using moulds and yeasts usually found in dry-cured ham is a [...] Read more.
The ecological conditions during the ripening of dry-cured ham favour the development of moulds on its surface, being frequently the presence of Penicillium nordicum, a producer of ochratoxin A (OTA). Biocontrol using moulds and yeasts usually found in dry-cured ham is a promising strategy to minimize this hazard. The aim of this work is to evaluate the effect of previously selected Debaryomyces hansenii and Penicillium chrysogenum strains on growth, OTA production, and relative expression of genes involved in the OTA biosynthesis by P. nordicum. P. nordicum was inoculated against the protective cultures individually and combined on dry-cured ham for 21 days at 20 °C. None of the treatments reduced the growth of P. nordicum, but all of them decreased OTA concentration. The lower production of OTA could be related to significant repression of the relative expression of otapksPN and otanpsPN genes of P. nordicum. The efficacy of the combined protective cultures was tested in 24 dry-cured hams in industrial ripening (an 8 month-long production). OTA was detected in nine of the 12 dry-cured hams in the batch inoculated only with P. nordicum. However, in the batch inoculated with both P. nordicum and the combined protective culture, a considerable reduction of OTA contamination was observed. In conclusion, although the efficacy of individual use P. chrysogenum is great, the combination with D. hansenii enhances its antifungal activity and could be proposed as a mixed protective culture to control the hazard of the presence of OTA in dry-cured ham. Full article
(This article belongs to the Special Issue Novel Approaches to Minimising Mycotoxin Contamination)
Show Figures

Figure 1

14 pages, 802 KiB  
Article
Occurrence and Risk Assessment of Fumonisin B1 and B2 Mycotoxins in Maize-Based Food Products in Hungary
by Andrea Zentai, Mária Szeitzné-Szabó, Gábor Mihucz, Nóra Szeli, András Szabó and Melinda Kovács
Toxins 2019, 11(12), 709; https://doi.org/10.3390/toxins11120709 - 5 Dec 2019
Cited by 22 | Viewed by 3774
Abstract
Fumonisins are toxic secondary metabolites produced mainly by Fusarium verticillioides and Fusarium proliferatum. Their toxicity was evaluated, and health-based guidance values established on the basis of both Joint FAO/WHO Expert Committee on Food Additives (JECFA) and European Food Safety Authority (EFSA) recommendations. This [...] Read more.
Fumonisins are toxic secondary metabolites produced mainly by Fusarium verticillioides and Fusarium proliferatum. Their toxicity was evaluated, and health-based guidance values established on the basis of both Joint FAO/WHO Expert Committee on Food Additives (JECFA) and European Food Safety Authority (EFSA) recommendations. This study presents the results of fumonisin analyses in different maize- and rice-based food products in Hungary and the potential health risk arising from their dietary intake. In total, 326 samples were measured in 2017 and 2018 to determine fumonisins B1 and B2 levels. Three-day dietary record data were collected from 4992 consumers, in 2009. For each food category, the average concentration values were multiplied by the relevant individual consumption data, and the results were compared to the reference values. With respect to the maximum limits, one maize flour, two maize grits, and two samples of other maize-based, snack-like products had total fumonisin content minimally exceeding the EU regulatory limit. The mean daily intake for all maize-product consumers was 0.045–0.120 µg/kg bw/day. The high intake (95 percentile) ranged between 0.182 and 0.396 µg/kg bw/day, well below the 1 µg/kg bw/day tolerable daily intake (TDI) established by EFSA. While the intake calculations resulted in comforting results, maize-based products may indeed be contaminated by fumonisins. Therefore, frequent monitoring of fumonisins’ levels and evaluation of their intakes using the best available data are recommended. Full article
(This article belongs to the Special Issue Mycotoxins in Feed and Food Chain: Present Status and Future Concerns)
Show Figures

Figure 1

13 pages, 2415 KiB  
Article
Identification and Characterization of ShSPI, a Kazal-Type Elastase Inhibitor from the Venom of Scolopendra Hainanum
by Ning Luan, Qiyu Zhao, Zilei Duan, Mengyao Ji, Meichen Xing, Tengyu Zhu, James Mwangi, Mingqiang Rong, Jiangxin Liu and Ren Lai
Toxins 2019, 11(12), 708; https://doi.org/10.3390/toxins11120708 - 5 Dec 2019
Cited by 8 | Viewed by 3347
Abstract
Elastase is a globular glycoprotein and belongs to the chymotrypsin family. It is involved in several inflammatory cascades on the basis of cleaving the important connective tissue protein elastin, and is strictly regulated to a balance by several endogenous inhibitors. When elastase and [...] Read more.
Elastase is a globular glycoprotein and belongs to the chymotrypsin family. It is involved in several inflammatory cascades on the basis of cleaving the important connective tissue protein elastin, and is strictly regulated to a balance by several endogenous inhibitors. When elastase and its inhibitors are out of balance, severe diseases will develop, especially those involved in the cardiopulmonary system. Much attention has been attracted in seeking innovative elastase inhibitors and various advancements have been taken on clinical trials of these inhibitors. Natural functional peptides from venomous animals have been shown to have anti-protease properties. Here, we identified a kazal-type serine protease inhibitor named ShSPI from the cDNA library of the venom glands of Scolopendra hainanum. ShSPI showed significant inhibitory effects on porcine pancreatic elastase and human neutrophils elastase with Ki values of 225.83 ± 20 nM and 12.61 ± 2 nM, respectively. Together, our results suggest that ShSPI may be an excellent candidate to develop a drug for cardiopulmonary diseases. Full article
(This article belongs to the Special Issue Animal Venoms and Their Components: Molecular Mechanisms of Action)
Show Figures

Figure 1

25 pages, 1084 KiB  
Review
Botulinum Toxin Therapy Combined with Rehabilitation for Stroke: A Systematic Review of Effect on Motor Function
by Takatoshi Hara, Ryo Momosaki, Masachika Niimi, Naoki Yamada, Hiroyoshi Hara and Masahiro Abo
Toxins 2019, 11(12), 707; https://doi.org/10.3390/toxins11120707 - 5 Dec 2019
Cited by 30 | Viewed by 7004
Abstract
Aim: The purpose of this study was to examine the effectiveness of botulinum toxin A (BoNT-A) therapy combined with rehabilitation on motor function in post-stroke patients. Methods: The following sources up to December 31, 2018, were searched from inception for articles in English: [...] Read more.
Aim: The purpose of this study was to examine the effectiveness of botulinum toxin A (BoNT-A) therapy combined with rehabilitation on motor function in post-stroke patients. Methods: The following sources up to December 31, 2018, were searched from inception for articles in English: Pubmed, Scopus, CINAHL, Embase, PsycINFO, and CENTRAL. Trials using injections of BoNT-A for upper and lower limb rehabilitation were examined. We excluded studies that were not performed for rehabilitation or were not evaluated for motor function. Results: Twenty-six studies were included. In addition to rehabilitation, nine studies used adjuvant treatment to improve spasticity or improve motor function. In the upper limbs, two of 14 articles indicated that significant improvement in upper limb motor function was observed compared to the control group. In the lower limbs, seven of 14 articles indicated that significant improvement in lower limb motor function was observed compared to the control group. Conclusions: The effect of combined with rehabilitation is limited after stroke, and there is not sufficient evidence, but results suggest that BoNT-A may help to improve motor function. In future studies, the establishment of optimal rehabilitation and evaluation times of BoNT-A treatment will be necessary for improving motor function and spasticity. Full article
Show Figures

Figure 1

19 pages, 790 KiB  
Review
Programmed Cell Death-Like and Accompanying Release of Microcystin in Freshwater Bloom-Forming Cyanobacterium Microcystis: From Identification to Ecological Relevance
by Chenlin Hu and Piotr Rzymski
Toxins 2019, 11(12), 706; https://doi.org/10.3390/toxins11120706 - 4 Dec 2019
Cited by 47 | Viewed by 9431
Abstract
Microcystis is the most common freshwater bloom-forming cyanobacterium. Its massive blooms not only adversely affect the functionality of aquatic ecosystems, but are also associated with the production of microcystins (MCs), a group of potent toxins that become a threat to public health when [...] Read more.
Microcystis is the most common freshwater bloom-forming cyanobacterium. Its massive blooms not only adversely affect the functionality of aquatic ecosystems, but are also associated with the production of microcystins (MCs), a group of potent toxins that become a threat to public health when cell-bound MCs are significantly released from the dying Microcystis into the water column. Managing Microcystis blooms thus requires sufficient knowledge regarding both the cell death modes and the release of toxins. Recently, more and more studies have demonstrated the occurrence of programmed cell death-like (or apoptosis-like) events in laboratory and field samples of Microcystis. Apoptosis is a genetically controlled process that is essential for the development and survival of metazoa; however, it has been gradually realized to be an existing phenomenon playing important ecological roles in unicellular microorganisms. Here, we review the current progress and the existing knowledge gap regarding apoptosis-like death in Microcystis. Specifically, we focus first on the tools utilized to characterize the apoptosis-related biochemical and morphological features in Microcystis. We further outline various stressful stimuli that trigger the occurrence of apoptosis and discuss the potential mechanisms of apoptosis in Microcystis. We then propose a conceptual model to describe the functional coupling of apoptosis and MC in Microcystis. This model could be useful for understanding both roles of MC and apoptosis in this species. Lastly, we conclude the review by highlighting the current knowledge gap and considering the direction of future research. Overall, this review provides a recent update with respect to the knowledge of apoptosis in Microcystis and also offers a guide for future investigations of its ecology and survival strategies. Full article
(This article belongs to the Special Issue Biological Role of Cyanotoxins: Experimental and In-Field Evidence)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop