Coevolution of Snake Venom Toxic Activities and Diet: Evidence that Ecological Generalism Favours Toxicological Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results and Discussion
3.1. Does Type of Prey Predict Toxicological Activities of the Venom?
3.2. Do High Metabolic Rates of Prey Predict Toxicological Activities of the Venom?
3.3. Does Diet Diversity Predict the Diversity of Toxicological Activities of the Venom?
3.4. Does Type of Prey Predict the Diversity of Toxicological Activities of the Venom?
3.5. General Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 2013, 28, 219–229. [Google Scholar] [CrossRef]
- Arbuckle, K. Evolutionary context of venom in animals. In Evolution of Venomous Animals and Their Toxins; Gopalakrishnokone, P., Malhotra, A., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 3–31. [Google Scholar]
- Endler, J.A. Interactions between predators and prey. In Behavioural Ecology: An Evolutionary Approach, 3rd ed.; Krebs, J.R., Davies, N.B., Eds.; Blackwell Scientific Publications: Oxford, UK, 1991; pp. 169–196. [Google Scholar]
- Spottiswoode, C.N.; Stevens, M. Host-parasite arms races and rapid changes in bird egg appearance. Am. Nat. 2012, 179, 633–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speed, M.P.; Fenton, A.; Jones, M.G.; Ruxton, G.D.; Brockhurst, M.A. Coevolution can explain defensive secondary metabolite diversity in plants. New Phytol. 2015, 208, 1251–1263. [Google Scholar] [CrossRef] [PubMed]
- Inceoglu, B.; Lango, J.; Jing, J.; Chen, L.; Doymaz, F.; Pessah, I.N.; Hammock, B.D. One scorpion, two venoms: Prevenom of Parabuthus transvaalicus acts as an alternative type of venom with distinct mechanism of action. Proc. Natl. Acad. Sci. USA 2003, 100, 922–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutertre, S.; Jin, A.-H.; Vetter, I.; Hamilton, B.; Sunagar, K.; Lavergne, V.; Dutertre, V.; Fry, B.G.; Antunes, A.; Venter, D.J.; et al. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat. Commun. 2014, 5, 3521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasturiratne, A.; Wickremasinghe, A.R.; de Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; Savioli, L.; Lalloo, D.G.; de Silva, H.J. The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008, 5, e218. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite envenoming. Nat. Rev. Dis. Primers 2017, 3, 17063. [Google Scholar] [CrossRef]
- Daltry, J.C.; Wüster, W.; Thorpe, R.S. Diet and snake venom evolution. Nature. 1996, 379, 537–540. [Google Scholar] [CrossRef]
- Healy, K.; Carbone, C.; Jackson, A.L. Snake venom potency and yield are associated with prey-evolution, predator metabolism and habitat structure. Ecol. Lett. 2019, 22, 527–537. [Google Scholar] [CrossRef]
- Zancolli, G.; Calvete, J.J.; Cardwell, M.D.; Greene, H.W.; Hayes, W.K.; Hegarty, M.J.; Herrmann, H.-W.; Holycross, A.T.; Lannutti, D.I.; Mulley, J.F.; et al. When one phenotype is not enough: Divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species. Proc. R. Soc. B 2019, 286, 20182735. [Google Scholar] [CrossRef] [Green Version]
- Andrade, D.V.; Abe, A.S. Relationship of venom ontogeny and diet in Bothrops. Herpetologica 1999, 55, 200–204. [Google Scholar]
- Mackessy, S.P.; Sixberry, N.M.; Heyborne, W.H.; Fritts, T. Venom of the brown treesnake, Boiga irregularis: Ontogenetic shifts and taxa-specific toxicity. Toxicon 2006, 47, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, H.L.; Sanz, L.; Chiucchi, J.E.; Farrell, T.M.; Calvete, J.J. Proteomic analysis of ontogenetic and diet-related changes in venom composition of juvenile and adult dusky pygmy rattlesnakes (Sistrurus miliarius barbouri). J. Proteom. 2011, 74, 2169–2179. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, V.; Debono, J.; Goldenberg, J.; Jackson, T.N.W.; Arbuckle, K.; Dobson, J.; Koludarov, I.; Li, B.; Hay, C.; Dunstan, N.; et al. Correlation between ontogenetic dietary shifts and venom variation in Australian brown snakes (Pseudonaja). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2017, 197, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Modahl, C.M.; Mukherjee, A.K.; Mackessy, S.P. An analysis of venom ontogeny and prey-specific toxicity in the monocled cobra (Naja kaouthia). Toxicon 2016, 119, 8–20. [Google Scholar] [CrossRef]
- Solorzano, A.; Romero, M.; Gutiérrez, J.M.; Sasa, M. Venom composition and diet of the cantil Agkistrodon bilineatus howardgloydi (Serpentes: Viperidae). Southwest. Nat. 1999, 44, 478–483. [Google Scholar] [CrossRef]
- Barlow, A.; Pook, C.E.; Harrison, R.A.; Wüster, W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc. R. Soc. B. 2009, 276, 2443–2449. [Google Scholar] [CrossRef] [Green Version]
- Richard, D.P.; Barlow, A.; Wüster, W. Venom lethality and diet: Differential responses of natural prey and model organisms to the venom of the saw-scaled vipers (Echis). Toxicon 2012, 59, 110–116. [Google Scholar] [CrossRef]
- Phelps, T. Old World Vipers: A Natural History of the Azemiopinae and Viperinae; Edition Chimaira: Frankfurt am Main, Germany, 2010; pp. 371–400. [Google Scholar]
- Rodda, G.H.; Fritts, T.H.; McCoid, M.J.; Campbell, E.W. An overview of the biology of the brown treesnake (Boiga irregularis), a costly introduced pest on Pacific islands. In Problem Snake Management: The Habu and the Brown Treesnake; Rodda, G.H., Sawai, Y., Chiszar, D., Tanaka, H., Eds.; Cornell University Press: Ithaca, NY, USA, 1999; pp. 44–80. [Google Scholar]
- Li, M.; Fry, B.G.; Kini, R.M. Eggs-only diet: Its implications for the toxin profile changes and ecology of the marbled sea snake (Aipysurus eydouxii). J. Mol. Evol. 2005, 60, 81–89. [Google Scholar] [CrossRef]
- Heatwole, H.; Powell, J. Resistance of eels (Gymnothorax) to the venom of sea kraits (Laticauda colubrina): A test of coevolution. Toxicon 1998, 36, 619–625. [Google Scholar] [CrossRef]
- Arbuckle, K.; Rodríguez de la Vega, R.C.; Casewell, N.R. Coevolution takes the sting out of it: Evolutionary biology and mechanisms of toxin resistance in animals. Toxicon. 2017, 140, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Daltry, J.C.; Wüster, W.; Thorpe, R.S. The role of ecology in determining venom variation in the Malayan pitviper, Calloselasma rhodostoma. In Venomous Snakes: Ecology, Evolution and Snakebite; Thorpe, R.S., Wüster, W., Malhotra, A., Eds.; Oxford University Press: Oxford, UK, 1997; pp. 155–171. [Google Scholar]
- Modahl, C.M.; Mackessy, S.P. Venoms of rear-fanged snakes: New proteins and novel activities. Front. Ecol. Evol. 2019, 7, 279. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, J.; Mackessy, S.P.; Fry, B.G.; Bhatia, M.; Mourier, G.; Fruchart-Gaillard, C.; Servent, D.; Ménez, R.; Stura, E.; Ménez, A.; et al. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (mangrove catsnake) with bird-specific activity. J. Biol. Chem. 2006, 39, 29030–29041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene, H.W. Ecological, evolutionary, and conservation implications of feeding biology in Old World cat snakes, genus Boiga (Colubridae). Proc. Calif. Acad. Sci. 1989, 46, 193–207. [Google Scholar]
- Stuebing, R.B.; Inger, R.F. A Field Guide to the Snakes of Borneo; Natural History Publications (Borneo): Sabah, Malaysia, 1999; pp. 120–121. [Google Scholar]
- Das, I. A Field Guide to the Reptiles of South.-East. Asia; New Holland Publishers: London, UK, 2010; pp. 261–262. [Google Scholar]
- Modahl, C.M.; Mrinalini; Frietze, S.; Mackessy, S.P. Adaptive evolution of distinct prey-specific toxin genes in rear-fanged snake venom. Proc. R. Soc. B 2018, 285, 20181003. [Google Scholar] [CrossRef] [PubMed]
- Bernardoni, J.L.; Sousa, L.F.; Wermelinger, L.S.; Lopes, A.S.; Prezoto, B.C.; Serrano, S.M.T.; Zingali, R.B.; Moura-da-Silva, A.M. Functional variability of snake venom metalloproteinases: Adaptive advantages in targeting different prey and implications for human envenomation. PLoS ONE 2014, 9, e109651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraz, C.R.; Arrahman, A.; Xie, C.; Casewell, N.R.; Lewis, R.J.; Kool, J.; Cardoso, F.C. Multifunctional toxins in snake venoms and therapeutic implications: From pain to hemorrhage and necrosis. Front. Ecol. Evol. 2019, 7, 218. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.; Jouanne, H.; Vidal, N. Snake venom in context: Neglected clades and concepts. Front. Ecol. Evol. 2019, 7, 332. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.N.W.; Koludarov, I.; Ali, S.; Dobson, J.; Zdenek, C.N.; Dashevsky, D.; op den Brouw, B.; Masci, P.P.; Nouwens, A.; Josh, P.; et al. Rapid radiations and the race to redundancy: An investigation of the evolution of Australian elapid snake venoms. Toxins 2016, 8, 309. [Google Scholar] [CrossRef]
- Lister, C.; Arbuckle, K.; Jackson, T.N.W.; Debono, J.; Zdenek, C.N.; Dashevsky, D.; Dunstan, N.; Allen, L.; Hay, C.; Bush, B.; et al. Catch a tiger snake by its tail: Differential toxicity, co-factor dependence and antivenom efficacy in a procoagulant clade of Australian venomous snakes. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2017, 202, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg, J.; Cipriani, V.; Jackson, T.N.W.; Arbuckle, K.; Debono, J.; Dashevsky, D.; Panagides, N.; Ikonomopoulou, M.P.; Koludarov, I.; Li, B.; et al. Proteomic and functional variation within black snake venoms (Elapidae: Pseudechis). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2018, 205, 53–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbuckle, K. Phylogenetic comparative methods can provide important insights into the evolution of toxic weaponry. Toxins 2018, 10, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phuong, M.A.; Mahardika, G.N.; Alfaro, M.E. Dietary breadth is positively correlated with venom complexity in cone snails. BMC Genom. 2016, 17, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Suleski, M.; Hedges, S.B. TimeTree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017, 34, 1812–1819. [Google Scholar] [CrossRef] [PubMed]
- White, J. www.toxinology.com . Med. J. Aust. 2002, 177, 687. [Google Scholar] [CrossRef]
- Schmidt-Nielsen, K. Scaling: Why is Animal Size so Important? Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Uetz, P.; Etzold, T. The EMBL/EBI Reptile Database. Herpetol. Rev. 1996, 27, 174–175. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Paradis, E.; Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2018, 35, 526–528. [Google Scholar] [CrossRef]
- Ives, A.R.; Garland, T. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 2010, 59, 9–26. [Google Scholar] [CrossRef]
- Ho, L.S.T.; Ane, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 2014, 63, 397–408. [Google Scholar]
- Paradis, E.; Claude, J. Analysis of comparative data using generalized estimating equations. J. Theor. Biol. 2002, 218, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Long, S.; Giebisch, G. Comparative physiology of renal tubular transport mechanisms. Yale J. Biol. Med. 1979, 52, 525–544. [Google Scholar] [PubMed]
- Braun, E.J. Comparative renal function in reptiles, birds, and mammals. Semin. Avian Exot. Pet. Med. 1998, 7, 62–71. [Google Scholar] [CrossRef]
- Gould, S.J.; Lewontin, R.C. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proc. R. Soc. B. 1979, 205, 581–598. [Google Scholar]
- Weese, D.A.; Duda, T.F. Effects of predator-prey interactions on predator traits: Differentiation of diets and venoms of a marine snail. Toxins 2019, 11, 299. [Google Scholar] [CrossRef] [Green Version]
- Fry, B.G.; Scheib, H.; van der Weerd, L.; Young, B.; McNaughtan, J.; Ramjan, S.F.R.; Vidal, N.; Poelmann, R.E.; Norman, J.A. Evolution of an arsenal: Structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol. Cell. Proteom. 2008, 7, 215–246. [Google Scholar] [CrossRef] [Green Version]
- Barua, A.; Mikheyev, A.S. Many options, few solutions: Over 60 my snakes converged on a few optimal venom formulations. Mol. Biol. Evol. 2019, 36, 1964–1974. [Google Scholar] [CrossRef] [Green Version]
- Slatyer, R.A.; Hirst, M.; Sexton, J.P. Niche breadth predicts geographical range size: A general ecological pattern. Ecol. Lett. 2013, 16, 1104–1114. [Google Scholar] [CrossRef]
- Aird, S.D.; da Silva, N.J. Comparative enzymatic composition of Brazilian coral snake (Micrurus) venoms. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1991, 99, 287–294. [Google Scholar] [CrossRef]
- Silva, F.M.; Prudente, A.L.D.C.; Machado, F.A.; Santos, M.M.; Zaher, H.; Hingst-Zaher, E. Aquatic adaptations in a Neotropical coral snake: A study of morphological convergence. J. Zool. Syst. Evol. Res. 2018, 56, 382–394. [Google Scholar] [CrossRef]
Response Variable | Explanatory Variable | Coefficient | SE | z | P |
---|---|---|---|---|---|
Cytotoxicity | intercept | −1.593 | 1.071 | −1.487 | 0.137 |
body length | 0.408 | 0.447 | 0.912 | 0.362 | |
mammals | 0.390 | 0.450 | 0.867 | 0.386 | |
birds | 0.255 | 0.282 | 0.904 | 0.366 | |
reptiles | −0.303 | 0.357 | −0.847 | 0.397 | |
amphibians | −0.585 | 0.342 | −1.709 | 0.087 | |
fishes | 0.081 | 0.434 | 0.187 | 0.852 | |
invertebrates | −0.227 | 0.448 | −0.508 | 0.611 | |
Neurotoxicity | intercept | 0.030 | 0.906 | 0.033 | 0.973 |
body length | 0.213 | 0.272 | 0.781 | 0.435 | |
mammals | 0.062 | 0.264 | 0.236 | 0.813 | |
birds | 0.158 | 0.192 | 0.822 | 0.411 | |
reptiles | 0.571 | 0.253 | 2.254 | 0.024 | |
amphibians | −0.478 | 0.222 | −2.156 | 0.031 | |
fishes | 0.363 | 0.307 | 1.185 | 0.236 | |
invertebrates | −0.225 | 0.253 | −0.891 | 0.373 | |
Nephrotoxicity | intercept | −1.555 | 0.651 | −2.388 | 0.017 |
body length | 0.415 | 0.457 | 0.908 | 0.364 | |
mammals | 0.500 | 0.465 | 1.076 | 0.282 | |
birds | 0.440 | 0.313 | 1.407 | 0.159 | |
reptiles | −0.369 | 0.397 | −0.928 | 0.353 | |
amphibians | 0.070 | 0.338 | 0.206 | 0.837 | |
fishes | −0.307 | 0.486 | −0.632 | 0.527 | |
invertebrates | −0.322 | 0.504 | −0.640 | 0.522 | |
Coagulotoxicity | intercept | −0.795 | 0.894 | −0.890 | 0.373 |
body length | −0.007 | 0.359 | −0.020 | 0.984 | |
mammals | −0.281 | 0.312 | −0.903 | 0.366 | |
birds | 0.280 | 0.222 | 1.264 | 0.206 | |
reptiles | 0.131 | 0.284 | 0.459 | 0.646 | |
amphibians | 0.384 | 0.261 | 1.471 | 0.141 | |
fishes | −0.388 | 0.344 | −1.127 | 0.260 | |
invertebrates | −0.035 | 0.315 | −0.111 | 0.912 |
Response Variable | Explanatory Variable | Coefficient | SE | z | P |
---|---|---|---|---|---|
Cytotoxicity | intercept | −1.814 | 0.784 | −2.314 | 0.021 |
body length | −0.146 | 0.466 | −0.313 | 0.755 | |
endotherms | 0.890 | 0.526 | 1.691 | 0.091 | |
Neurotoxicity | intercept | 0.697 | 1.178 | 0.592 | 0.554 |
body length | −0.037 | 0.259 | −0.143 | 0.886 | |
endotherms | −0.041 | 0.265 | −0.154 | 0.878 | |
Nephrotoxicity | intercept | −2.607 | 0.639 | −4.078 | 4.5 × 10−5 |
body length | 0.314 | 0.461 | 0.681 | 0.496 | |
endotherms | 1.532 | 0.578 | 2.650 | 0.008 | |
Coagulotoxicity | intercept | −0.558 | 0.838 | −0.666 | 0.506 |
body length | −0.283 | 0.354 | −0.801 | 0.423 | |
endotherms | 0.198 | 0.327 | 0.606 | 0.545 |
Explanatory Variable | Coefficient | SE | z | P |
---|---|---|---|---|
intercept | 0.280 | 0.266 | 1.053 | 0.292 |
body length | 0.007 | 0.007 | 1.011 | 0.312 |
diet diversity | 0.053 | 0.017 | 3.043 | 0.002 |
Explanatory Variable | Coefficient | SE | z | P |
---|---|---|---|---|
intercept | 0.165 | 0.281 | 0.587 | 0.557 |
body length | 0.006 | 0.007 | 0.851 | 0.395 |
mammals | 0.212 | 0.066 | 3.191 | 0.001 |
birds | 0.075 | 0.036 | 2.118 | 0.034 |
reptiles | 0.128 | 0.051 | 2.480 | 0.013 |
amphibians | 0.056 | 0.045 | 1.244 | 0.213 |
fishes | 0.146 | 0.056 | 2.587 | 0.010 |
invertebrates | −0.405 | 0.080 | −5.053 | 4.4 × 10−7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davies, E.-L.; Arbuckle, K. Coevolution of Snake Venom Toxic Activities and Diet: Evidence that Ecological Generalism Favours Toxicological Diversity. Toxins 2019, 11, 711. https://doi.org/10.3390/toxins11120711
Davies E-L, Arbuckle K. Coevolution of Snake Venom Toxic Activities and Diet: Evidence that Ecological Generalism Favours Toxicological Diversity. Toxins. 2019; 11(12):711. https://doi.org/10.3390/toxins11120711
Chicago/Turabian StyleDavies, Emma-Louise, and Kevin Arbuckle. 2019. "Coevolution of Snake Venom Toxic Activities and Diet: Evidence that Ecological Generalism Favours Toxicological Diversity" Toxins 11, no. 12: 711. https://doi.org/10.3390/toxins11120711
APA StyleDavies, E. -L., & Arbuckle, K. (2019). Coevolution of Snake Venom Toxic Activities and Diet: Evidence that Ecological Generalism Favours Toxicological Diversity. Toxins, 11(12), 711. https://doi.org/10.3390/toxins11120711