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Abstract: The aim of this study was to investigate the effects of deoxynivalenol (DON) exposure on
the inflammatory injury nuclear factor kappa-B (NF-κB) pathway in intestinal epithelial cells (IPEC-J2
cells) of pig. The different concentrations of DON (0, 125, 250, 500, 1000, 2000 ng/mL) were added to the
culture solution for treatment. The NF-κB pathway inhibitor pyrrolidine dithiocarbamate (PDTC) was
used as a reference. The results showed that when the DON concentration increased, the cell density
decreased and seemed damaged. With the increase of DON concentration in the culture medium,
the action of diamine oxidase (DAO) in the culture supernatant also increased. The activities of IL-6,
TNF-α, and NO in the cells were increased with the increasing DON concentration. The relative
mRNA expression of IL-1β and IL-6 were increased in the cells. The mRNA relative expression
of NF-κB p65, IKKα, and IKKβ were upregulated with the increasing of DON concentration, while
the relative expression of IκB-α mRNA was downregulated. At the same time, the expression of
NF-κB p65 protein increased gradually in the cytoplasm and nucleus with a higher concentration of
DON. These results showed that DON could change the morphology of IPEC-J2 cells, destroy its
submicroscopic structure, and enhance the permeability of cell membrane, as well as upregulate
the transcription of some inflammatory factors and change the expression of NF-κB-related gene or
protein in cells.

Keywords: deoxynivalenol; IPEC-J2; cell damage; NF-κB inflammatory signal pathway

Key Contribution: This research discusses the mechanism of DON exposure on NF-κB inflammatory
injury pathway in IPEC-J2 cells.

1. Introduction

Mycotoxins are widely found in human and animal foods. Deoxynivalenol (DON) is mainly
produced by Fusarium graminearum which is prone to crops such as corn and wheat [1–3]. China is
widely contaminated by such kind of mycotoxins, especially in the area of Yangtze and Yellow rivers.
In different grains the climate is favorable to the growth of mold and their relevant toxin production [4].
Previously, from 2016–2017, 827 complete feed samples of pigs and 724 components of feed were
chosen from various provinces of China for analysis, which shows that the last standard rate of DON
ingredient was above 74.5%, and 450.0–4381.5 µg/kg was the average concentration [5]. Hence, further
studies on DON become even highly significant.

It has been reported that DON can cause animals to food refusal, organ damage, and increase the
risk of disease [6–8]. It is generally believed that DON exerts many toxic effects such as neurotoxicity,
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immuno-toxicity, intestinal toxicity, and cytotoxicity [9,10]. Pigs are the utmost susceptible animal
to DON [11]. When DON enters the animal’s body, it first acts on the digestive tract. When the
animal ingests food or feed containing DON, the intestinal epithelial cells will be exposed to a high
concentration of DON, which can potentially affect the intestinal function of the animal [12–14].

Small intestinal epithelial cells can effectively inhibit the propagation of potentially harmful
micro-organisms between the inner and lower mucosa [15]. Infection mechanisms of intestinal
epithelial cells include bacterial attachment or invasion of cells, proliferation of pathogens, and host
cell responses [16]. Experiments have shown that the use of 2000 ng/mL DON to treat pig intestinal
epithelial cells (IPEC-J1 and IPEC-J2), decreased ZO-1 protein expression in cells, indicating that
DON can make the mechanical integrity of intestinal barrier compromised [17]. At the same time,
the transportation and absorption of nutrients in epithelial cells have more impact, through which
the substances needed for the growth and development of the body are provided [18]. Maintaining
the homeostasis of the intestinal tract, at this point, the structure and function of epithelial cells and
lymphocytes in the intestinal mucosa play a key role. For example, lymphocytes in the mucosa can be
released by releasing a series of antibody molecules to neutralize toxins [19]. Simultaneously, there
is a chemical barrier in the intestines, which is composed of various liquids secreted by epithelial
cells mixed with bacteriostatic peptide secreted by the microflora in the intestinal tract to cover the
mucus on the surface of epithelial cells [20]. Therefore, the epithelial cells are also considered to be the
medium of an early natural immune response [21].

IPEC-J2 is isolated from the jejunal epithelial tissue of newborn piglets and is a small intestine cell
model of piglets cultured in vitro [22]. In view of the high homology of the intestinal structure and
function of pigs and humans, studies conducted by IPEC-J2 cells can provide a theoretical basis for
human medicine [22]. The pig intestinal epithelial cell line IPEC-J2 cells mostly form a cell monolayer
when cultured in vitro, and occasionally there are stratified regions. The monolayer consists of cuboid
cells interspersed with flat cells. No goblet cells were observed [16]. During cell injury or growth
NF-κB plays an important role by acting as a regulatory pathway [23], the classical NF-κB pathway
affecting numerous functions of cells that damage cells by enhancing inflammatory related genes
expression, growth, and immunity [24].

In this study, we increased the concentration of DON in the culture medium, and selected
the NF-κB pathway inhibitor PDTC as a reference, aimed to explore the phenomenon by which
DON persuades inflammatory impairment in IPEC-J2 cells via NF-κB signaling pathway by the
features of morphological structure, cell viability, cellular inflammatory mediators, and expression of
pathway-related gene proteins, etc.

2. Results

2.1. Effects of DON on Cell Viability Rate

As can be seen from Figure 1, the viability rate of IPEC-J2 cells decreased with the increasing
concentration of DON in the cell culture medium. Compared with the control cells, when the DON
concentration reached 250 ng/mL the viability rate of cells in each treatment group was significantly
decreased (p < 0.05), and further increased to 500 ng/mL and above (p < 0.01).
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Figure 1. Effects of DON on cell viability rate in cells. The concentrations are 500, 1000, 1500, and 
2000 in order. The above data presented as means ± SD of three independent tests (n = 10). Note: * 
indicates a significant difference compared with the data of the control group (p < 0.05), and ** 
indicates highly significant compared with the control group (p < 0.01). 

2.2. Effects of DON on Morphological Changes in Intestinal Epithelial Cells 

As shown in Figure 2, the cells are in an irregular shape and closely connected when growing 
normally with a large number of cells (Figure 2A). Subsequently, (125, 250, 500, 1000, and 2000 
ng/mL) concentrations of DON were applied to the cells, the cell density steadily reduced, and when 
the DON concentration enhance in the culture medium, the cells indicate irregular architectures 
(Figure 2B–F). 

 

Figure 2. Effect of DON on growth state in cells (400×). (A): Control group; (B): 125 ng/mL 
deoxynivalenol (DON) group; (C): 250 ng/mL DON group, (D): 500 ng/mL DON group, (E): 1000 
ng/mL DON group, and (F): 2000 ng/mL DON group.  

2.3. Effect of DON on the Submicroscopic Structure of Cells 

Figure 3 shows that, the morphology of the cells in the control group is intact, the organelles in 
the cytoplasm are normal, and the distribution of chromatin in the nucleus is relatively uniform 
(Figure 3A1,A2). When the cells were exposed to 125 ng/mL of DON (Figure 3B1,B2), there was no 
obvious pathological change seen in the nucleus, but rupture of mitochondrial mites seen in the 
cytoplasm while the number of cristae was also reduced. With the increasing concentration of DON 
in the culture solution (Figure 3C–E), the ribosome in the cytoplasm gradually decreased, and the 
organelles such as mitochondria and endoplasmic reticulum gradually vacuolized and, the 
chromatin marginal aggregation in the nucleus increased. When the concentration reached 2000 

Figure 1. Effects of DON on cell viability rate in cells. The concentrations are 500, 1000, 1500, and 2000
in order. The above data presented as means ± SD of three independent tests (n = 10). Note: * indicates
a significant difference compared with the data of the control group (p < 0.05), and ** indicates highly
significant compared with the control group (p < 0.01).

2.2. Effects of DON on Morphological Changes in Intestinal Epithelial Cells

As shown in Figure 2, the cells are in an irregular shape and closely connected when growing
normally with a large number of cells (Figure 2A). Subsequently, (125, 250, 500, 1000, and 2000 ng/mL)
concentrations of DON were applied to the cells, the cell density steadily reduced, and when the DON
concentration enhance in the culture medium, the cells indicate irregular architectures (Figure 2B–F).
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Figure 2. Effect of DON on growth state in cells (400×). (A): Control group; (B): 125 ng/mL
deoxynivalenol (DON) group; (C): 250 ng/mL DON group, (D): 500 ng/mL DON group, (E): 1000 ng/mL
DON group, and (F): 2000 ng/mL DON group.

2.3. Effect of DON on the Submicroscopic Structure of Cells

Figure 3 shows that, the morphology of the cells in the control group is intact, the organelles
in the cytoplasm are normal, and the distribution of chromatin in the nucleus is relatively uniform
(Figure 3A1,A2). When the cells were exposed to 125 ng/mL of DON (Figure 3B1,B2), there was
no obvious pathological change seen in the nucleus, but rupture of mitochondrial mites seen in
the cytoplasm while the number of cristae was also reduced. With the increasing concentration
of DON in the culture solution (Figure 3C–E), the ribosome in the cytoplasm gradually decreased,
and the organelles such as mitochondria and endoplasmic reticulum gradually vacuolized and,
the chromatin marginal aggregation in the nucleus increased. When the concentration reached
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2000 ng/mL (Figure 3F1,F2), the chromatin in the nucleus aggregated and disappeared, and the
organelle vacuolization becomes severe.
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The IL-6, TNF-α, and NO levels in the cells were increased with a higher concentration of DON 
when matched to the control group, while PDTC reduces the content of these inflammatory 

Figure 3. Effect of DON on the ultrastructure of cells. (A1,A2: Control group), (B1,B2: 125 ng/mL
deoxynivalenol (DON) group), (C1,C2: 250 ng/mL DON group), (D1,D2: 500 ng/mL DON group),
(E1,E2: 1000 ng/mL DON group), (F1,F2: 2000 ng/mL DON group). Image amplification of A1–F1 is
6000×; image amplification of A2–F2 is 20,000×. The black frame in A1, B1, C1, D1, E1, and F1, are
enlarged to A2, B2, C2, D2, E2, and F2 respectively.

2.4. Effect of DON on DAO Activity in Cell Culture Supernatant

As shown in Figure 4, during comparison with the control group, increasing the concentration
of DON in the culture, the amount of DAO was expressively enhanced in the culture supernatant of
IPEC-J2 cells (p < 0.01). The DAO content in the supernatant of the experimental group was significantly
decreased (p < 0.01), when the DON was added with PDTC.
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Figure 4. Effects of DON on the activity of DAO in cell culture fluid. The above data shows as means
± SD of three independent tests (n = 10). Note: ** shows extremely significant difference (p < 0.01),
compared with the control group. ## indicates highly significant (p < 0.05) compared with the test
group and with the same DON concentration but no addition of PDTC. These rules are also applied for
Figures 5–7.

2.5. Effect of DON on the Activity of Inflammatory Factors in Cells

The IL-6, TNF-α, and NO levels in the cells were increased with a higher concentration of DON
when matched to the control group, while PDTC reduces the content of these inflammatory mediators
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presented in Figure 5. Compared to the control group, when the concentration of DON in the culture
medium reached 125 ng/mL and above, the concentration of IL-6, TNF-α, and NO in the cells were
significantly increased (p < 0.01). Compared with the 1000 ng/mL DON group without PDTC, the group
after adding PDTC significantly reduced the contents of TNF-α and NO in the cells (p < 0.01).
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Figure 5. Effect of DON on the concentration of inflammatory factors in cells. (A–C) IL-6, TNF-α,
and IL-1β expression. The collected data are shown as means ± SD of three independent tests (n = 10).
Note: ** shows extremely significant difference (p < 0.01), compared with the control group. ## indicates
highly significant (p < 0.05) compared with the test group and with the same DON concentration but
no addition of PDTC.

2.6. DON Effect on the mRNA Expression of Inflammation-Related Genes in Cells

The data in Figure 6 illustrated that DON increased the relative expression of inflammatory
mediators in IPEC-J2 cells, and decreased after the addition of pathway inhibitors. Among them,
the relative mRNA expression of IL-1β in the cells increased with the increasing of DON concentration,
and was significantly higher than the control group when the DON concentration was 250 ng/mL and
above (p < 0.01). The relative expression of IL-1β in the test group of 1000 ng/mL DON plus PDTC
was significantly lowered than that in the test group of 1000 ng/mL DON without PDTC (p < 0.05).
In addition, the relative expression of IL-6 gene in the cells increased significantly with the increasing
of DON concentration (p < 0.01).
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expression levels of NF-κB p65, IKKα, IKKβ, iNOS, and COX-2 mRNA in the cells were upregulated 

Figure 6. DON influence on the mRNA expression of NF-κB pathway associated genes in cells.
(A–H) the expression of IL-1β, IL-6, NF-κB p65, IκB-α, IKKα, IKKβ, iNOS, and COX-2 mRNA. Note:
* designates a significant change as compared to the control group (p < 0.05), and ** shows extremely
significant difference (p < 0.01), compared with the control group. # Indicates significant (p < 0.05)
compared with the test group and with the same DON concentration but no addition of DON.
## Indicates highly significant (p < 0.01) compared with the test group and with the same DON
concentration but no addition of PDTC.
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Figure 7. Effect of DON on the transcriptional activity of NF-κB p65 in cells. (A) Western blotting
showing NF-κB p65. (B) Impact of DON on the protein expression of NF-κB p65. Note: ** shows
extremely significant difference (p < 0.01), compared with the control group. ## indicates highly
significant (p < 0.05) compared with the test group and with the same DON concentration but no
addition of PDTC.

In this experiment, with the increasing of DON contents in the culture medium, the relative
expression levels of NF-κB p65, IKKα, IKKβ, iNOS, and COX-2 mRNA in the cells were upregulated to
different degrees compared with the control group. Compared with the unadded test group, the relative
expression of some genes in the PDTC test group was downregulated by different degrees. When
the concentration of DON in the culture medium was 125 ng/mL and above, the mRNA expression
levels of IKKα, IKKβ, iNOS, and COX-2 were significantly upregulated compared with the control
group (p < 0.01). After adding PDTC to the culture medium containing 1000 ng/mL DON, the relative
expression of iNOS mRNA gene in the cells was significantly decreased (p < 0.01). Compared to the
control group, when the concentration of DON in culture medium increased to 250 ng/mL, the relative
expression of NF-κB p65 mRNA significantly upregulated (p < 0.05), and the relative expression of
IκB-αmRNA downregulated (p < 0.05). When the concentration of DON increased to 500 ng/mL and
above, the relative expression of NF-κB p65 mRNA significantly upregulated compared with the control
group (p < 0.01) and the relative expression of IκB-αmRNA gene was a significant downregulation
(p < 0.01). After the addition of pathway inhibitors in the experimental group, the relative expression
of NF-κB p65 gene was significantly downregulated (p < 0.01), and the relative expression of IκB-α
mRNA gene was significantly upregulated (p < 0.05).

2.7. Effect of DON on the Expression of NF-κB p65 Protein in the Nucleus

In this study, the nuclear expression of NF-κB p65 was detected by EMSA. As shown in Figure 7,
with the increasing concentration of DON, the nuclear expression of NF-κB p65 was increased, as
well as significantly (p < 0.01) increased in DON treatment group, while the expression of NF-κB p65
protein in the 10 µM PDTC-treated cells decreased.

2.8. Effect of DON on the Expression and Distribution of NF-κB p65 Protein in Cells

When the concentration of DON in the culture medium increased, the green fluorescence intensity
of NF-κB p65 protein in the cell, especially in the nucleus also increased gradually as shown in Figure 8,
indicating that DON can enhance the expression of NF-κB p65 and nuclear expression.
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3. Discussion

Many studies have found that zearalenone (ZEA) and DON can reduce the survival rate of
IPEC-J2 cells with a certain time and dose dependence manner [13,25]. Research has shown that DON
concentrations at 250 and 1000 ng/mL can significantly reduce cell counts in a dose-dependent manner.
When the DON concentration is 1000 ng/mL, it caused cell damage, including cell monolayer autolysis,
and cell loss [26]. According to the results of this experiment, when the DON concentration in the
culture medium was 125 ng/mL, it shows little effect on cell viability. When the concentration increased
to 250 ng/mL, the cell survival rate was significantly lower than that of the control group. The cell
survival rate decreased significantly, if the culture medium was 250 ng/mL or higher concentration.

Intestinal epithelial cells are not only selectively permeable as a nutrient-absorbing filter, but are
also considered to be the first line of defense against foreign antigens, such as pathogens and toxins
from the intestinal lumen [27]. DAO is an intracellular enzyme in mammalian intestinal epithelial
cells that put forth a protective effect on the intestinal mucosa. When small intestinal mucosal cells are
necrotic, DAO in cells will be released [28]. Thus, the extracellular fluid DAO content can reflect the
destruction of cells in small intestine. In this experiment, with the higher concentration of DON in the
culture solution, the DAO content in the culture supernatant also increased significantly, indicating
that DON can damage IPEC-J2 cells and enhance the permeability of the cell membrane [29].

DON influencing intestinal barrier integrity and induced pro-inflammatory cytokines abnormal
expression [30]. Previously it was found that DON can cause an increase in the activity of cytokines
such as IL-1β, IL-6, and TNF-α in IPEC-J2 cells [31]. In addition, DON also upregulates the activity
of TNF-α in IECs cell [30]. According to the test results of the present experiment, the activity of
inflammatory mediators in IPEC-J2 cells and the relative expression of IL-1β and IL-6 mRNA in the
cells increased with the increasing of DON concentration in the culture medium, while PDTC reduced
these trends. This indicated that DON cause an inflammatory response in IPEC-J2 cells and might
affect the normal physiological state of the cells via the NF-κB pathway.

Previously, it commonly exists in the shape of a p50/65-IκBα dimer [32]. Different studies showed
that when active NF-κB enhanced in a dose-dependent pattern, it initiates to be effective [29,33].
Furthermore, NF-κB pathway regulates COX-2 activation and additional transcription factors [34,35],
which demonstrates that this pathway plays a significant role in the inflammatory impairment of
the intestine.

In this experiment, the intracellular NO activity and the relative mRNA expression of iNOS
increased with the dosage of DON, and the relative expression of COX-2 gene, which is the same as the
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inducible enzyme, also increased in cells. These results indicate that IPEC-J2 cells are stimulated by
DON to produce a corresponding inflammatory response. On the other hand, the NF-κB pathway
is primarily thought to be a potential pathogenic factor that exerts deleterious effect on cells when it
is excessively or inappropriately activated [24,36]. In our results, the relative mRNA expression of
NF-κB p65, IKKα, and IKKβ genes were upregulated, while the mRNA relative expression of IκB-α
was downregulated to varying degrees. At the same time, the inhibitory changes were inhibited in
different degrees.

4. Conclusions

The current study indicated that DON alters IPEC-J2 cells morphology, destroys the submicroscopic
structure, boosts cell membrane permeability, and upregulates the transcription of various associated
inflammatory factors in cells and alters the expression of NF-κB-related gene or protein in cells.
We also concluded that the distribution and content of NF-κB p65 in the intracellular and nucleus
further indicated that DON induced inflammatory damage of IPEC-J2 cells through the NF-κB
signaling pathway.

5. Materials and Methods

5.1. Chemical and Reagents

DON (CAS No. D0156-5MG) was procured from Sigma (Sigma Chemical Co. St. Louis, MO,
USA). Porcine IPEC-J2 cells were obtained from a cell bank in Wuhan academy of agricultural
sciences, Wuhan, China. RPMI 1640, SuperScript III kit and Sybr qPCR mix were bought from
Thermo Fisher Scientific, Waltham, MA, USA. Fetal bovine serum (FBS) was procured from Clark
Bioscience, Richmond, VA, USA. NF-κB inhibitor (Pyrrolidine dithiocarbamate, PDTC) was procured
from Beyotime Biotechnology, Shanghai, China. Cell counting kit-8 (CCK-8) kits were obtained from
Dojindo Laboratories, Tokyo, Japan. The ELISA kit was bought from Senbeijia Biological Technology,
Nanjing, China. BSA was bought from biosharp Company, Beijing, China. The primary NF-κB
p65 polyclonal antibody (Product number: 10745-1-AP) was obtained from Proteintech Group, Inc,
Rosemont, IL, USA. FITC-goat anti-rabbit IgG antibody (Product number: BA1105) was purchased
from Boster Company, Wuhan, China. Trizol reagent was purchased from Invitrogen Biotechnology
Co., Ltd., Shanghai, China.

5.2. Cell Culture and Treatments

The intestinal epithelial cells (porcine IPEC-J2) were cultivated in culture bottles (4 × 6 cm) in
RPMI 1640 added with 10% (v/v) FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin, and cultured
at 37 ◦C and a moistened incubator with 5% CO2. DON solution of 1 mg/mL stock was prepared by
liquefying 1 mg DON in 1 mL RPMI 1640 comprising FBS of 10% (v/v). In this experiment diluted
concentrations of 125, 250, 500, 1000, and 2000 ng/mL DON were used [37].

IPEC-J2 cells in logarithmic growing phase (1 × 105 cells/mL) were cultivated in 96-well plates in
100 µL RPMI 1640 for 24 h; and were cured with (0, 125, 250, 500, 1000, and 2000 ng/mL) various DON
concentrations for 24 h for the evaluation of cell viability assay. For the estimation of NF-κB pathway
in response to DON acquaintance, PDTC, the NF-κB inhibitor was added to the two experimental
groups (0, 1000 ng/mL DON) 30 min earlier than the treatment with DON. The supernatants of cell
culture were gathered to know DAO releasing. The collected cells were observed for morphological,
inflammatory mediator activity, and studies of NF-κB pathway-associated gene or proteins [37].

5.3. IPEC-J2 Cell Morphology by Optical Microscope

The IPEC-J2 cells in the logarithmic growth phase were taken, and the cell density was adjusted
to 1 × 105 per mL in a 6-well cell culture plate. After culturing to adherence, the culture solution was
changed to a cell culture medium containing different concentrations of DON, and after 24 h, the cell
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growth of each group was observed under an inverted light microscope (Chongguang Industry Co.,
Ltd. Chongqing, China).

5.4. IPEC-J2 Cell Morphology by Transmission Electron Microscopy (TEM)

Cells were collected at the bottom of the centrifuge tube and 2.5% glutaraldehyde were used to be
fixed in for 4 h, dehydrated, soaked, embedded, ultrathin sections, lead citrate stained, and washed.
The cells ultrastructure was detected via a high resolution transmission electron microscope TEOL-2010
(Electronics Corporation, Tokyo, Japan).

5.5. Detection of Cell Viability

IPEC-J2 cells in the logarithmic growth phase were seeded in 96-well plates at about 1000 cells per
well, cultured until the cells were attached, and DON was used. After 24 h, 10 µL of CCK-8 reagent
was added to each well and cultured for 2 h. The cell viability was calculated by using the absorbance
at a wavelength of 450 nm.

5.6. Detection of Inflammatory Mediators and Intestinal Permeability Indicators

The cells were treated with DON and PDTC, and then cultured in an incubator for 24 h. The culture
solution was centrifuged at 1000 rpmmin−1 for 5 min to obtain a cell culture supernatant. The cells
were collected in a cell via a subculture method, and the cell lysate was collected. The NO, IL-6,
and TNF-α in the cell lysate were used according to the method of the ELISA kit (Senbeijia Biological
Technology, Nanjing, China). The activity and the DAO in the cell culture supernatant was measured,
and its activity was calculated according to a self-drawn standard curve.

5.7. Quantitative Real-Time PCR

As per the manufacturer’s protocol, total RNA was isolated from cells via a Trizol reagent.
Nanodrop lite (Thermo Inc, Waltham, MA, USA) was used to examine the concentrations of RNA.
The reverse transcription was accomplished via Super-Script III First-strand cDNA Synthesis Mix
(Thermo Inc, USA). Real-time PCR was performed with SybrGreen qPCR Mastermix (Thermo Inc,
USA). The overall samples were assayed three times. The reaction mixtures were incubated in a
7900 fast real-time PCR system (Applied Biosystems, Foster City, CA, USA)). The program comprised
of 1 cycle at 95 ◦C for 120 s, 40 cycles at 94 ◦C for 20 s, 60 ◦C for 20 s, and 72 ◦C for 30 s. The gene
relative expression levels were calculated according to the 2−∆∆CT method. In real-time PCR analysis,
β-actin was used as a housekeeping gene to estimate levels of mRNA for normalization. The primer
sequences were synthesized by Sangon Biotech Co., Ltd. (Shanghai, China) and described in Table 1.

Table 1. Parameters of primer for inflammatory cytokines and β-actin genes.

Genes Accession
Number Primers Sequences (5′–3′) Production

Size/bp

β-actin AY_550069.1
Forward AGATCAAGATCATCGCGCCT

170Reverse ATGCAACTAACAGTCCGCCT

IL-1β NW_018085011.1
Forward TCAGCACCTCTCAAGCAGAA

120Reverse GACCCTCTGGGTATGGCTTT

IL-6 NC_010451.4
Forward CTGCAGTCACAGAACGAGTG

131Reverse GACGGCATCAATCTCAGGTG

NF-κB p65 NM_001114281.1
Forward GGGGCGATGAGATCTTCCTG

110Reverse CACGTCGGCTTGTGAAAAGG

IκB-α NC_010449.5
Forward GGAGTACGAGCAGATGGTGA

157Reverse TTCCATGGTCAGTGCCTTCT

iNOS NC_010454.4
Forward GGGTCAGAGCTACCATCCTC

114Reverse CGTCCATGCAGAGAACCTTG
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Table 1. Cont.

Genes Accession
Number Primers Sequences (5′–3′) Production

Size/bp

IKKα NC_010456.5
Forward CACTCTTACAGCGACAGCAC

145Reverse CCACCTTGGGCAGTAGATCA

IKKβ NT_176339.1
Forward ACCTGGCTCCCAACGACTT

184Reverse AGATCCCGATGGATGATTCTG

COX-2 NC_010451.4
Forward TGCGGGAACATAATAGAG

90Reverse GTATCAGCCTGCTCGTCT

5.8. Immunofluorescence

Phosphoryl-NF-κB p65 localization was quantified via an immunofluorescence technique.
Paraformaldehyde (v/v, 1/25) was used for IPEC-J2 cells fixation for 30 min at a temperature of
37 ◦C. After a PBS wash (0.1 mM, pH7.4), permeabilised in 0.5% Triton (Triton×100, Sigma, Harz Lower
Saxony, Germany) for 20 min, and for 20 min blocked with 5% BSA, as well as hatched with the
anti-phosphoryl-NF-κB p65 antibody (diluted 1:100) for the whole night at a temperature of 4 ◦C. After
washing with PBS (0.1 mM, pH7.4) for the second time, the secondary antibody was used to incubate
the cells for 1 h at room temperature. Coverslips were washed two times via PBS (0.1 mM, pH7.4),
and hatched with the goat anti-rabbit IgG antibody for 1 h in the absence of light, and hatched in
a DAPI staining solution for 10 min. After that it was washed again in PBS. The fluorescence was
monitored using an Olympus-fluoview ver.3.1 viewer (Olympus Corporation, Miyazaki Prefecture,
Kyushu, Japan) [38].

5.9. Electrophoretic Mobility Shift Assays (EMSAs)

NF-κB DNA-binding activity was examined by EMSA. The cytoplasmic and nuclear protein
extraction kit (Jiangsu KeyGEN BioTECH Corp., Ltd., Nanjing, China) was used to prepare nuclear
extract. The consensus nucleotide sequence for NF-κB was 5’-AGT TGA GGG GAC TTT CCC AGG
C-3’. The EMSA binding reaction was performed by the EMSA kit (Jiangsu KeyGEN BioTECH Corp.,
Ltd.). A nuclear extract was incubated in a 5× binding reaction buffer containing the biotinylated
probe. After incubated at room temperature for 20 min, the reaction mixture was electrophoresed on
a non-denaturing 6.5% polyacrylamide gel and then transferred to a nylon membrane. The shifted
mixture and the membrane were UV-cross-linked and the ECL kit used to detect was obtained from
(Jiangsu KeyGEN BioTECH Corp., Ltd.). For the super shift assay, 1 µg of antibody against NF-κB p65
was added together with the nuclear extract.

5.10. Statistics Analysis

For the calculation of protein expression of average optical density (OD), the Image-Proplus 6.0
Analysis Software (Media Cybernetics, Shanghai, China) were used. The obtained data were presented
as means ± SD (n = 10). Statistical analysis was performed by the Statistical Program for Social Sciences
(SPSS) software version 19.0 (IBM Corporation, Armonk, NY, USA). Analysis of variance (ANOVA)
was performed for the multiple comparison of different groups. The histogram was designed by using
the software of Graph Pad Prism version 5.0 (San Diego, California, CA, USA).
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