Wheat is a major staple crop in Xinjiang, China; however, comprehensive data on
Fusarium mycotoxin contamination in wheat from this region remain limited. Despite recent observations of Fusarium head blight (FHB), few studies have characterized the mycotoxin profiles in wheat from Xinjiang, especially
[...] Read more.
Wheat is a major staple crop in Xinjiang, China; however, comprehensive data on
Fusarium mycotoxin contamination in wheat from this region remain limited. Despite recent observations of Fusarium head blight (FHB), few studies have characterized the mycotoxin profiles in wheat from Xinjiang, especially regarding emerging mycotoxins. This study aimed to systematically investigate the occurrence of both conventional and emerging mycotoxins in freshly harvested wheat from Xinjiang, to evaluate the effects of sampling year and geographical region on mycotoxin contamination levels, and to identify the
Fusarium species responsible for mycotoxin production. A total of 151 freshly harvested wheat samples were collected from Southern and Northern Xinjiang in 2023 and 2024. Mycotoxins were quantified using high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS).
Fusarium isolates were obtained and identified through the translation elongation factor 1-alpha (
TEF-1α) gene sequencing. Genotyping was assessed by genotype-specific multiplex PCR, and mycotoxigenic potential was detected by rice culture assays. A high incidence (72.9%) of co-contamination with multiple mycotoxins was observed. Conventional mycotoxins such as deoxynivalenol (DON) and zearalenone (ZEN) were detected in 31.1% and 41.1% of samples. Notably, emerging mycotoxins, including enniatins (ENNs) and beauvericin (BEA), were present at significantly higher concentrations than those reported in some regions of China. Significant spatiotemporal variation was observed, with markedly higher contamination levels of emerging mycotoxins in 2024, particularly in Northern Xinjiang, where the symptoms of FHB epidemic occurred due to the humid climate and maize–wheat rotation system.
Fusarium graminearum was identified as the primary producer of conventional mycotoxins, while
F. acuminatum and
F. avenaceum were mainly associated with emerging mycotoxins except BEA. This study provides the first comprehensive dataset on the co-occurrence of conventional and emerging
Fusarium mycotoxins in wheat from Xinjiang and highlights significant spatiotemporal variations influenced by environmental factors. These findings underscore the necessity for continuous, region-specific monitoring and effective risk management strategies to address the evolving mycotoxin threat in Xinjiang’s wheat. Future research should focus on characterizing the populations of
Fusarium toxin-producing fungi and the long-term impacts of mycotoxin exposure on food safety.
Full article