Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = geothermal reservoir characterization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 798 KB  
Review
Utah FORGE: A Decade of Innovation—Comprehensive Review of Field-Scale Advances (Part 1)
by Amr Ramadan, Mohamed A. Gabry, Mohamed Y. Soliman and John McLennan
Processes 2026, 14(3), 512; https://doi.org/10.3390/pr14030512 (registering DOI) - 2 Feb 2026
Abstract
Enhanced Geothermal Systems (EGS) extend geothermal energy beyond conventional hydrothermal resources but face challenges in creating sustainable heat exchangers in low-permeability formations. This review synthesizes achievements from the Utah Frontier Observatory for Research in Geothermal Energy (FORGE), a field laboratory advancing EGS readiness [...] Read more.
Enhanced Geothermal Systems (EGS) extend geothermal energy beyond conventional hydrothermal resources but face challenges in creating sustainable heat exchangers in low-permeability formations. This review synthesizes achievements from the Utah Frontier Observatory for Research in Geothermal Energy (FORGE), a field laboratory advancing EGS readiness in 175–230 °C granitic basement. From 2017 to 2025, drilling, multi-stage hydraulic stimulation, and monitoring established feasibility and operating parameters for engineered reservoirs. Hydraulic connectivity was created between highly deviated wells with ~300 ft vertical separation via hydraulic and natural fracture networks, validated by sustained circulation tests achieving 10 bpm injection at 2–3 km depth. Advanced monitoring (DAS, DTS, and microseismic arrays) delivered fracture propagation diagnostics with ~1 m spatial resolution and temporal sampling up to 10 kHz. A data infrastructure of 300+ datasets (>133 TB) supports reproducible ML. Geomechanical analyses showed minimum horizontal stress gradients of 0.74–0.78 psi/ft and N–S to NNE–SSW fractures aligned with maximum horizontal stress. Near-wellbore tortuosity, driving treating pressures to 10,000 psi, underscores completion design optimization, improved proppant transport in high-temperature conditions, and coupled thermos-hydro-mechanical models for long-term prediction, supported by AI platforms including an offline Small Language Model trained on Utah FORGE datasets. Full article
Show Figures

Figure 1

16 pages, 6876 KB  
Article
GIS-Based Preliminary Evaluation for Exploration and Development of Hot Dry Rock Resources in the Central-Southern Subei Basin
by Hong Xiang, Jian Song, Yahui Yao, Wenhao Xu, Yongbiao Yang, Jun Chen and Junyan Cui
Energies 2026, 19(3), 742; https://doi.org/10.3390/en19030742 - 30 Jan 2026
Viewed by 29
Abstract
Hot dry rock (HDR), characterized by high temperature, vast reserves, and significant development potential, is one of the most important clean energy sources for the future. This study focuses on the Jianhu Uplift and Dongtai Depression in the southern part of the Subei [...] Read more.
Hot dry rock (HDR), characterized by high temperature, vast reserves, and significant development potential, is one of the most important clean energy sources for the future. This study focuses on the Jianhu Uplift and Dongtai Depression in the southern part of the Subei Basin as the research area, conducting systematic target optimization research on HDR geothermal resources within the Cambrian–Ordovician carbonate strata. By systematically compiling regional geothermal geological data, an evaluation index system for target optimization of geothermal resources was established, incorporating two categories of indicators: resource conditions (thermal reservoir temperature and roof burial depth) and environmental impact (urban area safety distance and fault safety distance). Using the Analytic Hierarchy Process (AHP) and GIS spatial overlay analysis, the study area was evaluated for HDR geothermal resource exploration zoning, ultimately delineating three levels of preferred zones. The evaluation results indicate that the target area of the Cambrian–Ordovician geothermal reservoir is extensive, with the Dongtai Depression exhibiting a larger distribution of preferred zones. This study provides a reference for the optimization of target areas in geothermal resource exploration and development. Full article
Show Figures

Figure 1

22 pages, 4896 KB  
Article
Production of Novel Thermostable Esterases from Thermus thermophilus Strain ET-1 in Escherichia coli and Thermus thermophilus HB27 Using the Bifunctional Expression System pTGT-1 and Characterization of the Recombinant Enzymes
by Bernardita Valenzuela, Mayra Cayo, Francisco Solís-Cornejo, María-Belen Reyes, Ignacia Palma, Elena Uribe and Pedro Zamorano
Int. J. Mol. Sci. 2026, 27(3), 1372; https://doi.org/10.3390/ijms27031372 - 29 Jan 2026
Viewed by 197
Abstract
The thermophilic bacterium Thermus thermophilus represents a crucial genetic reservoir for exploring thermostable enzymes as valuable biocatalysts for industrial and biotechnology applications. Here, we identify, clone, and characterize Ces1-ET, Est1-ET, and Plp1-ET, three lipolytic enzymes obtained from T. thermophilus strain ET-1 isolated from [...] Read more.
The thermophilic bacterium Thermus thermophilus represents a crucial genetic reservoir for exploring thermostable enzymes as valuable biocatalysts for industrial and biotechnology applications. Here, we identify, clone, and characterize Ces1-ET, Est1-ET, and Plp1-ET, three lipolytic enzymes obtained from T. thermophilus strain ET-1 isolated from El Tatio Geothermal Field in Northern Chile. To enable recombinant expression, we constructed the pTGT-1 expression system, a versatile bifunctional shuttle vector compatible with both Escherichia coli and T. thermophilus. The three thermoenzymes Ces1-ET, Est1-ET, and Plp1-ET, were successfully cloned, expressed, and purified using the pTGT-1 system, with a molecular mass of 25 kDa, 36 kDa, and 28 kDa, respectively. The recombinant purified enzymes displayed optimal temperatures at 60 °C, 80 °C, and 70 °C and optimal pH of 7.5, 9.0, and 8.0 for Ces1-ET, Est1-ET, and Plp1-ET, respectively. Functional biochemical assays revealed a broad tolerance to surfactants, detergents, divalent cations, and high salinity, relevant properties for their application in an industrial setting. These thermostable esterases expand the repertoire of thermozymes from Thermus spp., introducing pTGT-1 as an innovative tool for thermophilic protein expression and highlighting T. thermophilus strain ET-1 from El Tatio Geothermal Field as a valuable source of thermostable enzymes for industrial and biotechnology applications. Full article
(This article belongs to the Special Issue Thermophilic and Hyperthermophilic Microbes and Enzymes 3.0)
Show Figures

Figure 1

33 pages, 1482 KB  
Review
A New Paradigm for Physics-Informed AI-Driven Reservoir Research: From Multiscale Characterization to Intelligent Seepage Simulation
by Jianxun Liang, Lipeng He, Weichao Chai, Ninghong Jia and Ruixiao Liu
Energies 2026, 19(1), 270; https://doi.org/10.3390/en19010270 - 4 Jan 2026
Viewed by 537
Abstract
Characterizing and simulating complex reservoirs, particularly unconventional resources with multiscale and non-homogeneous features, presents significant bottlenecks in cost, efficiency, and accuracy for conventional research methods. Consequently, there is an urgent need for the digital and intelligent transformation of the field. To address this [...] Read more.
Characterizing and simulating complex reservoirs, particularly unconventional resources with multiscale and non-homogeneous features, presents significant bottlenecks in cost, efficiency, and accuracy for conventional research methods. Consequently, there is an urgent need for the digital and intelligent transformation of the field. To address this challenge, this paper proposes that the core solution lies in the deep integration of physical mechanisms and data intelligence. We systematically review and define a new research paradigm characterized by the trinity of digital cores (geometric foundation), physical simulation (mechanism constraints), and artificial intelligence (efficient reasoning). This review clarifies the core technological path: first, AI technologies such as generative adversarial networks and super-resolution empower digital cores to achieve high-fidelity, multiscale geometric characterization; second, cross-scale physical simulations (e.g., molecular dynamics and the lattice Boltzmann method) provide indispensable constraints and high-fidelity training data. Building on this, the methodology evolves from surrogate models to physics-informed neural networks, and ultimately to neural operators that learn the solution operator. The analysis demonstrates that integrating these techniques into an automated “generation–simulation–inversion” closed-loop system effectively overcomes the limitations of isolated data and the lack of physical interpretability. This closed-loop workflow offers innovative solutions to complex engineering problems such as parameter inversion and history matching. In conclusion, this integration paradigm serves not only as a cornerstone for constructing reservoir digital twins and realizing real-time decision-making but also provides robust technical support for emerging energy industries, including carbon capture, utilization, and sequestration (CCUS), geothermal energy, and underground hydrogen storage. Full article
Show Figures

Figure 1

21 pages, 12296 KB  
Article
Corrosion Resistance of Well Steel in a Supercritical Carbon Dioxide Environment in Geothermal Systems Utilizing Depleted Hydrocarbon Reservoirs
by Mateusz Masłowski, Krzysztof Labus, Marek Czupski and Stefan Ptak
Energies 2025, 18(23), 6239; https://doi.org/10.3390/en18236239 - 27 Nov 2025
Viewed by 353
Abstract
This study evaluates the corrosion behavior of N80 production tubing steel under high-temperature, high-pressure (HTHP) conditions representative of CO2-based geothermal exploitation in depleted hydrocarbon reservoirs. We developed a staged laboratory protocol that simulates (i) an early multiphase production window (oil + [...] Read more.
This study evaluates the corrosion behavior of N80 production tubing steel under high-temperature, high-pressure (HTHP) conditions representative of CO2-based geothermal exploitation in depleted hydrocarbon reservoirs. We developed a staged laboratory protocol that simulates (i) an early multiphase production window (oil + formation brine + supercritical CO2), (ii) the same environment with the originally developed non-commercial inhibitor (INH), and (iii) a later stabilized stage dominated by near-anhydrous supercritical CO2 (scCO2) with trace brine and oil. Corrosion was quantified by gravimetric mass-loss, complemented by multi-scale surface characterization (2D/3D optical profilometry) and microscopic cross-section analysis. In the early multiphase scenario unprotected N80 experienced severe attack (mass-loss rate ≈ 0.67 mm·year−1) with both uniform corrosion and incipient pitting beneath ferrous-carbonate deposits. Addition of an inhibitor at 5000 ppmv reduced mass loss by more than an order of magnitude (to ≈0.09 mm·year−1, ≈97% inhibition) and substantially limited pitting. Under stabilized, near-dry scCO2 conditions, corrosion was negligible (≈0.0016 mm·year−1). Multi-scale imaging linked observed morphologies (porous FeCO3 scales, under-deposit pits) to measured rates and supported stage-specific mitigation recommendations. The novelty of this work lies in the integrated, staged HTHP experimental approach and in providing quantitative, actionable inputs for material selection, inhibitor deployment, and monitoring strategies for CCS–EGS projects that reuse depleted hydrocarbon reservoirs. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

15 pages, 3473 KB  
Article
Heat Extraction Optimization of Well Clusters for Hydrothermal Reservoir Development
by Xiangchun Li, Junlin Yi, Gaosheng Wang, Qian Wei, Shuang Li, Qiliang Cui and Jialin Zhao
Processes 2025, 13(12), 3791; https://doi.org/10.3390/pr13123791 - 24 Nov 2025
Viewed by 402
Abstract
In recent years, hydrothermal geothermal resources have been predominantly exploited through well cluster systems, achieving extensive commercial implementation. The efficient development of such systems remains critically dependent on the comprehensive characterization of regional geological conditions, as multiple subsurface parameters—including stratal thickness, structural relief, [...] Read more.
In recent years, hydrothermal geothermal resources have been predominantly exploited through well cluster systems, achieving extensive commercial implementation. The efficient development of such systems remains critically dependent on the comprehensive characterization of regional geological conditions, as multiple subsurface parameters—including stratal thickness, structural relief, porosity–permeability distribution, and fault architecture—exert substantial control over reservoir performance. However, the effective integration of these geological factors to optimize well network configurations, balancing economic viability, power output, and other evaluation metrics to enhance heat extraction efficiency and delay thermal breakthrough, remains unresolved. This study aimed to identify the optimal well cluster for hydrothermal geothermal resources in the X region. Geological, drilling, and well-logging data were compiled to construct a region-specific geological model. A coupled numerical model of fluid flow and heat transfer was developed for a five-spot well pattern. System performances under two commonly applied injection-to-production ratios (2:3 and 1:4) and spatial configurations between injection and production wells were quantified. A multi-criteria evaluation framework integrating heat extraction power, injection–production pressure difference, and production temperature decline was implemented to holistically assess well cluster. An integrated weighting strategy combining subjective expertise and objective analytical criteria was implemented alongside the TOPSIS method to systematically identify the optimal wellfield configuration. Results demonstrate that Pattern 11, comprising three injection wells and two production wells, achieved superior comprehensive performance among 15 patterns, with heat extraction power 24.13 MW, and production temperature decline <1 °C and injection–production pressure difference <3 MPa. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 5337 KB  
Article
Hydrogeochemical Characteristics of Hot Springs and Mud Volcanoes and Their Short-Term Seismic Precursor Anomalies Around the Muji Fault Zone, Northeastern Pamir Plateau
by Shihan Cui, Fenna Zhang, Xiaocheng Zhou, Jingchao Li, Jiao Tian, Zhaojun Zeng, Yuwen Wang, Bingyu Yao, Gaoyuan Xing, Jinyuan Dong, Miao He, Han Yan, Ruibin Li, Wan Zheng, Kayimu Saimaiernaji, Chengguo Wang, Wei Yan and Rong Ma
Water 2025, 17(22), 3241; https://doi.org/10.3390/w17223241 - 13 Nov 2025
Viewed by 846
Abstract
The Muji Fault Zone (MJF) in the northeastern Pamir Plateau hosts a well-developed non-volcanic geothermal system, characterized by widespread hot springs and mud volcanoes—where core processes of geothermal fluids, including atmospheric precipitation recharge, shallow crustal circulation, carbonate-driven water–rock interactions, and CO2-rich [...] Read more.
The Muji Fault Zone (MJF) in the northeastern Pamir Plateau hosts a well-developed non-volcanic geothermal system, characterized by widespread hot springs and mud volcanoes—where core processes of geothermal fluids, including atmospheric precipitation recharge, shallow crustal circulation, carbonate-driven water–rock interactions, and CO2-rich fluid discharge, are tightly coupled with regional intense crustal deformation and frequent seismic activity. We collected and analyzed 22 geothermal water samples and 8 bubbling gas samples from the MJF periphery, finding that the geothermal waters are predominantly of the HCO3-Ca·Mg hydrochemical type, with hydrogen (δD: −103.82‰ to −70.21‰) and oxygen (δ18O: −14.89‰ to −10.10‰) isotopes indicating atmospheric precipitation as the main recharge source. The Na-K-Mg ternary diagram classified the waters as immature, reflecting low-temperature water–rock interactions in the shallow crust (<3 km), while noble gas isotopes (3He/4He: 0.03–0.09 Ra, Ra = 1.43 × 10−6) and carbon isotopes (δ13C-CO2) confirmed fluid origin from crustal carbonate dissolution; SiO2 geothermometry estimated thermal reservoir temperatures at 67–155 °C. Long-term monitoring (May 2019–April 2024) of Tahman (THM) and Bulake (BLK) springs revealed significant pre-seismic anomalies: before the 2023 Tajikistan Ms7.2 and 2024 Wushi Ms7.1 earthquakes, Na+, Cl, and SO42− concentrations showed notable negative anomalies (exceeding 2σ of background values) with synchronous trends between the two springs. Integrating these findings, a “Fault-Spring-Mud Volcano-Earthquake” fluid response model was established, providing direct evidence of deep-shallow fluid coupling in mud volcano–geothermal fluid interactions. This study enhances understanding of the dynamic evolution of non-volcanic geothermal systems under tectonic stress and clarifies the mechanisms of hydrogeochemical variations in fault-controlled geothermal systems, offering a robust scientific basis for advancing research on tectonic–fluid interactions in active fault zones of the northeastern Pamir Plateau. Full article
Show Figures

Figure 1

21 pages, 5209 KB  
Article
Development of a Transient Wellbore Heat Transfer Model Validated with Distributed Temperature Sensing Data
by Rion Nakamoto and Smith Leggett
Sensors 2025, 25(21), 6583; https://doi.org/10.3390/s25216583 - 26 Oct 2025
Viewed by 844
Abstract
Distributed temperature sensing (DTS) has long been employed in the oil and gas industry to characterize reservoirs, optimize production, and extend well life. More recently, its application has expanded to geothermal energy development, where DTS provides critical insights into transient wellbore temperature profiles [...] Read more.
Distributed temperature sensing (DTS) has long been employed in the oil and gas industry to characterize reservoirs, optimize production, and extend well life. More recently, its application has expanded to geothermal energy development, where DTS provides critical insights into transient wellbore temperature profiles and flow behavior. A comprehensive understanding of such field measurements can be achieved by systematically comparing and interpreting DTS data in conjunction with robust numerical models. However, many existing wellbore models rely on steady-state heat transfer assumptions that fail to capture transient dynamics, while fully coupled wellbore–reservoir simulations are often computationally demanding and mathematically complex. This study aims to address this gap by developing a transient wellbore heat transfer model validated with DTS data. The model was formulated using a thermal-analogy approach based on the theoretical framework of Eickmeier et al. and implemented with a finite-difference scheme. Validation was performed by comparing thermal slug velocities predicted by the model with those extracted from DTS measurements. The results demonstrated strong agreement between modeled and measured slug velocities, confirming the model’s reliability. In addition, the modeled thermal slug velocity was lower than the corresponding fluid velocity, indicating that thermal front propagates more slowly than the fluid front. Consequently, this computationally efficient approach enhances the interpretation of DTS data and offers a practical tool for improved monitoring and management of geothermal operations. Full article
(This article belongs to the Special Issue Sensors and Sensing Techniques in Petroleum Engineering)
Show Figures

Figure 1

24 pages, 4387 KB  
Article
Deep Temperature and Heat-Flow Characteristics in Uplifted and Depressed Geothermal Areas
by Pengfei Chi, Guoshu Huang, Liang Liu, Jian Yang, Ning Wang, Xueting Jing, Junjun Zhou, Ningbo Bai and Hui Ding
Energies 2025, 18(21), 5610; https://doi.org/10.3390/en18215610 - 25 Oct 2025
Viewed by 478
Abstract
To address the high costs and inefficiencies of blind prospecting in deep geothermal exploration, this study develops a three-dimensional heat transfer model for quantitative prediction of geothermal enrichment targets. Unlike traditional qualitative or single-mechanism analyses, this research utilizes a finite element forward modeling [...] Read more.
To address the high costs and inefficiencies of blind prospecting in deep geothermal exploration, this study develops a three-dimensional heat transfer model for quantitative prediction of geothermal enrichment targets. Unlike traditional qualitative or single-mechanism analyses, this research utilizes a finite element forward modeling approach based on step-faulted depressions (sedimentary basins/grabens) and uplifts (domes/uplift belts). We simulate temperature fields and heat flux distributions in multilayered systems incorporating four thermal conductivity types (A, K, H, Q). By systematically comparing the geometric heat flow convergence in depressions with the lateral diffusion in uplifts, this work reveals mirror and anti-mirror relationships between temperature fields and structural morphology at middle and deep levels, as well as local “hot spot” and “cold zone” effects. The results indicate that, in depressional structures, shallow high-temperature reservoirs (<2 km) are mainly concentrated in A- and K-types, while deeper reservoirs (>3 km) are enriched in Q- and H-types. In contrast, uplift structures are characterized by mid- to shallow-depth (<3 km) reservoirs predominantly in A- and K-types, with high temperatures at depth preferentially hosted in A- and H-types, and the highest temperatures observed in the A-type. Thermal conductivity contrasts, layer thicknesses, and structural morphology collectively control the spatial distribution of heat flux. A strong positive correlation between thermal conductivity and heat flux is observed at the central target area, significantly stronger than at the margins, whereas this relationship is notably weakened in Q-type. Crucially, low-conductivity zones display high geothermal gradients coupled with low terrestrial heat flow, disproving the axiom that “elevated geothermal gradients imply high heat flow,” thus establishing “high-gradient/low-heat-flow coupling zones” as strategic exploration targets. The model developed in this study demonstrates high simulation accuracy and computational efficiency. The findings provide a robust theoretical basis for reconstructing geothermal geological evolution and precise geothermal target localization, thereby reducing the risk of “blind heat exploration” and promoting the cost-effective and refined development of deep concealed geothermal resources. Full article
(This article belongs to the Special Issue Advanced Research in Heat and Mass Transfer)
Show Figures

Figure 1

24 pages, 5379 KB  
Article
Multiscale Fracture Roughness Effects on Coupled Nonlinear Seepage and Heat Transfer in an EGS Fracture
by Ziqian Yan, Jian Zhou, Xiao Peng and Tingfa Dong
Energies 2025, 18(20), 5391; https://doi.org/10.3390/en18205391 - 13 Oct 2025
Viewed by 439
Abstract
The seepage characteristics and heat transfer efficiency in rough fractures are indispensable for assessing the lifetime and production performance of geothermal reservoirs. In this study, a two-dimensional rough rock fracture model with different secondary roughness is developed using the wavelet analysis method to [...] Read more.
The seepage characteristics and heat transfer efficiency in rough fractures are indispensable for assessing the lifetime and production performance of geothermal reservoirs. In this study, a two-dimensional rough rock fracture model with different secondary roughness is developed using the wavelet analysis method to simulate the coupled flow and heat transfer process under multiscale roughness based on two theories: local thermal equilibrium (LTE) and local thermal nonequilibrium (LTNE). The simulation results show that the primary roughness controls the flow behavior in the main flow zone in the fracture, which determines the overall temperature distribution and large-scale heat transfer trend. Meanwhile, the nonlinear flow behaviors induced by the secondary roughness significantly influence heat transfer performance: the secondary roughness usually leads to the formation of more small-scale eddies near the fracture walls, increasing flow instability, and these changes profoundly affect the local water temperature distribution and heat transfer coefficient in the fracture–matrix system. The eddy aperture and eddy area fraction are proposed for analyzing the effect of nonlinear flow behavior on heat transfer. The eddy area fraction significantly and positively correlates with the overall heat transfer coefficient. Meanwhile, the overall heat transfer coefficient increases by about 3% to 10% for eddy area fractions of 0.3% to 3%. As the eddy aperture increases, fluid mixing is enhanced, leading to a rise in the magnitude of the local heat transfer coefficient. Finally, the roughness characterization was decomposed into primary roughness root mean square and secondary roughness standard deviation, and for the first time, an empirical correlation was established between multiscale roughness, flow velocity, and the overall heat transfer coefficient. Full article
Show Figures

Figure 1

23 pages, 3031 KB  
Article
Climbing the Pyramid: From Regional to Local Assessments of CO2 Storage Capacities in Deep Saline Aquifers of the Drava Basin, Pannonian Basin System
by Iva Kolenković Močilac, Marko Cvetković, David Rukavina, Ana Kamenski, Marija Pejić and Bruno Saftić
Energies 2025, 18(14), 3800; https://doi.org/10.3390/en18143800 - 17 Jul 2025
Viewed by 786
Abstract
Deep saline aquifers in the eastern part of Drava Basin were screened for potential storage sites. The input dataset included three seismic volumes, a rather extensive set of old seismic sections and 71 wells. Out of all identified potential storage objects, only two [...] Read more.
Deep saline aquifers in the eastern part of Drava Basin were screened for potential storage sites. The input dataset included three seismic volumes, a rather extensive set of old seismic sections and 71 wells. Out of all identified potential storage objects, only two sites were found to be situated in the favorable geological settings, meaning that the inspected wells drilled through structural traps had a seal at least 20 m thick which was intersected by only a few faults with rather limited displacement. Many more closed structures in the area were tested by exploration wells, but in all other wells, various problems were encountered, including inadequate reservoir properties, inadequate seal or inadequate depth of the identified trap. Analysis was highly affected by the insufficient quality and spatial distribution of the seismic input data, as well as in places with insufficient quality of input well datasets. An initial characterization of identified storage sites was performed, and their attributes were compared, with potential storage object B recognized as the one that should be further developed. However, given the depth and increased geothermal gradient of the potential storage object B, it is possible that it will be developed as a geothermal reservoir, and this brings forward the problem of concurrent subsurface use. Full article
(This article belongs to the Collection Feature Papers in Carbon Capture, Utilization, and Storage)
Show Figures

Figure 1

28 pages, 5040 KB  
Article
Formation and Evolution Mechanisms of Geothermal Waters Influenced by Fault Zones and Ancient Lithology in the Yunkai Uplift, Southern China
by Xianxing Huang, Yongjun Zeng, Shan Lu, Guoping Lu, Hao Ou and Beibei Wang
Water 2025, 17(13), 1885; https://doi.org/10.3390/w17131885 - 25 Jun 2025
Cited by 2 | Viewed by 1001
Abstract
Geothermal systems play a crucial role in understanding Earth’s heat dynamics. The Yunkai Uplift in southern China exemplifies a geothermally rich region characterized by ancient lithologies and high heat flow. This study investigates the geochemical characteristics of geothermal waters in the Yunkai Uplift. [...] Read more.
Geothermal systems play a crucial role in understanding Earth’s heat dynamics. The Yunkai Uplift in southern China exemplifies a geothermally rich region characterized by ancient lithologies and high heat flow. This study investigates the geochemical characteristics of geothermal waters in the Yunkai Uplift. Both geothermal and non-thermal water samples were collected along the Xinyi–Lianjiang (XL) Fault Zone and the Cenxi–Luchuan (CL) Fault Zone flanking the core of the Yunkai Mountains. Analytical techniques were applied to examine major ions, trace elements, and dissolved CO2 and H2, as well as isotopic characteristics of O, H, Sr, C, and He in water samples, allowing for an investigation of geothermal reservoir temperatures, circulation depths, and mixing processes. The findings indicate that most geothermal waters are influenced by water–rock interactions primarily dominated by granites. The region’s diverse lithologies, change from ancient Caledonian granites and medium–high-grade metamorphic rocks in the central hinterland (XL Fault Zone) to low-grade metamorphic rocks and sedimentary rocks in the western margin (CL Fault Zone). The chemical compositions of geothermal waters are influenced through mixing contacts between diverse rocks of varying ages, leading to distinct geochemical characteristics. Notably, δ13CCO2 values reveal that while some samples exhibit significant contributions from metamorphic CO2 sources, others are characterized by organic CO2 origins. Regional heat flow results from the upwelling of mantle magma, supplemented by radioactive heat generated from crustal granites. Isotopic evidence from δ2H and δ18O indicates that the geothermal waters originate from atmospheric sources, recharged by precipitation in the northern Yunkai Mountains. After infiltrating to specific depths, meteoric waters are heated to temperatures ranging from about 76.4 °C to 178.5 °C before ascending through the XL and CL Fault Zones under buoyancy forces. During their upward migration, geothermal waters undergo significant mixing with cold groundwater (54–92%) in shallow strata. As part of the western boundary of the Yunkai Uplift, the CL Fault Zone may extend deeper into the crust or even interact with the upper mantle but exhibits weaker hydrothermal activities than the XL Fault Zone. The XL Fault Zone, however, is enriched with highly heat-generating granites, is subjected more to both the thermal and mechanical influences of upwelling mantle magma, resulting in a higher heat flow and tension effect, and is more conducive to the formation of geothermal waters. Our findings underscore the role of geotectonic processes, lithological variation, and fault zone activity in shaping the genesis and evolution of geothermal waters in the Yunkai Uplift. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

13 pages, 3767 KB  
Article
Tracing Experiments and Flow Characteristic Analyses in Carbonate Geothermal Reservoirs: A Case Study of the Juancheng Geothermal Field, North China
by Yanyu Jia, Kefu Li, Li Du, Chuanqing Zhu, Fei Gao, Long Cui, Yaorong Shen and Haowei Fu
Water 2025, 17(11), 1677; https://doi.org/10.3390/w17111677 - 1 Jun 2025
Cited by 1 | Viewed by 830
Abstract
Carbonate geothermal reservoirs, characterized by widespread distribution, a high discharge capacity, and favorable reinjection conditions, have become a key target for geothermal resource development. However, the karst geothermal reservoir system in the Juancheng geothermal field exhibits significant heterogeneity, leading to substantial disparities in [...] Read more.
Carbonate geothermal reservoirs, characterized by widespread distribution, a high discharge capacity, and favorable reinjection conditions, have become a key target for geothermal resource development. However, the karst geothermal reservoir system in the Juancheng geothermal field exhibits significant heterogeneity, leading to substantial disparities in productivity among multiple geothermal wells and severely restricting efficient regional exploitation. This study systematically investigates the hydraulic characteristics and development potential of the karst geothermal reservoir in the Juancheng geothermal field using sodium fluorescein tracing experiment technology. The results reveal that the reservoir system contains multiple flow channels with distinct permeability differences. The dominant flow pathways, controlled by fault structures, exhibit an apparent velocity of up to 10.98 m/h, significantly higher than other regions in the study area. In contrast, low-permeability zones, influenced by the burial depth of the Ordovician strata, show poor connectivity due to limited karst development, with the lowest apparent velocity of only 1.03 m/h. By integrating pumping test data and tracer response characteristics, the dominant flow direction (northeast) demonstrates a stronger recharge capacity and water abundance, offering a higher development value. Conversely, the southeast low-permeability zone has weaker water production and constrained recharge conditions, resulting in a relatively limited development potential. Additionally, it is recommended that the direction of future geothermal well placement in the Juancheng geothermal field should avoid being parallel to the fault strike to prolong the thermal breakthrough arrival time. In regions with deeper Ordovician strata burial, denser well network deployment is suggested to enhance the reservoir utilization efficiency. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

30 pages, 12333 KB  
Article
Investigating the Geothermal Potentiality of Hail Granites, Northern KSA: The Preliminary Results
by Aref Lashin, Oussama Makhlouf, Faisal K. Zaidi and Abdulmalek Amin Noman
Sustainability 2025, 17(10), 4656; https://doi.org/10.3390/su17104656 - 19 May 2025
Viewed by 1584
Abstract
The work aims to give a preliminary investigation of the geothermal potentiality of the hot dry granitic rocks in the Hail area, Northern KSA. The Hail area is characterized by a massive exposed belt of radioactive granitic rocks in the southern part, while [...] Read more.
The work aims to give a preliminary investigation of the geothermal potentiality of the hot dry granitic rocks in the Hail area, Northern KSA. The Hail area is characterized by a massive exposed belt of radioactive granitic rocks in the southern part, while the northern part is covered by a sedimentary section. A comprehensive methodology utilizing different categories of mineralogical petrographic, geochemical, geophysical well logging and, radiometry datasets, was used to assess the radiogenic heat production capacity of this granite. The measured data are integrated and interpreted to quantify the potential geothermal capacity of the granite and estimate its possible power production. The radioactivity and radiogenic heat production (RHP) of the Hail granites are among the highest recorded values in Saudi Arabia. Land measurements indicate uranium, thorium, potassium, and RHP values of 17.80 ppm, 90.0 ppm, 5.20%, and 11.93 µW/m3, respectively. The results indicated the presence of a reasonable subsurface geothermal reservoir condition with heat flow up to 99.87 mW/M2 and a reservoir temperature of 200 °C (5 km depth). Scenarios for energy production through injecting water and high-pressure CO2 in the naturally/induced fractured rock are demonstrated. Reserve estimate revealed that at a 2% heat recovery level, the Hail granites could generate about 3.15 × 1016 MWe, contributing to an average figure of 3.43 × 1012 kWh/y, for annual energy per capita Saudi share. The results of this study emphasized the potential contribution of the Hail granite in the future of the energy mix of KSA, as a new renewable and sustainable resource. It is recommended to enhance the surface geophysical survey in conjunction with a detailed thermo-mechanical laboratory investigation to delineate the subsurface orientation and geometry of the granite and understand its behavior under different temperature and pressure conditions. Full article
Show Figures

Figure 1

33 pages, 24486 KB  
Article
Controlling Factors of Diagenetic Evolution on Reservoir Quality in Oligocene Sandstones, Xihu Sag, East China Sea Basin
by Yizhuo Yang, Zhilong Huang, Tong Qu, Jing Zhao and Zhiyuan Li
Minerals 2025, 15(4), 394; https://doi.org/10.3390/min15040394 - 8 Apr 2025
Cited by 1 | Viewed by 1142
Abstract
The tight sandstone reservoirs within the Oligocene Huagang Formation represent one of the most promising exploration targets for future hydrocarbon development in the Xihu Depression of the East China Sea Basin. The reservoir has complex sedimentary and diagenetic processes. In this paper, a [...] Read more.
The tight sandstone reservoirs within the Oligocene Huagang Formation represent one of the most promising exploration targets for future hydrocarbon development in the Xihu Depression of the East China Sea Basin. The reservoir has complex sedimentary and diagenetic processes. In this paper, a variety of methods, such as microscopic image observation, particle size analysis, X-ray diffraction measurement (XRD), heavy minerals, carbon and oxygen isotopes of cement, the homogenization temperature of fluid inclusions, zircon (U-Th)/He isotopes, and high-pressure mercury intrusion (HPMI), are used to analyze the thermal evolution history, diagenetic evolution process, and the causes of differences in diagenetic processes and high-quality reservoirs. This study shows that the provenance of the southern region is derived from western metamorphic rock, while that of the northern region is dominated by northern metamorphic rock, including some eastern volcanic rock. The northern region exhibits a stronger compaction and lower porosity, primarily due to a greater proportion of volcanic rock provenance. Additionally, coarse-grained lithofacies exhibit a higher quartz content and lower proportions of clay minerals and lithic fragment compared to fine-grained lithofacies, consequently demonstrating greater resistance to compaction. The Huagang Formation reservoir has three stages of carbonate cementation, two stages of quartz overgrowth, and two stages of fluid charging. The two stages of fluid charging correspond to two stages of organic acid dissolution. In the northern region, the geothermal gradient is high, and the burial depth is large, so the diagenetic event occurred earlier and is now in the mesodiagenesis B stage, while in the southern region, the geothermal gradient is low, and the burial depth is small and is now in the mesodiagenesis A stage. The southern distributary channel sands and northern high-energy braided channel sands constitute high-quality reservoirs, characterized by a coarse grain size, large pore throats, and minimal cement content. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

Back to TopTop