Optimizing Micro-CT Resolution for Geothermal Reservoir Characterization in the Pannonian Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area and Sample Collection and Preparation
2.2. Gas Porosity and Permeability Measurements
2.3. Micro-CT Imaging
2.4. Imaging Analysis and Resolution Impact Assessment
3. Results and Discussion
3.1. Helium Porosity and Permeability Results
3.2. Micro-CT Imaging Results
Segmentation and Pore Space Analysis at Different Resolutions
3.3. Comparative Analysis of Petrophysical Parameters
4. Conclusions
5. Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lund, J.W.; Freeston, D.H.; Boyd, T.L. Direct utilization of geothermal energy 2010 worldwide review. Geothermics 2011, 40, 40159–40180. [Google Scholar] [CrossRef]
- Qin, J.; Rosenbauer, R.J.; Duan, Z. Experimental measurements of vapor-liquid equilibria of the H2O + CO2 + CH4 ternary system. J. Chem. Eng. Data 2008, 53, 1246–1249. [Google Scholar] [CrossRef]
- Ma, S.; Yang, Y.; Lei, X.; Yue, B. Water scaling predication for typical sandstone geothermal reservoirs in the Xi’an Depression. Energy Geosci. 2023, 4, 100182. [Google Scholar] [CrossRef]
- Njeru, R.M.; Halisch, M.; Szanyi, J. Micro-scale investigation of the pore network of sandstone in the Pannonian Basin to improve geothermal energy development. Geothermics, 2024; in press. [Google Scholar] [CrossRef]
- Hurter, S.; Schellschmidt, R. Atlas of geothermal resources in Europe. Geothermics 2003, 32, 779–787. [Google Scholar] [CrossRef]
- Tulinius, H.; Ádám, L.; Halldórsdóttir, H.; Yu, G.; Strack, K.; Allegar, N.; He, L.; He, Z. Exploring for geothermal reservoirs using broadband 2-D MT and gravity in Hungary. SEG Tech. Progr. Expand. Abstr. 2008, 27, 1147–1151. [Google Scholar] [CrossRef]
- Dövényi, P.; Horváth, F. A Review of Temperature, Thermal Conductivity, and Heat Flow Data for the Pannonian Basin. In The Pannonian Basin: A Study in Basin Evolution; American Association of Petroleum Geologists: McLean, VA, USA, 1988; Volume 45. [Google Scholar] [CrossRef]
- Yu, G.; He, Z.X.; Hu, Z.Z.; Porbergsdottir, I.M.; Strack, K.M.; Tulinius, H. Geothermal exploration using MT and gravity techniques at Szentlo˝rinc area in Hungary. In SEG Technical Program Expanded Abstracts 2009; Society of Exploration Geophysicists: Houston, TX, USA, 2009; pp. 4333–4338. [Google Scholar] [CrossRef]
- Nádor, A.; Kujbus, A.; Tóth, A.; Use, G.E. Country Update for Hungary. European Geothermal Congress 2019 Den Haag, 2019. Available online: www.mbfsz.gov.hu (accessed on 29 November 2023).
- Willems, C.J.L.; Cheng, C.; Watson, S.M.; Minto, J.; Williams, A.; Walls, D.; Milsch, H.; Burnside, N.M.; Westaway, R. Permeability and mineralogy of the Újfalu formation, hungary, from production tests and experimental rock characterization: Implications for geothermal heat projects. Energies 2021, 14, 4332. [Google Scholar] [CrossRef]
- Ungemach, P. Reinjection of cooled geothermal brines into sandstone reservoirs. Geothermics 2003, 32, 743–761. [Google Scholar] [CrossRef]
- Töth, J.; Almasi, I. Interpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression: Hungarian Great Plain, Pannonian Basin. Geofluids 2001, 1, 11–36. [Google Scholar] [CrossRef]
- Békési, E.; Fokker, P.A.; Candela, T.; Szanyi, J.; van Wees, J.D. Ground motions induced by pore pressure changes at the Szentes geothermal area, SE Hungary. Geotherm. Energy 2022, 10, 3. [Google Scholar] [CrossRef]
- Szijártó, M.; Vatai, Z.; Galsa, A. Numerical investigation of the groundwater age and heat transport processes in asymmetric hydrogeological situations. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. EGU23-3840. [Google Scholar] [CrossRef]
- Bakke, S.; Øren, P.-E. 3-D Pore-Scale Modelling of Sandstones and Flow Simulations in the Pore Networks. SPE J. 1997, 2, 136–149. [Google Scholar] [CrossRef]
- Takase, A.; McNulty, T.; Fitzgibbons, T. Foam Porosity Calculation by X-Ray Computed Tomography and Errors Caused by Insufficient Resolution. Microsc. Microanal. 2018, 24, 546–547. [Google Scholar] [CrossRef]
- Buday-Bódi, E.; Irfan, A.; McIntosh, R.W.; Fehér, Z.Z.; Csajbók, J.; Juhász, C.; Radócz, L.; Szilágyi, A.; Buday, T. Subregion-Scale Geothermal Delineation Based on Image Analysis Using Reflection Seismology and Well Data with an Outlook for Land Use. Sustainability 2022, 14, 3529. [Google Scholar] [CrossRef]
- Munawar, M.J.; Lin, C.; Cnudde, V.; Bultreys, T.; Dong, C.; Zhang, X.; De Boever, W.; Zahid, M.A.; Wu, Y. Petrographic characterization to build an accurate rock model using micro-CT: Case study on low-permeable to tight turbidite sandstone from Eocene Shahejie Formation. Micron 2018, 109, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Chen, M.; Jin, Y.; Zhang, W.; Shao, H.; Wang, G.; Long, E.; Long, W. A New Multi-Scale Method to Evaluate the Porosity and MICP Curve for Digital Rock of Complex Reservoir. Energies 2023, 16, 7613. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Wei, S.; Yang, P.; Shang, Y. Opportunities in measuring multiscale pore structure of the continental shale of the yanchang formation, ordos basin, china. Energies 2021, 14, 5282. [Google Scholar] [CrossRef]
- Horvath, F.; Bodri, L.; Abstracr, P.O. Geothermics of Hungary and the Tectonophysics of the Pannonian Basin “Red Spot”. In Terrestrial Heat Flow in Europe; Čermák, V., Rybach, L., Eds.; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar] [CrossRef]
- Kovačić, M.; Grizelj, A. Provenance of the Upper Miocene clastic material in the southwestern part of the Pannonian Basin. Geol. Carpathica 2006, 57, 495–510. [Google Scholar]
- Bérczi, I. Preliminary Sedimentological Investigation of a Neogene Depression in the Great Hungarian Plain. In The Pannonian Basin: A Study in Basin Evolution; American Association of Petroleum Geologists: McLean, VA, USA, 1988; Volume 45. [Google Scholar] [CrossRef]
- Sztanó, O.; Szafián, P.; Magyar, I.; Horányi, A.; Bada, G.; Hughes, D.W.; Hoyer, D.L.; Wallis, R.J. Aggradation and progradation controlled clinothems and deep-water sand delivery model in the Neogene lake pannon, Makó Trough, Pannonian Basin, SE Hungary. Glob. Planet. Chang. 2013, 103, 149–167. [Google Scholar] [CrossRef]
- Koroncz, P.; Vizhányó, Z.; Farkas, M.P.; Kuncz, M.; Ács, P.; Kocsis, G.; Mucsi, P.; Szász, A.F.; Fedor, F.; Kovács, J. Experimental Rock Characterisation of Upper Pannonian Sandstones from Szentes Geothermal Field, Hungary. Energies 2022, 15, 9136. [Google Scholar] [CrossRef]
- Bálint, A.; Szanyi, J. A half century of reservoir property changes in the Szentes geothermal field, Hungary. Cent. Eur. Geol. 2015, 58, 28–49. [Google Scholar] [CrossRef]
- Almási, I. Petroleum Hydrogeology of the Great Hungarian Plain, Eastern Pannonian Basin, Hungary. University of Alberta, 2001. Available online: https://www.nlc-bnc.ca/obj/s4/f2/dsk3/ftp04/NQ60365.pdf (accessed on 16 January 2024).
- API. Recommended Practices for Core Analysis. 1998. Available online: https://www.energistics.org/sites/default/files/2022-10/rp40.pdf (accessed on 16 January 2024).
- Halisch, M.; Steeb, H.; Henkel, S.; Krawczyk, C.M. Pore-scale tomography and imaging: Applications, techniques and recommended practice. Solid Earth 2016, 7, 1141–1143. [Google Scholar] [CrossRef]
- Rahner, M.S.; Halisch, M.; Fernandes, C.P.; Weller, A.; dos Santos, V.S.S. Sampaio Santiago dos Santos, ‘Fractal dimensions of pore spaces in unconventional reservoir rocks using X-ray nano- and micro-computed tomography. J. Nat. Gas Sci. Eng. 2018, 55, 298–311. [Google Scholar] [CrossRef]
- Avizo Software Users Guide 2019. Available online: https://www.fei.com/software/avizo-user-guide (accessed on 16 January 2024).
- Schmitt, M.; Halisch, M.; Muller, C.; Fernandes, C.P. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography. Solid Earth 2016, 7, 285–300. [Google Scholar] [CrossRef]
- Ishutov, S.; Hasiuk, F.J.; Fullmer, S.M.; Buono, A.S.; Gray, J.N.; Harding, C. Resurrection of a reservoir sandstone from tomographic data using three-dimensional printing. AAPG Bull. 2017, 101, 1425–1443. [Google Scholar] [CrossRef]
- Iassonov, P.; Gebrenegus, T.; Tuller, M. Segmentation of X-ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Abera, K.A.; Manahiloh, K.N.; Nejad, M.M. The effectiveness of global thresholding techniques in segmenting two-phase porous media. Constr. Build. Mater. 2017, 142, 256–267. [Google Scholar] [CrossRef]
- Nagata, R.; Reis, P.J.D.; Appoloni, C.R. Multi-scale approach to assess total porosity and pore size in four different kinds of carbonate rocks. Micron 2023, 164, 103385. [Google Scholar] [CrossRef]
- Sezgin, B. Sankur, ‘Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Carlson, W.D. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences. Comput. Geosci. 2001, 27, 381–400. [Google Scholar] [CrossRef]
- Vaz, C.M.P.; de Maria, I.C.; Lasso, P.O.; Tuller, M. Evaluation of an Advanced Benchtop Micro-Computed Tomography System for Quantifying Porosities and Pore-Size Distributions of Two Brazilian Oxisols. Soil Sci. Soc. Am. J. 2011, 75, 832–841. [Google Scholar] [CrossRef]
Sample # | φ [%] | ΦPressure [%] | Kgas [mD] | KKl [mD] |
---|---|---|---|---|
A1 | 30.56 | 27.81 | 449 | 388 |
A2 | 31.7 | 28.39 | 633 | 557 |
A (average) | 31.13 | 28.1 | 541 | 472.5 |
B1 | 8.24 | 6.32 | 0.05 | 0.01 |
B2 | 15.61 | 12.17 | 0.04 | 0.01 |
B (average) | 11.925 | 9.245 | 0.045 | 0.01 |
Sample ID # | Method | k (mD) | φ [%] Connected | Freq. Dependent Pore Size (µm) | Weighted Pore Size Mode (µm) | Pore Size Range (µm) |
---|---|---|---|---|---|---|
A | Gas | 472.5 | 31.13 | N/A | N/A | N/A |
1 µm | 1800 | 25.0 | 100–120 | 50–60 | 1.5–190 | |
2 µm | NP | 25.9 | 80–100 | 50–60 | 2.5–240 | |
B | Gas | 0.01 | 11.93 | N/A | N/A | N/A |
1 µm | Failed | 4.15 | 30–40 | 25–30 | 1.5–124 | |
2 µm | NP | 2.8 | 25–35 | 60–70 | 2.5–76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Njeru, R.M.; Sofyan, A.; Halisch, M.; Kóbor, B.; Szanyi, J. Optimizing Micro-CT Resolution for Geothermal Reservoir Characterization in the Pannonian Basin. Energies 2024, 17, 3081. https://doi.org/10.3390/en17133081
Njeru RM, Sofyan A, Halisch M, Kóbor B, Szanyi J. Optimizing Micro-CT Resolution for Geothermal Reservoir Characterization in the Pannonian Basin. Energies. 2024; 17(13):3081. https://doi.org/10.3390/en17133081
Chicago/Turabian StyleNjeru, Rita Mwendia, Akhmad Sofyan, Matthias Halisch, Balázs Kóbor, and János Szanyi. 2024. "Optimizing Micro-CT Resolution for Geothermal Reservoir Characterization in the Pannonian Basin" Energies 17, no. 13: 3081. https://doi.org/10.3390/en17133081
APA StyleNjeru, R. M., Sofyan, A., Halisch, M., Kóbor, B., & Szanyi, J. (2024). Optimizing Micro-CT Resolution for Geothermal Reservoir Characterization in the Pannonian Basin. Energies, 17(13), 3081. https://doi.org/10.3390/en17133081