Climbing the Pyramid: From Regional to Local Assessments of CO2 Storage Capacities in Deep Saline Aquifers of the Drava Basin, Pannonian Basin System
Abstract
1. Introduction
2. Geological Setting of the Study Area and Potential “Storage Plays”
3. Materials and Methods
3.1. Depth Criterion
3.2. Effective Thickness and Porosity Criteria
3.3. Near Wellbore Permeability
3.4. Reservoir Structure Criterion
3.5. Seal Lithology and Thickness
3.6. Seal Lateral Continuity
3.7. Pore Water Salinity
3.8. CO2–Brine Interfacial Tension Criterion
3.9. Interpretation Workflow
4. Results of Site Screening and Comparative Analysis of Traps Identified as Potential CO2 Storage Sites
5. Discussion and Conclusions
- The performed study only confirmed what has been known from the characterization of hydrocarbon reservoirs; generally, the syn-rift to early post-rift (Karpatian to Late Badenian) coarse-grained sediments have marked heterogeneity with respect to their petrophysical properties. Moreover, these sediments are situated deeper than 2500 m in a significant part of the study area. In addition to the depth being greater than the cutoff value of 2500 m, for a large portion of these reservoir rocks, compaction and cementation resulted in low permeability values, thus reducing the CO2 storage potential.
- The post-rift Upper Miocene sandstones that were identified as the most promising reservoir rocks in the whole SW part of the PBS and in the eastern part of the Drava Basin are found within the depth range suitable for CO2 injection. However, they are frequently overlain by inadequate cap rocks. Specifically, the locally identified cap rocks exhibit reduced thickness (approximately 20–25 m, which is near the resolution limit of reflection seismic surveys), making their lateral continuity challenging to delineate on seismic sections.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCS | Carbon Capture and Storage |
DSA | Deep Saline Aquifer |
3D | Three-Dimensional |
PBS | Pannonian Basin System |
DST | Drill Stem Test |
References
- CBS; NGFS. NGFS Scenarios: Purpose, Use Cases and Guidance on Where Institutional Adaptations Are Required; NGFS: Paris, France, 2024. [Google Scholar]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse Gases Emissions and Global Climate Change: Examining the Influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef]
- Bentham, M.; Mallows, T.; Lowndes, J.; Green, A. CO2 STORage Evaluation Database (CO2 Stored). The UK’s Online Storage Atlas. Energy Procedia 2014, 63, 5103–5113. [Google Scholar] [CrossRef]
- Anthonsen, K.L.; Aagaard, P.; Bergmo, P.E.S.; Gislason, S.R.; Lothe, A.E.; Mortensen, G.M.; Snæbjörnsdóttir, S.Ó. Characterisation and Selection of the Most Prospective CO2 Storage Sites in the Nordic Region. Energy Procedia 2014, 63, 4884–4896. [Google Scholar] [CrossRef]
- Kovscek, A.R. Screening Criteria for CO2 Storage on Oil Reservoirs. Pet. Sci. Technol. 2002, 20, 841–866. [Google Scholar] [CrossRef]
- Raza, A.; Rezaee, R.; Gholami, R.; Bing, C.H.; Nagarajan, R.; Hamid, M.A. A Screening Criterion for Selection of Suitable CO2 Storage Sites. J. Nat. Gas Sci. Eng. 2016, 28, 317–327. [Google Scholar] [CrossRef]
- Bachu, S. Screening and Selection Criteria, and Characterisation Techniques for the Geological Sequestration of Carbon Dioxide (CO2). In Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 27–56. [Google Scholar]
- Chadwick, A.; Arts, R.; Bernstone, C.; May, F.; Thibeau, S.; Weigl, P. Best Practice for Storage of CO2 in Saline Aquifers–Observations and Guidelines from the Sacs and CO2 Storage Projects; British Geological Survey: Nottingham, UK, 2008. [Google Scholar]
- Ramírez, A.; Hagedoorn, S.; Kramers, L.; Wildenborg, T.; Hendriks, C. Screening CO2 Storage Options in The Netherlands. Int. J. Greenh. Gas Control 2010, 4, 367–380. [Google Scholar] [CrossRef]
- Martínez, R.; Suárez, I.; Zapatero, M.A.; Saftic, B.; Kolenkovic, I.; Car, M.; Persoglia, S.; Donda, F. The EU Geocapacity Project—Saline Aquifers Storage Capacity in Group South Countries. Energy Procedia 2009, 1, 2733–2740. [Google Scholar] [CrossRef]
- Šimon, J. On Some Results of Regional Lithostratigraphic Correlation in the South-Western Part of Pannonian Basin (O Nekim Rezultatima Regionalne Korelacije Litostratigrafskih Jedinica u Jugozapadnom Području Panonskog Bazena). Nafta 1973, 24, 623–630. (In Croatian) [Google Scholar]
- Šimon, J. About the Litostratigraphic Column of Tertiary Sediments in Eastern Slavonia (O Litostratigrafskom Stupu Tercijarnih Naslaga u Području Istočne Slavonije). Nafta 1973, 3, 119–127. (In Croatian) [Google Scholar]
- Brezovac, I. Defining of the Deep Saline Aquifer Osijek in the Osijek Sandstones of the Eastern Part of the Drava Depression and Evaluation of the Potential for Geological Storage of Carbon Dioxide. Master’s Thesis, Faculty of Mining, Geology and Petroleum Engineering, Zagreb, Croatia, 2021. (In Croatian). [Google Scholar]
- Velić, J. Geologija Nafte [Petroleum Geology]; University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering: Zagreb, Croatia, 2007. [Google Scholar]
- Vulin, D.; Močilac, I.K.; Jukić, L.; Arnaut, M.; Vodopić, F.; Saftić, B.; Sedlar, D.K.; Cvetković, M. Development of CCUS Clusters in Croatia. Int. J. Greenh. Gas Control 2023, 124, 103857. [Google Scholar] [CrossRef]
- Novosel, D.; Babić, Đ.; Leonard, N.; Jelić-Balta, J. Five Years of CO2 Injection to Increase Oil Recovery in the Ivanić and Žutica Fields—Experiences and Results (Pet Godina Utiskivanja CO2 Za Povećanje Iscrpka Nafte Na Polju Ivanić i Žutica—Iskustva i Rezultati). Naft. I Plin 2020, 40, 33–47. (In Croatian) [Google Scholar]
- Field, B.; Barton, B.; Funnell, R.; Higgs, K.; Nicol, A.; Seebeck, H. Managing Potential Interactions of Subsurface Resources. Proc. Inst. Mech. Eng. Part A J. Power Energy 2018, 232, 6–11. [Google Scholar] [CrossRef]
- Pamić, J.; Lanphere, M. Hercynian Granites and Metamorphic Rocks from the Mts. Papuk, Psunj, Krndija, and the Surrounding Basement of the Pannonian Basin in Slavonija (Northern Croatia, Yugoslavia). Geologija 1991, 34, 81–253. [Google Scholar] [CrossRef]
- Saftić, B.; Velić, J.; Sztanó, O.; Juhász, G.; Ivković, Ž. Tertiary Subsurface Facies, Source Rocks and Hydrocarbon Reservoirs in the SW Part of the Pannonian Basin (Northern Croatia and South-Western Hungary). Geol. Croat. 2003, 56, 101–122. [Google Scholar] [CrossRef] [PubMed]
- Malvić, T.; Cvetković, M. Lithostratigraphic Units in the Drava Depression (Croatian and Hungarian Parts)—A Correlation. Nafta 2013, 63, 27–33. [Google Scholar]
- Rukavina, D.; Saftić, B.; Matoš, B.; Kolenković Močilac, I.; Premec Fuček, V.; Cvetković, M. Tectonostratigraphic Analysis of the Syn-Rift Infill in the Drava Basin, Southwestern Pannonian Basin System. Mar. Pet. Geol. 2023, 152, 106235. [Google Scholar] [CrossRef]
- Lučić, D.; Saftić, B.; Krizmanić, K.; Prelogović, E.; Britvić, V.; Mesić, I.; Tadej, J. The Neogene Evolution and Hydrocarbon Potential of the Pannonian Basin in Croatia. Mar. Pet. Geol. 2001, 18, 133–147. [Google Scholar] [CrossRef]
- Pavelić, D. Tectonostratigraphic Model for the North Croatian and North Bosnian Sector of the Miocene Pannonian Basin System. Basin Res. 2001, 13, 359–376. [Google Scholar] [CrossRef]
- Ćorić, S.; Pavelić, D.; Rögl, F.; Mandic, O.; Vrabac, S.; Avanić, R.; Jerković, L.; Vranjković, A. Revised Middle Miocene Datum for Initial Marine Flooding of North Croatian Basins (Pannonian Basin System, Central Paratethys). Geol. Croat. 2009, 62, 31–43. [Google Scholar] [CrossRef]
- Pavelić, D.; Kovačić, M. Sedimentology and Stratigraphy of the Neogene Rift-Type North Croatian Basin (Pannonian Basin System, Croatia): A Review. Mar. Pet. Geol. 2018, 91, 455–469. [Google Scholar] [CrossRef]
- Pavelić, D.; Miknic, M.; Sarkotić Šrlat, M. Early To Middle Miocene Facies Succession in Lacustrine and Marine Environments on the Southwestern Margin of the Pannonian Basin System (Croatia). Geol. Carpathica 1998, 433–443. [Google Scholar]
- Royden, L. Late Cenozoic Tectonics of the Pannonian Basin System. In The Pannonian Basin: A study in Basin Evolution. AAPG Memoir 45; Royden, L.H., Horvath, F., Eds.; AAPG: Tulsa, OK, USA, 1988. [Google Scholar]
- Tari, G.; Horváth, F.; Rumpler, J. Styles of Extension in the Pannonian Basin. Tectonophysics 1992, 208, 203–219. [Google Scholar] [CrossRef]
- Magyar, I.; Geary, D.H.; Müller, P. Paleogeographic Evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeogr Palaeoclim. Palaeoecol. 1999, 147, 151–167. [Google Scholar] [CrossRef]
- Molnár, D.; Makó, L.; Sümegi, P.; Fekete, I.; Galović, L. Middle and Late Pleistocene Loess-Palaeosol Archives in East Croatia: Multi-Proxy Palaeoecological Studies on Zmajevac and Šarengrad II Sequences. Stud. Quat. 2021, 38, 3–17. [Google Scholar] [CrossRef]
- Saftić, B.; Kolenković Močilac, I.; Cvetković, M.; Vulin, D. CO2 Geological Storage Potential in the Croatian Part of the Pannonian Superbasin. Geol. Soc. Lond. Spec. Publ. 2025, 555, 23. [Google Scholar] [CrossRef]
- Sebe, K.; Kovačić, M.; Magyar, I.; Krizmanić, K.; Špelić, M.; Bigunac, D.; Sütő-Szentai, M.; Kovács, Á.; Szuromi-Korecz, A.; Bakrač, K.; et al. Correlation of Upper Miocene–Pliocene Lake Pannon Deposits across the Drava Basin, Croatia and Hungary. Geol. Croat. 2020, 73, 177–195. [Google Scholar] [CrossRef]
- Špelić, M.; Kovács, Á.; Saftić, B.; Sztanó, O. Competition of Deltaic Feeder Systems Reflected by Slope Progradation: A High-Resolution Example from the Late Miocene-Pliocene, Drava Basin, Croatia. Int. J. Earth Sci. 2023, 112, 1023–1041. [Google Scholar] [CrossRef]
- Matošević, M.; Garzanti, E.; Šuica, S.; Bersani, D.; Marković, F.; Razum, I.; Grizelj, A.; Petrinjak, K.; Kovačić, M.; Pavelić, D. The Alps as the Main Source of Sand for the Late Miocene Lake Pannon (Pannonian Basin, Croatia). Geol. Croat. 2024, 77, 69–83. [Google Scholar] [CrossRef]
- Matošević, M.; Tomašić, N.; Perković, A.; Kampić, Š.; Kovačić, M.; Pavelić, D. Reservoir Quality Evaluation: Unveiling Diagenetic Transformations Through Mineralogical and Petrophysical Analyses of the Upper Miocene Lacustrine Sandstones in the Pannonian Basin System, Croatia. Rud.-Geološko-Naft. Zb. 2024, 39, 153–172. [Google Scholar] [CrossRef]
- Tišljar, J. Sedimentary Bodies and Depositional Models for the Miocene Oil Producing Areas of Ladislavci, Beničanci and Obod. Nafta 1993, 44, 531–542. [Google Scholar]
- Pavelić, D.; Kovačić, M.; Vrsaljko, D.; Avanić, R. Alluvial-Lacustrine-Marine Complex of Mount Medvednica: The Early Syn-Rift Deposition and Palaeogeography (Early to Middle Miocene, North Croatian Basin). Rud. -Geološko-Naft. Zb. 2024, 39, 65–85. [Google Scholar] [CrossRef]
- Malvić, T.; Velić, J. Relations between Effective Thickness, Gas Production and Porosity in Heterogeneous Reservoirs: An Example from the Molve Field, Croatian Pannonian Basin. Pet. Geosci. 2010, 16, 41–51. [Google Scholar] [CrossRef]
- Hernitz, Z.; Velić, J.; Barić, G. Origin of Hydrocarbons in the Eastern Part of the Drava Depression (Eastern Croatia). Geol. Croat. 1995, 48, 87–95. [Google Scholar]
- Kaldi, J.G.; Gibson-Poole, C.M.; Payenberg, T.H.D. Geological Input to Selection and Evaluation of CO2 Geosequestration Sites. In Carbon Dioxide Sequestration in Geological Media-State of the Science: AAPG Studies in Geology; Grobe, M., Pashin, J., Rebecca, D., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2009; Volume 59, pp. 5–16. [Google Scholar]
- Koide, H.; Tazaki, Y.; Noguchi, Y.; Nakayama, S.; Iijima, M.; Ito, K.; Shindo, Y. Subterranean Containment and Long-Term Storage of Carbon Dioxide in Unused Aquifers and in Depleted Natural Gas Reservoirs. Energy Convers. Manag. 1992, 33, 619–626. [Google Scholar] [CrossRef]
- Iglauer, S. Optimum Storage Depths for Structural CO2 Trapping. Int. J. Greenh. Gas Control 2018, 77, 82–87. [Google Scholar] [CrossRef]
- Velić, J.; Krasić, D.; Kovačević, I. Exploitation, Reserves and Transport of Natural Gas in the Republic of Croatia. Teh. Vjesn.-Tech. Gaz. 2012, 13, 633–641. [Google Scholar]
- Malvić, T. Results of Geostatistical Porosity Mapping in Western Drava Depression (Fields Molve, Kalinovac, Stari Gradac). Nafta 2005, 56, 465–476. [Google Scholar]
- De Silva, P.N.K.; Ranjith, P.G. A Study of Methodologies for CO2 Storage Capacity Estimation of Saline Aquifers. Fuel 2012, 93, 13–27. [Google Scholar] [CrossRef]
- Fanchi, J.R. Measures of Rock-Fluid Interactions. In Shared Earth Modeling; Elsevier: Amsterdam, The Netherlands, 2002; pp. 108–132. [Google Scholar]
- Roper, M.K.; Pope, G.A.; Sepehrnoori, K. Analysis of Tertiary Injectivity of Carbon Dioxide. In Proceedings of the Permian Basin Oil and Gas Recovery Conference, SPE, Midland, TX, USA, 18 March 1992. [Google Scholar]
- Mathias, S.A.; Gluyas, J.G.; González Martínez de Miguel, G.J.; Bryant, S.L.; Wilson, D. On Relative Permeability Data Uncertainty and CO2 Injectivity Estimation for Brine Aquifers. Int. J. Greenh. Gas Control 2013, 12, 200–212. [Google Scholar] [CrossRef]
- Xu, L.; Li, Q.; Myers, M.; White, C.; Tan, Y. Experimental and Numerical Investigation of Supercritical CO2 Migration in Sandstone with Multiple Clay Interlayers. Int. J. Greenh. Gas Control 2021, 104, 103194. [Google Scholar] [CrossRef]
- Meckel, T.A. Capillary Seals for Trapping Carbon Dioxide (CO2) in Underground Reservoirs. In Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 185–202. [Google Scholar]
- Robert, R. Berg Capillary Pressures in Stratigraphic Traps. Am. Assoc. Pet. Geol. Bull. 1975, 59, 939–956. [Google Scholar] [CrossRef]
- Schowalter, T.T. Mechanics of Secondary Hydrocarbon Migration and Entrapment. Am. Assoc. Pet. Geol. Bull. 1979, 63. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, F.; Rahman, S. Effect of Cap Rock Thickness and Permeability on Geological Storage of CO2: Laboratory Test and Numerical Simulation. Energy Explor. Exploit. 2014, 32, 943–964. [Google Scholar] [CrossRef]
- Bump, A.P.; Hovorka, S.D.; Meckel, T.A. Common Risk Segment Mapping: Streamlining Exploration for Carbon Storage Sites, with Application to Coastal Texas and Louisiana. Int. J. Greenh. Gas Control 2021, 111, 103457. [Google Scholar] [CrossRef]
- Schaaf, A.; Bond, C.E. Quantification of Uncertainty in 3-D Seismic Interpretation: Implications for Deterministic and Stochastic Geomodeling and Machine Learning. Solid Earth 2019, 10, 1049–1061. [Google Scholar] [CrossRef]
- Faleide, T.S.; Braathen, A.; Lecomte, I.; Mulrooney, M.J.; Midtkandal, I.; Bugge, A.J.; Planke, S. Impacts of Seismic Resolution on Fault Interpretation: Insights from Seismic Modelling. Tectonophysics 2021, 816, 229008. [Google Scholar] [CrossRef]
- Michie, E.A.H.; Mulrooney, M.J.; Braathen, A. Fault Interpretation Uncertainties Using Seismic Data, and the Effects on Fault Seal Analysis: A Case Study from the Horda Platform, with Implications for CO2 Storage. Solid Earth 2021, 12, 1259–1286. [Google Scholar] [CrossRef]
- Bentham, G.; Kirby, G. CO2 Storage in Saline Aquifers. Oil Gas Sci. Technol.-Rev. D’ifp Energ. Nouv. 2005, 60, 559–567. [Google Scholar] [CrossRef]
- Lech, M. Monitoring of Total Dissolved Solids on Agricultural Lands Using Electrical Conductivity Measurements. Appl. Ecol. Environ. Res 2016, 14, 285–295. [Google Scholar] [CrossRef]
- Bagley, C.V.; Amacher, J.K.; Poe, K.F. Analysis of Water Quality for Livestock; AH/Beef, 28; All Archived Publications, 1997; pp. 1–7. Available online: https://digitalcommons.usu.edu/extension_histall/106 (accessed on 11 February 2025).
- Meehan, M.A.; Stokka, G.; Mostrom, M. Livestock Water Quality. Available online: https://www.ndsu.edu/agriculture/sites/default/files/2022-08/as1764.pdf (accessed on 11 February 2025).
- Bennion, D.B.; Bachu, S. The Impact of Interfacial Tension and Pore-Size Distribution/Capillary Pressure Character on CO2 Relative Permeability at Reservoir Conditions in CO2-Brine Systems. In Proceedings of the Paper presented at the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA, 22–26 April 2006; 10p. [Google Scholar] [CrossRef]
- Chiquet, P.; Daridon, J.-L.; Broseta, D.; Thibeau, S. CO2/Water Interfacial Tensions under Pressure and Temperature Conditions of CO2 Geological Storage. Energy Convers. Manag. 2007, 48, 736–744. [Google Scholar] [CrossRef]
- Chalbaud, C.; Robin, M.; Lombard, J.-M.; Martin, F.; Egermann, P.; Bertin, H. Interfacial Tension Measurements and Wettability Evaluation for Geological CO2 Storage. Adv. Water Resour. 2009, 32, 98–109. [Google Scholar] [CrossRef]
- Kamenski, A.; Cvetković, M.; Kapuralić, J.; Kolenković Močilac, I.; Brcković, A. From Traditional Extrapolation to Neural Networks: Time-Depth Relationship Innovations in the Subsurface Characterization of Drava Basin, Pannonian Super Basin. Adv. Geo-Energy Res. 2024, 14, 25–33. [Google Scholar] [CrossRef]
- Goodman, A.; Hakala, A.; Bromhal, G.; Deel, D.; Rodosta, T.; Frailey, S.; Small, M.; Allen, D.; Romanov, V.; Fazio, J.; et al. U.S. DOE Methodology for the Development of Geologic Storage Potential for Carbon Dioxide at the National and Regional Scale. Int. J. Greenh. Gas Control 2011, 5, 952–965. [Google Scholar] [CrossRef]
- Ahmed, T. Fundamentals of Rock Properties. In Working Guide to Reservoir Rock Properties and Fluid Flow; Elsevier: Amsterdam, The Netherlands, 2010; pp. 31–115. [Google Scholar]
- Vulin, D.; Kurevija, T.; Kolenkovic, I. The Effect of Mechanical Rock Properties on CO2 Storage Capacity. Energy 2012, 45, 512–518. [Google Scholar] [CrossRef]
- Suman, A.; Mukerji, T. Uncertainties in Rock Pore Compressibility and Effects on Time Lapse Seismic Modeling—An Application to Nome Field. In SEG Technical Program Expanded Abstracts 2009; Society of Exploration Geophysicists: Houston, TX, USA, 2009; pp. 3909–3913. [Google Scholar]
- Meng, M.; Frash, L.P.; Li, W.; Welch, N.J.; Carey, J.W.; Morris, J.; Neupane, G.; Ulrich, C.; Kneafsey, T. Hydro-Mechanical Measurements of Sheared Crystalline Rock Fractures with Applications for EGS Collab Experiments 1 and 2. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023000. [Google Scholar] [CrossRef]
- Ganat, T.; Hrairi, M.; Badawy, A.; Khosravi, V.; Abdalla, M. Advancing Sandstone Reservoir Compressibility Prediction: A Correlation-Driven Methodology. Pet. Res. 2024, 9, 273–279. [Google Scholar] [CrossRef]
- Osif, T.L. The Effects of Salt, Gas, Temperature, and Pressure on the Compressibility of Water. SPE Reserv. Eng. 1988, 3, 175–181. [Google Scholar] [CrossRef]
- Zhou, Q.; Birkholzer, J.T.; Tsang, C.F.; Rutqvist, J. A Method for Quick Assessment of CO2 Storage Capacity in Closed and Semi-Closed Saline Formations. Int. J. Greenh. Gas Control 2008, 2, 626–639. [Google Scholar] [CrossRef]
- Span, R.; Wagner, W. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [Google Scholar] [CrossRef]
- Lyons, W.C. Fluid Movement in Waterflooded Reservoirs. In Working Guide to Reservoir Engineering; Elsevier: Amsterdam, The Netherlands, 2010; pp. 241–277. [Google Scholar]
- Fanchi, J.R. Improved Recovery. In Shared Earth Modeling; Elsevier: Amsterdam, The Netherlands, 2002; pp. 272–281. [Google Scholar]
- Blackwell, D.D.; Steele, J.L. Thermal Conductivity of Sedimentary Rocks: Measurement and Significance. In Thermal History of Sedimentary Basins; Springer: New York, NY, USA, 1989; pp. 13–36. [Google Scholar]
- Wang, Z.; Qi, S.; Zheng, B. Uncertainty Analysis of the Storage Efficiency Factor for CO2 Saline Resource Estimation. Energies 2024, 17, 1297. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, K.; Wu, N. Numerical Investigation of the Storage Efficiency Factor for CO2 Geological Sequestration in Saline Formations. Energy Procedia 2013, 37, 5267–5274. [Google Scholar] [CrossRef]
- Saftić, B.; Peh, Z.; Velić, J.; Jüttner, I. Interdependence of Petrophysical Properties and Depth: Some Implications of Multivariate Solution on Distinction Between the Lower Pontian Hydrocarbon-Bearing Sandstone Units in the Western Part of the Sava Depression. Geol. Croat. 2001, 54, 259–277. [Google Scholar] [CrossRef]
- Novak, K.; Malvić, T.; Velić, J.; Simon, K. Increased hydrocarbon recovery and CO2 storage in Neogene sandstones, a Croatian example: Part II. Environ. Earth Sci. 2014, 71, 3641–3653. [Google Scholar] [CrossRef]
- Kolenković, I.; Saftić, B.; Perešin, D. Regional Capacity Estimates for CO2 Geological Storage in Deep Saline Aquifers–Upper Miocene Sandstones in the SW Part of the Pannonian Basin. Int. J. Greenh. Gas Control 2013, 16, 180–186. [Google Scholar] [CrossRef]
- March, R.; Doster, F.; Geiger, S. Assessment of CO2 Storage Potential in Naturally Fractured Reservoirs with Dual-Porosity Models. Water Resour. Res. 2018, 54, 1650–1668. [Google Scholar] [CrossRef]
- Cheng, L.; Li, D.; Wang, W.; Liu, J. Heterogeneous Transport of Free CH4 and Free CO2 in Dual-Porosity Media Controlled by Anisotropic In Situ Stress during Shale Gas Production by CO2 Flooding: Implications for CO2 Geological Storage and Utilization. ACS Omega 2021, 6, 26756–26765. [Google Scholar] [CrossRef] [PubMed]
- Pagáč, M.; Opletal, V.; Shchipanov, A.; Nermoen, A.; Berenblyum, R.; Fjelde, I.; Rez, J. Integrated Approach to Reservoir Simulations for Evaluating Pilot CO2 Injection in a Depleted Naturally Fractured Oil Field On-Shore Europe. Energy 2024, 17, 2659. [Google Scholar] [CrossRef]
- Tari, G.; Bada, G.; Boote, D.R.D.; Krézsek, C.; Koroknai, B.; Kovács, G.; Lemberkovics, V.; Sachsenhofer, R.F.; Tóth, T. The Pannonian Super Basin: A Brief Overview. Am. Assoc. Pet Geol. Bull. 2023, 107, 1391–1417. [Google Scholar] [CrossRef]
- Ádám, A.; Bielik, M. The Crustal and Upper-Mantle Geophysical Signature of Narrow Continental Rifts in the Pannonian Basin. Geophys. J. Int. 1998, 134, 157–171. [Google Scholar] [CrossRef]
- Stojanović, Z. Assessment of the Potential of the Deep Geothermal Reservoirs in the Eastern Part of the Drava Depression Based on Analyses of Their Petrophysical Properties (In Croatian: Procjena Potencijala Dubokih Geotermalnih Ležišta Istočnog Dijela Dravske Depresije Temeljem Analiza Petrofizikalnih Svojstava). Master’s Thesis, University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Zagreb, Croatia, 2019. [Google Scholar]
- Volchko, Y.; Norrman, J.; Ericsson, L.O.; Nilsson, K.L.; Markstedt, A.; Öberg, M.; Mossmark, F.; Bobylev, N.; Tengborg, P. Subsurface planning: Towards a common understanding of the subsurface as a multifunctional resource. Land Use Policy 2020, 90, 104316. [Google Scholar] [CrossRef]
Cement Plant Našice CO2 Emissions (kt/Year) | Belišće Paper Mill CO2 Emissions (kt/Year) | Osijek Cogeneration Power Plant CO2 Emissions (kt/Year) | Furniture Factory in Đakovo CO2 Emissions (kt/Year) | |
---|---|---|---|---|
2020 | 667.35 | 96.25 | 87.75 | / |
2021 | 674.32 | 100.90 | 107.33 | / |
2022 | 715.59 | 95.74 | 76.04 | 44.51 |
2023 | 656.18 | 90.97 | 78.35 | 56.99 |
Positive Indicators | Limiting Factors | |
---|---|---|
Reservoir properties | data | data |
Depth | 800–2500 m | <800 m, >2500 m |
Effective thickness | >50 m | <20 m |
Porosity | >20% | <15% for reservoir rocks with primary and dual porosity <3% for reservoir rocks with secondary porosity |
Near-wellbore permeability | >100 mD or good permeability indicated from drill-stem test | <20 mD or poor permeability indicated by drill stem test |
Reservoir structure | Simple structure, without pronounced horizontal and vertical changes of lithofacies | Complex lateral and or/vertical lithofacies changes |
Seal properties | ||
Lithology | Lutites (claystone, marlstone, shale) | Increased amount of silt or sand |
Thickness | >100 m | <20 m |
Lateral continuity | Uniform seal, absence of faults or faults with small displacements | Lateral variations, medium to large faults intersecting the seal |
Fluid properties | ||
Formation water salinity | >30,000 mg/L | <10,000 mg/L |
Potential Storage Site A | Potential Storage Site B | |
---|---|---|
Type of trap | Palaeogeomorphic trap | Structural trap (anticline) |
Reservoir top and Average depth (both as relative depth) | 1059.7 m 1086.85 m | 1745 m 1779.5 m |
Average porosity | 8% | 16% |
Estimated pore volume—PV and estimated CO2 capacity—MCO2 | PV = 2.90 × 106 m3 MCO2 = 117.89 kt | PV = 32.79 × 106 m3 MCO2 = 1762.33 kt |
Reservoir rock age and lithology | Polymictic conglomeratic sandstone and breccia-conglomerate/Palaeozoic quartz mica schist | Upper Miocene lithic arenites |
Seal age and lithology | Upper Miocene marl | Upper Miocene marl |
Water mineralization | 7836 mg/L TDS measured on sample taken from depth of 1075 m | Not relevant (depleted gas reservoir) |
Initial average reservoir temperature | 77 °C | 105 °C |
Initial pore pressure at mean depth | 10.7 MPa | 17.5 MPa |
Favorable conditions | Rather large vertical closure (when compared to other potential traps in the research area); | The reservoir was producing natural gas from 2003 until 2010, resulting in production data that were not available for this study but could be available in future detailed characterization. Ample production data should improve the reliability of the model |
Favorable petrophysical properties of reservoir rocks established through laboratory measurements on core samples (porosity between 15 and 22%, both vertical and horizontal permeability exceeding 200 mD) | ||
Possible conflicts of interest with other subsurface use | Cannot be foreseen in the moment | The reservoir is being considered for use of geothermal energy |
Areas where further research is needed | Insecurity of interpretation—cap rock lateral continuity is not proven by other wells, since all wells in vicinity are either too far or too shallow | Porosity and permeability of reservoir rocks are only estimated from well logs, without available measurements on core samples |
Relative permeability of cap rocks for CO2 is not assessed, so there are not proven to be seals for CO2 | ||
The faults intersecting the structure are not characterized, and it is not established whether they allow fluid flow or act as seals | Relative permeability of cap rocks for CO2 is not assessed, so there are not proven to be seals for CO2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolenković Močilac, I.; Cvetković, M.; Rukavina, D.; Kamenski, A.; Pejić, M.; Saftić, B. Climbing the Pyramid: From Regional to Local Assessments of CO2 Storage Capacities in Deep Saline Aquifers of the Drava Basin, Pannonian Basin System. Energies 2025, 18, 3800. https://doi.org/10.3390/en18143800
Kolenković Močilac I, Cvetković M, Rukavina D, Kamenski A, Pejić M, Saftić B. Climbing the Pyramid: From Regional to Local Assessments of CO2 Storage Capacities in Deep Saline Aquifers of the Drava Basin, Pannonian Basin System. Energies. 2025; 18(14):3800. https://doi.org/10.3390/en18143800
Chicago/Turabian StyleKolenković Močilac, Iva, Marko Cvetković, David Rukavina, Ana Kamenski, Marija Pejić, and Bruno Saftić. 2025. "Climbing the Pyramid: From Regional to Local Assessments of CO2 Storage Capacities in Deep Saline Aquifers of the Drava Basin, Pannonian Basin System" Energies 18, no. 14: 3800. https://doi.org/10.3390/en18143800
APA StyleKolenković Močilac, I., Cvetković, M., Rukavina, D., Kamenski, A., Pejić, M., & Saftić, B. (2025). Climbing the Pyramid: From Regional to Local Assessments of CO2 Storage Capacities in Deep Saline Aquifers of the Drava Basin, Pannonian Basin System. Energies, 18(14), 3800. https://doi.org/10.3390/en18143800