Geothermal Solutions for Urban Energy Challenges: A Focus on CO2 Plume Geothermal Systems
Abstract
:1. Introduction
1.1. Background
1.2. Overview of Past Research on CPG Studies
1.3. Objectives of the Paper
2. Utilizing CO2 as the Working Fluid in Geothermal Power Plants
2.1. Introduction to Geothermal Power Plants
- The geothermal loop involves the absorption of heat from the hot rock, which is then transferred to the evaporator. This process leads to the transformation of the secondary working fluid into saturated steam through heat exchange.
- Geothermal systems operate through a continuous circulation of mass and heat fluid [43].
2.2. Enhanced Geothermal System (EGS)
2.3. CO2-Based Geothermal Systems
- Is an ionic and less effective solvent for rock minerals, minimizing scaling issues;
- Has lower kinematic viscosity (or higher mobility), allowing for high flow velocities that would lead to greater mass extraction rates for a given pressure gradient;
- Exhibits a higher heat exchange rate compared to H2O, enabling faster heat extraction;
- Has large compressibility and expansibility (high-density variation) that cause a strong buoyancy effect, resulting in a high self-driven mass flow rate without requiring a pump (referred to as the “thermosiphon effect”);
- Enables sequestration of CO2 in the deep subsurface.
2.4. CO2 Plume Geothermal (CPG)
- A substantial amount of H2O;
- A permeable formation that allows for H2O extraction and reinjection;
- Sufficient subsurface temperatures.
3. CPG Model Configuration
3.1. General System Parameters
- Case 1: 120 °C, 250 bar
- Case 2: 140 °C, 250 bar
- Case 3: 100 °C, 200 bar
- Case 4: 100 °C, 300 bar
- Case 5: 100 °C, 250 bar
- Case 6*: 150 °C, 400 bar
- Case 7*: 100 °C, 100 bar
3.1.1. Permeability
3.2. Energy Recovery versus EGS
3.2.1. Numerical Analysis Findings
3.2.2. CO2 Mobility
3.2.3. CPG Electricity Production Calculation
4. CO2 versus H2O and Native Brine
4.1. Numerical Simulation Methodology
- CO2
- Pure water (H2O)
- 20% mass fraction NaCl brine (brine)
4.2. Electricity Efficiency versus Permeability
- k < 10−15 m2: Water has negative efficiency, but CO2 is generally stable (Figure 7D);
- k = 8 × 10−15 m2: CO2 produces an efficiency that is around 50% greater than H2O, while brine moves into the negative efficiency zone (Figure 7C);
- k > 2 × 10−14 m2: Pure H2O is more efficient than CO2 (Figure 7B);
- k > 5 × 10−14 m2: NaCl brine provides higher power efficiency than CO2 (Figure 7A).
4.3. Simulation Results
5. Sustainable Energy Communities
5.1. CPG Challenges
6. Conclusions
- It does not rely on hydraulic fracturing or rock stimulation to improve permeability but utilizes existing highly permeable and porous geological reservoirs, thereby avoiding microseismicity.
- Natural reservoirs are considerably larger in size than those formed through hydraulic fracturing.
7. Future Objectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brown, D.W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 24–26 January 2000. [Google Scholar]
- Bielinski, A. Numerical Simulation of CO2 Sequestration in Geological Formations; Mitteilungen; Institut für Wasserbau, Universität Stuttgart: Stuttgart, Germany, 2007; ISBN 978-3-933761-58-3. [Google Scholar]
- Davison, J. Performance and Costs of Power Plants with Capture and Storage of CO2. Energy 2007, 32, 1163–1176. [Google Scholar] [CrossRef]
- Lee, I.; Tester, J.W.; You, F. Systems Analysis, Design, and Optimization of Geothermal Energy Systems for Power Production and Polygeneration: State-of-the-Art and Future Challenges. Renew. Sustain. Energy Rev. 2019, 109, 551–577. [Google Scholar] [CrossRef]
- Pruess, K. Enhanced Geothermal Systems (EGS) Using CO2 as Working Fluid—A Novel Approach for Generating Renewable Energy with Simultaneous Sequestration of Carbon. Geothermics 2006, 35, 351–367. [Google Scholar] [CrossRef]
- Massachusetts Institute of Technology (Ed.) The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century: An Assessment; Massachusetts Institute of Technology: Cambridge, MA, USA, 2006; ISBN 978-0-615-13438-3. [Google Scholar]
- Pruess, K.; Spycher, N. Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission Fluid—A Scheme for Combining Recovery of Renewable Energy with Geologic Storage of CO2; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2010. [Google Scholar]
- Adams, B.; Fleming, M.R.; Bielicki, J.M.; Garapati, N.; Saar, M.O. An Analysis of the Demonstration of a CO2-Based Thermosiphon at the SECARB Cranfield Site. In Proceedings of the 46th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 16–18 February 2021. 9p. [Google Scholar]
- Socolow, R.H.; Pacala, S.W. A Plan to Keep Carbon in Check. Sci. Am. 2006, 295, 50–57. [Google Scholar] [CrossRef]
- Randolph, J.B.; Saar, M.O. Combining Geothermal Energy Capture with Geologic Carbon Dioxide Sequestration. Geophys. Res. Lett. 2011, 38, L10401. [Google Scholar] [CrossRef]
- Adams, B.; Ogland-Hand, J.; Bielicki, J.M.; Schädle, P.; Saar, M. Estimating the Geothermal Electricity Generation Potential of Sedimentary Basins Using genGEO (The Generalizable GEOthermal Techno-Economic Simulator). Chemistry 2021. [Google Scholar] [CrossRef]
- Atrens, A.D.; Gurgenci, H.; Rudolph, V. CO2 Thermosiphon for Competitive Geothermal Power Generation. Energy Fuels 2009, 23, 553–557. [Google Scholar] [CrossRef]
- Atrens, A.D.; Gurgenci, H.; Rudolph, V. Electricity Generation Using a Carbon-Dioxide Thermosiphon. Geothermics 2010, 39, 161–169. [Google Scholar] [CrossRef]
- Beckers, K.F.; Lukawski, M.Z.; Anderson, B.J.; Moore, M.C.; Tester, J.W. Levelized Costs of Electricity and Direct-Use Heat from Enhanced Geothermal Systems. J. Renew. Sustain. Energy 2014, 6, 013141. [Google Scholar] [CrossRef]
- Glanz, J. Deep in Bedrock, Clean Energy and Quake Fears. New York Times, 23 June 2009. [Google Scholar]
- Pruess, K. Role of Fluid Pressure in the Production Behavior of EnhancedGeothermal Systems with CO2 as Working Fluid; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2007; p. LBNL--62611. [Google Scholar]
- Randolph, J.B.; Saar, M.O. Impact of Reservoir Permeability on the Choice of Subsurface Geothermal Heat Exchange Fluid: CO2 versus Water and Native Brine. Geotherm. Resour. Counc. Trans. 2011, 35, 521–526. [Google Scholar]
- Randolph, J.B.; Saar, M.O. Coupling Carbon Dioxide Sequestration with Geothermal Energy Capture in Naturally Permeable, Porous Geologic Formations: Implications for CO2 Sequestration. Energy Procedia 2011, 4, 2206–2213. [Google Scholar] [CrossRef]
- Randolph, J.B.; Saar, M.O. Coupling Geothermal Energy Capture with Carbon Dioxide Sequestration in Naturally Permeable, Porous Geologic Formations: A Comparison with Enhanced Geothermal Systems. GRC Trans. 2010, 34, 433–438. [Google Scholar]
- Adams, B.M.; Kuehn, T.H.; Bielicki, J.M.; Randolph, J.B.; Saar, M.O. On the Importance of the Thermosiphon Effect in CPG (CO2 Plume Geothermal) Power Systems. Energy 2014, 69, 409–418. [Google Scholar] [CrossRef]
- Adams, B.M.; Kuehn, T.H.; Bielicki, J.M.; Randolph, J.B.; Saar, M.O. A Comparison of Electric Power Output of CO2 Plume Geothermal (CPG) and Brine Geothermal Systems for Varying Reservoir Conditions. Appl. Energy 2015, 140, 365–377. [Google Scholar] [CrossRef]
- Adams, B.M.; Vogler, D.; Kuehn, T.H.; Bielicki, J.M.; Garapati, N.; Saar, M.O. Heat Depletion in Sedimentary Basins and Its Effect on the Design and Electric Power Output of CO2 Plume Geothermal (CPG) Systems. Renew. Energy 2021, 172, 1393–1403. [Google Scholar] [CrossRef]
- Garapati, N.; Randolph, J.B.; Saar, M.O. Total Heat Energy Output From, Thermal Energy Contributions To, and Reservoir Development of CO2 Plume Geothermal (CPG) Systems. In Proceedings of the Thirty-Ninth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 24 February 2014. [Google Scholar]
- Garapati, N.; Randolph, J.B.; Valencia, J.L.; Saar, M.O. CO2-Plume Geothermal (CPG) Heat Extraction in Multi-Layered Geologic Reservoirs. Energy Procedia 2014, 63, 7631–7643. [Google Scholar] [CrossRef]
- Garapati, N.; Randolph, J.B.; Saar, M.O. Brine Displacement by CO2, Energy Extraction Rates, and Lifespan of a CO2-Limited CO2-Plume Geothermal (CPG) System with a Horizontal Production Well. Geothermics 2015, 55, 182–194. [Google Scholar] [CrossRef]
- Garapati, N.; Adams, B.M.; Fleming, M.R.; Kuehn, T.H.; Saar, M.O. Combining Brine or CO2 Geothermal Preheating with Low-Temperature Waste Heat: A Higher-Efficiency Hybrid Geothermal Power System. J. CO2 Util. 2020, 42, 101323. [Google Scholar] [CrossRef]
- Ezekiel, J.; Ebigbo, A.; Adams, B.M.; Saar, M.O. Combining Natural Gas Recovery and CO2-Based Geothermal Energy Extraction for Electric Power Generation. Appl. Energy 2020, 269, 115012. [Google Scholar] [CrossRef]
- Ezekiel, J.; Kumbhat, D.; Ebigbo, A.; Adams, B.M.; Saar, M.O. Sensitivity of Reservoir and Operational Parameters on the Energy Extraction Performance of Combined CO2-EGR–CPG Systems. Energies 2021, 14, 6122. [Google Scholar] [CrossRef]
- Ezekiel, J.; Adams, B.M.; Saar, M.O.; Ebigbo, A. Numerical Analysis and Optimization of the Performance of CO2-Plume Geothermal (CPG) Production Wells and Implications for Electric Power Generation. Geothermics 2022, 98, 102270. [Google Scholar] [CrossRef]
- Fleming, M.R.; Adams, B.M.; Kuehn, T.H.; Bielicki, J.M.; Saar, M.O. Increased Power Generation Due to Exothermic Water Exsolution in CO2 Plume Geothermal (CPG) Power Plants. Geothermics 2020, 88, 101865. [Google Scholar] [CrossRef]
- Fleming, M.R.; Adams, B.M.; Ogland-Hand, J.D.; Bielicki, J.M.; Kuehn, T.H.; Saar, M.O. Flexible CO2-Plume Geothermal (CPG-F): Using Geologically Stored CO2 to Provide Dispatchable Power and Energy Storage. Energy Convers. Manag. 2022, 253, 115082. [Google Scholar] [CrossRef]
- Saar, M.O.; Buscheck, T.A.; Jenny, P.; Garapati, N.; Randolph, J.B.; Karvounis, D.C.; Chen, M.; Sun, Y.; Bielicki, J.M. Numerical Study of Multi-Fluid and Multi-Level Geothermal System Performance. In Proceedings of the World Geothermal Congress, New Zealand, Australia, 16–24 April 2015. [Google Scholar]
- Hefny, M.; Qin, C.; Saar, M.O.; Ebigbo, A. Synchrotron-Based Pore-Network Modeling of Two-Phase Flow in Nubian Sandstone and Implications for Capillary Trapping of Carbon Dioxide. Int. J. Greenh. Gas Control 2020, 103, 103164. [Google Scholar] [CrossRef]
- Van Brummen, A.C.; Adams, B.M.; Wu, R.; Ogland-Hand, J.D.; Saar, M.O. Using CO2-Plume Geothermal (CPG) Energy Technologies to Support Wind and Solar Power in Renewable-Heavy Electricity Systems. Renew. Sustain. Energy Transit. 2022, 2, 100026. [Google Scholar] [CrossRef]
- Schifflechner, C.; Wieland, C.; Spliethoff, H. CO2 Plume Geothermal (CPG) Systems for Combined Heat and Power Production: An Evaluation of Various Plant Configurations. J. Therm. Sci. 2022, 31, 1266–1278. [Google Scholar] [CrossRef]
- Norouzi, A.M.; Pouranian, F.; Rabbani, A.; Fowler, N.; Gluyas, J.; Niasar, V.; Ezekiel, J.; Babaei, M. CO2-Plume Geothermal: Power Net Generation from 3D Fluvial Aquifers. Appl. Energy 2023, 332, 120546. [Google Scholar] [CrossRef]
- Gupta, N.; Vashistha, M. Carbon Dioxide Plume Geothermal (CPG) System-A New Approach for Enhancing Geothermal Energy Production and Deployment of CCUS on Large Scale in India. Energy Procedia 2016, 90, 492–502. [Google Scholar] [CrossRef]
- McDonnell, K.; Molnár, L.; Harty, M.; Murphy, F. Feasibility Study of Carbon Dioxide Plume Geothermal Systems in Germany–Utilising Carbon Dioxide for Energy. Energies 2020, 13, 2416. [Google Scholar] [CrossRef]
- Luo, C.; Zhao, J.; Gong, Y.; Wang, Y.; Ma, W. Energy Efficiency Comparison between Geothermal Power Systems. Therm Sci 2017, 21, 2633–2642. [Google Scholar] [CrossRef]
- Moya, D.; Aldás, C.; Kaparaju, P. Geothermal Energy: Power Plant Technology and Direct Heat Applications. Renew. Sustain. Energy Rev. 2018, 94, 889–901. [Google Scholar] [CrossRef]
- Muffler, P.; Cataldi, R. Methods for Regional Assessment of Geothermal Resources. Geothermics 1978, 7, 53–89. [Google Scholar] [CrossRef]
- Gallup, D.L. Production Engineering in Geothermal Technology: A Review. Geothermics 2009, 38, 326–334. [Google Scholar] [CrossRef]
- Barbier, E. Geothermal Energy Technology and Current Status: An Overview. Renew. Sustain. Energy Rev. 2002, 6, 3–65. [Google Scholar] [CrossRef]
- Von Jouanne, A.; Brekken, T.K.A. Ocean and Geothermal Energy Systems. Proc. IEEE 2017, 105, 2147–2165. [Google Scholar] [CrossRef]
- Sanyal, S.K. Future of geothermal energy. In Proceedings of the Thirty-Fifth Workshop on Geothermal Reservoir Engineering; Stanford University, Stanford, CA, USA, 1–3 February 2010. [Google Scholar]
- Evans, K.F.; Moriya, H.; Niitsuma, H.; Jones, R.H.; Phillips, W.S.; Genter, A.; Sausse, J.; Jung, R.; Baria, R. Microseismicity and Permeability Enhancement of Hydrogeologic Structures during Massive Fluid Injections into Granite at 3 Km Depth at the Soultz HDR Site: Induced Seismicity and Flow in Deep Granite. Geophys. J. Int. 2004, 160, 389–412. [Google Scholar] [CrossRef]
- Majer, E.L.; Baria, R.; Stark, M.; Oates, S.; Bommer, J.; Smith, B.; Asanuma, H. Induced Seismicity Associated with Enhanced Geothermal Systems. Geothermics 2007, 36, 185–222. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Gao, M.; Shah, K.J.; Zheng, J.; Pei, S.-L.; Chiang, P.-C. Establishment of Enhanced Geothermal Energy Utilization Plans: Barriers and Strategies. Renew. Energy 2019, 132, 19–32. [Google Scholar] [CrossRef]
- Sun, F.; Yao, Y.; Li, G.; Li, X. Performance of Geothermal Energy Extraction in a Horizontal Well by Using CO2 as the Working Fluid. Energy Convers. Manag. 2018, 171, 1529–1539. [Google Scholar] [CrossRef]
- Tianfu, X.; Guanhong, F.; Yan, S.; Hongwu, L. Use of CO2 as Heat Transmission Fluid to Extract Geothermal Energy: Advantages and Disadvantages in Comparison with Water. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19 April 2015. [Google Scholar]
- Biagi, J.; Agarwal, R.; Zhang, Z. Simulation and Optimization of Enhanced Geothermal Systems Using CO2 as a Working Fluid. Energy 2015, 86, 627–637. [Google Scholar] [CrossRef]
- Steadman, E.N.; Daly, D.J.; Silva, L.L.; Harju, J.A.; Jensen, M.D.; Peck, W.D.; O’Leary, E.M.; Smith, S.A.; Sorensen, J.A. Plains CO2 Reduction (Pcor) Partnership (Phase I) Final Report; Energy & Environmental Research Center, University of North Dakota: Grand Forks, ND, USA, 2006; p. 887132. [Google Scholar]
- Dezayes, C.; Genter, A.; Hooijkaas, G.R. Deep-Seated Geology and Fracture System of the EGS Soultz Reservoir (France) Based on Recent 5 km Depth Boreholes. In Proceedings of the World Geothermal Congress 2005, Antalya, Turkey, 24 April 2005. [Google Scholar]
- Metz, B.; Davidson, O.; Coninck, H.; Loos, M.; Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005; p. 443. [Google Scholar]
- Zhang, L.; Ezekiel, J.; Li, D.; Pei, J.; Ren, S. Potential Assessment of CO2 Injection for Heat Mining and Geological Storage in Geothermal Reservoirs of China. Appl. Energy 2014, 122, 237–246. [Google Scholar] [CrossRef]
- National Snow and Ice Data Center Cryosphere Glossary. Available online: https://nsidc.org/learn/cryosphere-glossary/geothermal-heat-flux (accessed on 9 December 2023).
- Quattrocchi, F.; Boschi, E.; Spena, A.; Buttinelli, M.; Cantucci, B.; Procesi, M. Synergic and Conflicting Issues in Planning Underground Use to Produce Energy in Densely Populated Countries, as Italy. Appl. Energy 2013, 101, 393–412. [Google Scholar] [CrossRef]
- Fleming, M.R.; Adams, B.M.; Randolph, J.B.; Ogland-Hand, J.D.; Kuehn, T.H.; Buscheck, T.A.; Bielicki, J.M.; Saar, M.O. High Efficiency and Large-Scale Subsurface Energy Storage with CO2. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 12 February 2018. [Google Scholar]
- Hulen, J.; Wright, P. Geothermal Energy: Clean, Sustainable Energy for the Benefit of Humanity and the Environment, Energy & Geoscience Institute; University of Utah: Salt Lake City, UT, USA, 2001. [Google Scholar]
- Pruess, K. The TOUGH Codes—A Family of Simulation Tools for Multiphase Flow and Transport Processes in Permeable Media. Vadose Zone J. 2004, 3, 738–746. [Google Scholar] [CrossRef]
- Pruess, K. ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2005; p. LBNL--57952. [Google Scholar]
- Finley, R. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin; National Energy Technology Laboratory: Pittsburgh, PA, USA; Morgantown, WV, USA, 2005. [Google Scholar]
- Britannica, T. Editors of Encyclopaedia, Encyclopedia Britannica. Available online: https://www.britannica.com/technology/core-sampling (accessed on 9 December 2023).
- Fatt, I. The Network Model of Porous Media. Trans. AIME 1956, 207, 144–181. [Google Scholar] [CrossRef]
- Pruess, K.; Narasimhan, T.N. A Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media. Soc. Pet. Eng. J. 1985, 25, 14–26. [Google Scholar] [CrossRef]
- Shapiro, S.A.; Audigane, P.; Royer, J.-J. Large-Scale In Situ Permeability Tensor of Rocks from Induced Microseismicity. Geophys. J. Int. 1999, 137, 207–213. [Google Scholar] [CrossRef]
- Berkowitz, B. Characterizing Flow and Transport in Fractured Geological Media: A Review. Adv. Water Resour. 2002, 25, 861–884. [Google Scholar] [CrossRef]
- Tester, J.W.; Anderson, B.J.; Batchelor, A.S.; Blackwell, D.D.; DiPippo, R.; Drake, E.M.; Garnish, J.; Livesay, B.; Moore, M.C.; Nichols, K.; et al. Impact of Enhanced Geothermal Systems on US Energy Supply in the Twenty-First Century. Phil. Trans. R. Soc. A 2007, 365, 1057–1094. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Butler, S.J. An Analysis of Power Generation Prospects from Enhanced Geothermal Systems. In Proceedings of the World Geothermal Congress 2005, Antalya, Turkey, 24 April 2005. [Google Scholar]
- Saar, M.O. Review: Geothermal Heat as a Tracer of Large-Scale Groundwater Flow and as a Means to Determine Permeability Fields. Hydrogeol. J 2011, 19, 31–52. [Google Scholar] [CrossRef]
- U.S.A. Department of Commerce (DOC); National Oceanic and Atmospheric Administration (NOAA); National Environmental Satellite, Data, and Information Service (NESDIS); National Climate Data Center (NCDC). U.S.A. Climate Normals (1971–2000); 2000. Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00115 (accessed on 9 December 2023).
- DiPippo, R. Ideal Thermal Efficiency for Geothermal Binary Plants. Geothermics 2007, 36, 276–285. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Morrow, J.W.; Butler, S.J. Net power capacity of geothermal wells versus reservoir temperature—A practical perspective. In Proceedings of the Thirty-Second Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 22 January 2007. [Google Scholar]
- Katz, D.L.; Lee, R.L. Natural Gas Engineering: Production and Storage (MCGRAW HILL CHEMICAL ENGINEERING SERIES); McGraw-Hill Economics Dept: New York, NY, USA, 1991; ISBN 0-07-033352-1. [Google Scholar]
- Entingh, D.J.; Pike, R.; Lane, S. DOE Geothermal Electricity Technology Evaluation Model (GETEM): Volume I—Technical Reference Manual; Department of Energy: Washington, DC, USA; The National Renewable Energy Laboratory: Golden, CO, USA, 2006. [Google Scholar]
- Manning, C.E.; Ingebritsen, S.E. Permeability of the Continental Crust: Implications of Geothermal Data and Metamorphic Systems. Rev. Geophys. 1999, 37, 127–150. [Google Scholar] [CrossRef]
- DiPippo, R. Geothermal Power Plants: Principles, Applications and Case Studies, 2nd ed.; Reprint; Elsevier: Amsterdam, The Netherlands, 2009; ISBN 978-0-7506-8620-4. [Google Scholar]
- Lund, J.W.; Freeston, D.H.; Boyd, T.L. Direct Utilization of Geothermal Energy 2010 Worldwide Review. Geothermics 2011, 40, 159–180. [Google Scholar] [CrossRef]
- Rybach, L. Geothermal Energy: Sustainability and the Environment. Geothermics 2003, 32, 463–470. [Google Scholar] [CrossRef]
- Hodge, J.; Haltrecht, J. BedZED Monitoring Report 2007; BioRegional: London, UK, 2007. [Google Scholar]
- Coates, G.J. The Sustainable Urban District of Vauban in Freiburg, Germany. Int. J. DNE 2013, 8, 265–286. [Google Scholar] [CrossRef]
- Lu, H. Malmo, Sweden. In Eco-Cities and Green Transport; Elsevier: Amsterdam, The Netherlands, 2020; pp. 347–362. ISBN 978-0-12-821516-6. [Google Scholar]
- Bielicki, J.M.; Leveni, M.; Johnson, J.X.; Ellis, B.R. The Promise of Coupling Geologic CO2 Storage with Sedimentary Basin Geothermal Power Generation. iScience 2023, 26, 105618. [Google Scholar] [CrossRef]
- Adams, B.; Sutter, D.; Mazzotti, M.; Saar, M.O. Combining Direct Air Capture and Geothermal Heat and Electricity Generation for Net-Negative Carbon Dioxide Emissions. In Proceedings of the World Geothermal Congress 2020, Reykjavik, Iceland, 26 April–2 May 2020. [Google Scholar] [CrossRef]
- Leveni, M.; Bielicki, J.M. A Potential for Climate Benign Direct Air CO2 Capture with CO2-Driven Geothermal Utilization and Storage (DACCUS). Environ. Res. Lett. 2024, 19, 014007. [Google Scholar] [CrossRef]
CPG Electricity Production (W) | ||
---|---|---|
Case Number | Heat Extraction H (MW) | Electricity Production W (MW) |
Base Case | 47.0 | 5.7 |
1 | 58.6 | 8.2 |
2 | 68.8 | 10.8 |
3 | 52.4 | 6.3 |
4 | 43.0 | 5.2 |
6* | 62.6 | 10.4 |
7* | 64.1 | 7.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoneas, G.; Koronaki, I. Geothermal Solutions for Urban Energy Challenges: A Focus on CO2 Plume Geothermal Systems. Energies 2024, 17, 294. https://doi.org/10.3390/en17020294
Antoneas G, Koronaki I. Geothermal Solutions for Urban Energy Challenges: A Focus on CO2 Plume Geothermal Systems. Energies. 2024; 17(2):294. https://doi.org/10.3390/en17020294
Chicago/Turabian StyleAntoneas, George, and Irene Koronaki. 2024. "Geothermal Solutions for Urban Energy Challenges: A Focus on CO2 Plume Geothermal Systems" Energies 17, no. 2: 294. https://doi.org/10.3390/en17020294
APA StyleAntoneas, G., & Koronaki, I. (2024). Geothermal Solutions for Urban Energy Challenges: A Focus on CO2 Plume Geothermal Systems. Energies, 17(2), 294. https://doi.org/10.3390/en17020294