Controlling Factors of Diagenetic Evolution on Reservoir Quality in Oligocene Sandstones, Xihu Sag, East China Sea Basin
Abstract
:1. Introduction
2. Geological Setting
3. Database and Methods
3.1. Microscopic Image Observation
3.2. Porosity and Permeability
3.3. High-Pressure Mercury Injection Tests
3.4. Carbon and Oxygen Isotope Analysis of Carbonate Cement
3.5. Fluid Inclusion Analysis
3.6. Zircon (U-Th)/He Thermochronological Analysis
4. Results
4.1. Lithofacies Characteristics and Mineral Composition
4.1.1. Lithofacies Characteristics
4.1.2. Mineral Composition
4.1.3. Heavy Mineral Composition
4.2. Reservoir Physical Properties and Pore Size Distribution
4.3. Diagenetic Types
4.3.1. Compaction
4.3.2. Dissolution
4.3.3. Cementation
4.4. Thermal History, Burial History, and Hydrocarbon Generation History
5. Discussions
5.1. Provenance Types
5.2. Impact of Components of Sediment on Reservoir Quality
5.3. Burial Process and Diagenetic Evolution
5.3.1. Formation Time of Cement
5.3.2. Hydrocarbon Charging and Reservoir Dissolution
5.3.3. Diagenetic Sequence and Pore Evolution
5.4. Influence of Diagenesis Evolution on Reservoir Quality
5.5. Diagenetic Evolution Model and Formation of High-Quality Reservoirs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, J.M.; Liao, J.; Liang, J.; Lei, B.H.; Chen, J.W.; Khalid, M.; Haider, S.W.; Meng, M. Exploration prospects of oil and gas in the Northwestern part of the Offshore Indus Basin, Pakistan. China Geol. 2020, 3, 633–642. [Google Scholar] [CrossRef]
- Dou, L.R.; Wen, Z.X.; Wang, J.J.; Wang, Z.M.; He, Z.J.; Liu, X.B.; Zhang, N.N. Analysis of the world oil and gas exploration situation in 2021. Pet. Explor. Dev. 2022, 49, 1195–1209. [Google Scholar]
- Qian, W.; Sun, Q.; Jones, S.J.; Yin, T.; Zhang, C.; Xu, G.; Hou, G.; Zhang, B. Diagenesis and controlling factors of Oligocene Huagang Formation tight sandstone reservoir in the south of Xihu sag, the East China Sea Shelf Basin. J. Pet. Sci. Eng. 2022, 215, 110579. [Google Scholar]
- Leythaeuser, D.; Keuser, C.; Schwark, L. Molecular memory effects recording the accumulation history of petroleum reservoirs: A case study of the Heidrun Field, offshore Norway. Mar. Pet. Geol. 2007, 24, 199–220. [Google Scholar] [CrossRef]
- Yuan, G.H.; Gluyas, J.; Cao, Y.C.; Oxtoby, N.H.; Jia, Z.Z.; Wang, Y.Z.; Xi, K.L.; Li, X.Y. Diagenesis and reservoir quality evolution of the Eocene sandstones in the northern Dongying Sag, Bohai Bay Basin, East China. Mar. Pet. Geol. 2015, 62, 77–89. [Google Scholar]
- Oluwadebi, A.G.; Taylor, K.G.; Dowey, P.J. Diagenetic controls on the reservoir quality of the tight gas Collyhurst Sandstone Formation, Lower Permian, East Irish Sea Basin, United Kingdom. Sediment. Geol. 2018, 371, 55–74. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Dong, C.M.; Zhang, X.G.; Lin, C.Y.; Huang, X.; Duan, D.P.; Lin, J.L.; Zeng, F.; Li, D. Reservoir controlling factors of the Paleogene Oligocene Huagang Formation in the north central part of the Xihu Depression, East China Sea Basin, China. J. Pet. Sci. Eng. 2019, 175, 159–172. [Google Scholar]
- Critelli, S.; Nilsen, T.H. Petrology and diagenesis of the Eocene Butano Sandstone, LaHonda Basin, California. J. Geol. 1996, 104, 295–315. [Google Scholar]
- Caracciolo, L.; Arribas, J.; Ingersoll, R.V.; Critelli, S. The diagenetic destruction of porosity in plutoniclastic petrofacies: The Miocene Diligencia and Eocene Maniobra formations, Orocopia Mountains, southern California, USA. In Sediment Provenance Studies in Hydrocarbon Exploration and Production; Special Publication; Scott, R.A., Smyth, H.R., Morton, A.C., Eds.; Geological Society: London, UK, 2014; Volume 386, pp. 49–62. [Google Scholar]
- Mahmic, O.; Dypvik, H.; Hammer, E. Diagenetic influence on reservoir quality evolution, examples from Triassic conglomerates/arenites in the Edvard Grieg field, Norwegian North Sea. Mar. Pet. Geol. 2018, 93, 247–271. [Google Scholar] [CrossRef]
- You, L.; Xu, S.L.; Li, C.; Zhang, Y.Z.; Zhao, Z.J.; Zhu, P.Y. Diagenesis-porosity evolution and “sweet spot” distribution of low permeability reservoirs: A case study from Oligocene Zhuhai Formation in Wenchang A sag, Pear River Mouth Basin, northern South China Sea. Pet. Explor. Dev. 2018, 45, 251–263. [Google Scholar]
- Fan, C.W.; Cao, J.J.; Lou, J.L.; Li, S.S.; Wu, S.J.; Dai, L.; Hou, J.X.; Mao, Q.R. Heterogeneity and influencing factors of marine gravity flow tight sandstone under abnormally high pressure: A case study from the Miocene Huangliu Formation reservoirs in LD10 area, Yinggehai Basin, South China Sea. Pet. Explor. Dev. 2021, 48, 1048–1062. [Google Scholar]
- Lawan, A.Y.; Worden, R.H.; Utley, J.E.P.; Crowley, S.F. Sedimentological and diagenetic controls on the reservoir quality of marginal marine sandstones buried to moderate depths and temperatures: Brent Province, UK North Sea. Mar. Pet. Geol. 2021, 128, 104993. [Google Scholar]
- Civitelli, M.; Critelli, S. The interplay of detrital modes and depositional facies on diagenesis and petrophysics of deep-marine Miocene sandstones (Cilento Group), southern Apennines, Italy. Mar. Pet. Geol. 2024, 167, 106943. [Google Scholar]
- Marcussen, Ø.; Maast, T.E.; Mondol, N.H.; Jahren, J.; Bjørlykke, K. Changes in physical properties of a reservoir sandstone as a function of burial depth—The Etive Formation, northern North Sea. Mar. Pet. Geol. 2010, 27, 1725–1735. [Google Scholar]
- Dutton, S.P.; Loucks, R.G. Diagenetic controls on evolution of porosity and permeability in lower Tertiary Wilcox sandstones from shallow to ultradeep (200–6700 m) burial, Gulf of Mexico Basin, U.S.A. Mar. Pet. Geol. 2010, 27, 69–81. [Google Scholar] [CrossRef]
- Bah, B.; Beaudoin, N.E.; Lacombe, O.; Girard, J.P.; Gout, C.; Godeau, N.; Deschamps, P. Multi-proxy reconstruction of the burial history and porosity evolution of the TOCA carbonate formation in the Lower Congo basin (South West Africa). Mar. Pet. Geol. 2023, 148, 106018. [Google Scholar] [CrossRef]
- Saiag, J.; Brigaud, B.; Portier, E.; Desaubliaux, G.; Bucherie, A.; Miska, S.; Pagel, M. Sedimentological control on the diagenesis and reservoir quality of tidal sandstones of the upper Cape Hay Formation (Permian, Bonaparte Basin, Australia). Mar. Pet. Geol. 2016, 77, 597–624. [Google Scholar]
- Yu, Y.; Lin, L.B.; Li, Z.; Chen, H.D. Source of quartz cement in tight gas sandstone: Evidence from the Upper Triassic Xujiahe Formation in the western Sichuan Basin, SW China. J. Pet. Sci. Eng. 2022, 212, 110299. [Google Scholar]
- Wanas, H.A.; Soliman, H.E. Allogenic and authigenic clays of the lower Palaeozoic sandstones of the Naqus Formation at Gebel Gunna, central Sinai, Egypt; their recognition and geological significance. J. Afr. Earth Sci. 2001, 32, 47–60. [Google Scholar]
- Bloch, S.; Lander, R.H.; Bonnell, L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bull. 2002, 86, 301–328. [Google Scholar]
- Dowey, P.J.; Hodgson, D.M.; Worden, R.H. Pre-requisites, processes, and prediction of chlorite grain coatings in petroleum reservoirs: A review of subsurface examples. Mar. Pet. Geol. 2012, 32, 63–75. [Google Scholar]
- Shaldybin, M.V.; Wilson, M.J.; Wilson, L.; Muslimova, A.V.; Cherdantseva, D.A.; Molokov, P.B. Jurassic and Cretaceous clastic petroleum reservoirs of the West Siberian sedimentary basin: Mineralogy of clays and influence on poro-perm properties. J. Asian Earth Sci. 2021, 222, 104964. [Google Scholar]
- Azzam, F.; Blaise, T.; Patrier, P.; Elmola, A.A.; Beaufort, D.; Portier, E.; Brigaud, B.; Barbarand, J.; Clerc, S. Diagenesis and reservoir quality evolution of the Lower Cretaceous turbidite sandstones of the Agat Formation (Norwegian North Sea): Impact of clay grain coating and carbonate cement. Mar. Pet. Geol. 2022, 142, 105768. [Google Scholar]
- Bello, A.M.; Al-Ramadan, K.; Babalola, L.O.; Alqubalee, A.; Amao, A.O. Impact of grain-coating illite in preventing quartz cementation: Example from permo-carboniferous sandstone, Central Saudi Arabia. Mar. Pet. Geol. 2023, 149, 106073. [Google Scholar]
- Duan, W.; Li, C.; Luo, C.F.; Chen, X.G.; Bao, X.H. Effect of formation overpressure on the reservoir diagenesis and its petroleum geological significance for the DF11 Block of the Yinggehai Basin, the South China Sea. Mar. Pet. Geol. 2018, 97, 49–65. [Google Scholar]
- Tao, S.Z.; Zou, C.N. Accumulation and distribution on natural gases in xihu sag, east China Sea Basin. Pet. Explor. Dev. 2005, 32, 103–110, (In Chinese with English Abstract). [Google Scholar]
- Dong, C.M.; Zhao, Z.X.; Zhang, X.G.; Yu, S.; Huang, X.; Duan, D.P.; Lin, J.L.; Sun, X.L. Analysis of provenance and sedimentary facies of Huagang formation in the north central of Xihu sag. J. Northeast Pet. Univ. 2018, 42, 25–34+72, (In Chinese with English Abstract). [Google Scholar]
- Zheng, W.B.; Yin, G.F.; Sun, L.; Wei, S.J.; Wei, X.P.; Niu, B. Sedimentary systems of the Oligocene Huagang Formation in the central anticline zone of the Xihu Depression, East China Sea Shelf Basin. Energy Geosci. 2022, 5, 100150. [Google Scholar]
- Liu, J.S.; Cao, B.; Xu, Z.X.; Qin, L.Z.; Xu, F.H.; Tang, J.C. Sedimentary facies and the characteristics of tight sandstone reservoirs of Huagang Formation in Xihu depression, East China Sea Basin. J. Chengdu Univ. Technol. Sci. Technol. Ed. 2012, 39, 130–136, (In Chinese with English Abstract). [Google Scholar]
- Li, S.L.; Li, J.; Chen, B.T.; Xu, L.; Yu, X.H.; Hou, G.W.; Gao, Z.P. Sedimentary characteristics and controlling factors of large-scale longshore bar in the Oligocene Huagang Formation, Xihu sag. J. Palaeogeogr. 2020, 22, 493–503, (In Chinese with English Abstract). [Google Scholar]
- Hao, L.W.; Wang, Q.; Guo, R.L.; Tuo, C.R.; Ma, D.X.; Mou, W.W.; Tian, B. Diagenetic fluids evolution of Oligocene Huagang Formation sandstone reservoir in the south of Xihu Sag, the East China Sea Shelf Basin: Constraints from petrology, mineralogy, and isotope geochemistry. Acta Oceanol. Sin. 2018, 37, 25–34. [Google Scholar] [CrossRef]
- Wan, Y.Z.; Zhang, N.N. Provenance analysis of huagang formation in xihu sag, east china sea basin. J. Yangtze Univ. Nat. Sci. Ed. 2016, 13, 24–27. (In Chinese) [Google Scholar]
- Wang, W.; Lin, C.; Zhang, X.; Dong, C.; Ren, L.; Lin, J. Provenance, clastic composition and their impact on diagenesis: A case study of the Oligocene sandstone in the Xihu sag, East China Sea Basin. Mar. Pet. Geol. 2021, 126, 104890. [Google Scholar]
- Xu, F.; Xu, G.; Liu, Y.; Zhang, W.; Cui, H.; Wang, Y. Factors controlling the development of tight sandstone reservoirs in the Huagang Formation of the central inverted structural belt in Xihu sag, East China Sea Basin. Pet. Explor. Dev. 2020, 47, 101–113. [Google Scholar]
- Li, H.; Yang, X.H.; Zhu, H.T.; Wang, W. Depositional and diagenetic controls on the evolution of abnormally high porosity in braided river deltaic sandstones (Oligocene), Xihu Depression, East China Sea. Geoenergy Sci. Eng. 2023, 226, 211751. [Google Scholar]
- Wang, W.; Lin, C.; Zhang, X.; Dong, C.; Ren, L.; Lin, J. Effect of burial history on diagenetic and reservoir-forming process of the Oligocene sandstone in Xihu Sag, east China Sea Basin. Mar. Pet. Geol. 2020, 112, 104034. [Google Scholar]
- Wang, Q.C.; Chen, D.X.; Gao, X.Z.; Wang, F.W.; Li, J.H.; Liao, W.H.; Wang, Z.Y.; Xie, G.J. Microscopic pore structures of tight sandstone reservoirs and their diagenetic controls: A case study of the Upper Triassic Xujiahe Formation of the western Sichuan Depression, China. Mar. Pet. Geol. 2020, 113, 104119. [Google Scholar]
- Su, A.; Chen, H.H.; Chen, X.; He, C.; Liu, H.P.; Li, Q.; Wang, C.W. The characteristics of low permeability reservoirs, gas origin, generation and charge in the central and western Xihu depression, East China Sea Basin. J. Nat. Gas Sci. Eng. 2018, 53, 94–109. [Google Scholar]
- Xie, G.L.; Shen, Y.L.; Liu, S.G.; Hao, W.D. Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu Sag, East China Sea Basin: Implications for provenance, depositional conditions and paleoclimate. Mar. Pet. Geol. 2018, 92, 20–36. [Google Scholar] [CrossRef]
- Abbas, A.; Zhu, H.T.; Zeng, Z.W.; Zhou, X.H. Sedimentary facies analysis using sequence stratigraphy and seismic sedimentology in the Paleogene Pinghu Formation, Xihu Depression, East China Sea Shelf Basin. Mar. Pet. Geol. 2018, 93, 287–297. [Google Scholar]
- Ye, J.R.; Qing, H.R.; Bend, S.L.; Gu, H.R. Petroleum systems in the offshore xihu basin on the continental shelf of the east China sea. AAPG Bull. 2007, 91, 1167–1188. [Google Scholar] [CrossRef]
- Cheng, X.; Hou, D.J.; Zhou, X.H.; Liu, J.S.; Diao, H.; Jiang, Y.H.; Yu, Z.K. Organic geochemistry and kinetics for natural gas generation from mudstone and coal in the Xihu Sag, East China Sea Shelf Basin, China. Mar. Pet. Geol. 2020, 118, 104405. [Google Scholar] [CrossRef]
- Kassab, M.A.; Hassanain, I.M.; Salem, A.M. Petrography, diagenesis and reservoir characteristics of the Pre-Cenomanian sandstone, Sheikh Attia area, East Central Sinai, Egypt. J. Afr. Earth Sci. 2014, 96, 122–138. [Google Scholar] [CrossRef]
- Fan, A.P.; Yang, R.C.; Lenhardt, N.; Wang, M.; Han, Z.Z.; Li, J.B.; Li, Y.J.; Zhao, Z.J. Cementation and porosity evolution of tight sandstone reservoirs in the Permian Sulige gas field, Ordos Basin (central China). Mar. Pet. Geol. 2019, 103, 276–293. [Google Scholar] [CrossRef]
- Jiu, B.; Huang, W.H.; Mu, N.N.; Li, Y. Types and controlling factors of ordovician paleokarst carbonate reservoirs in the southeastern Ordos Basin, China. J. Pet. Sci. Eng. 2021, 198, 108162. [Google Scholar] [CrossRef]
- SY/T 5916-2013; Analytical Methods for Clay Minerals and Common Non-Clay Minerals in Rocks by X-ray Diffraction. Petroleum Industry Press: Beijing, China, 2013.
- Costin, G.; Götz, A.E.; Ruckwied, K. Sedimentary organic matter characterization of the Whitehill shales (Karoo Basin, South Africa): An integrated quantitative approach using FE-EPMA and LA-ICP-MS. Rev. Palaeobot. Palynol. 2019, 268, 29–42. [Google Scholar] [CrossRef]
- Saha, A.; Bhattacharya, B. Controls on near-surface and burial diagenesis of a syn-rift siliciclastic rock succession; a study from Permian Barren Measures Formation, southern India. Sediment. Geol. 2022, 436, 106170. [Google Scholar] [CrossRef]
- SY/T 5336-1996; Core Analysis Methods. Petroleum Industry Press: Beijing, China, 1996.
- Zhang, G.H.; Liu, J.S.; Qin, L.Z.; Zhao, H. Characteristics of the large braided river depositional system of the Oligocene Huagang Formation in the Xihu sag. China Offshore Oil Gas 2018, 30, 10–18, (In Chinese with English Abstract). [Google Scholar]
- Chen, L.L. Discussion on Depositional Mechanism Controlled by Axis-wise Drainage in Huagang Formation (Oligocene) of Xihu Trough, the East China Sea. Offshore Oil 2001, 21, 35–41, (In Chinese with English Abstract). [Google Scholar]
- Xu, Y.X.; Hu, M.Y.; Liang, J.S.; Ke, L.; Jiang, H.J. Sedimentary Provenance Analysis of Oligocene Huagang Formation in Xihu Sag of East China Sea Basin. J. Oil Gas Technol. 2010, 32, 176–179+407, (In Chinese with English Abstract). [Google Scholar]
- Dickinson, W.R.; Suczek, C. Plate tectonics and sandstone compositions. Am. Assoc. Pet. Geol. Bull. 1979, 63, 2164–2182. [Google Scholar]
- Garzanti, E.; Ando, S.; Vezzoli, G. The continental crust as a source of sand (southern alps cross section, Northern Italy). J. Geol. 2006, 114, 533–554. [Google Scholar] [CrossRef]
- Garzanti, E.; Vermeesch, P.; Padoan, M.; Resentini, A.; Vezzoli, G.; Ando, S. Provenance of passive–margin sand (southern Africa). J. Geol. 2014, 122, 17–42. [Google Scholar] [CrossRef]
- Mueller, P.; Langone, A.; Patacci, M.; Di Giulio, A. Detrital signatures of impending collision; the deep-water record of the Upper Cretaceous Bordighera Sandstone and its basal complex (Ligurian Alps, Italy). Sediment. Geol. 2018, 377, 147–161. [Google Scholar] [CrossRef]
- Folk, R.L. Petrology of Sedimentary Rocks; Hemphill Publishing Company: Austin, TX, USA, 1968; Volume 21, pp. 714–727. [Google Scholar]
- Sun, D.Q.; Liu, X.P.; Li, W.H.; Lu, S.F.; He, T.H.; Zhu, P.F.; Zhao, H.T. Quantitative evaluation the physical properties evolution of sandstone reservoirs constrained by burial and thermal evolution reconstruction: A case study from the Lower Cretaceous Baxigai Formation of the western Yingmaili Area in the Tabei Uplift, Tarim Basin, NW China. J. Pet. Sci. Eng. 2022, 208, 109460. [Google Scholar]
- Scherer, M. Parameters influencing porosity in sandstones: A model for sandstone porosity prediction. AAPG Bull. 1987, 71, 485–491. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, X.S.; Radwan, A.E.; Wang, B.H.; Wang, K.; Tian, H.Y.; Yin, S. Diagenesis of continental tight sandstone and its control on reservoir quality: A case study of the Quan 3 member of the cretaceous Quantou Formation, Fuxin uplift, Songliao Basin. Mar. Pet. Geol. 2022, 145, 105883. [Google Scholar] [CrossRef]
- Umar, M.; Friis, H.; Khan, A.S.; Kassi, A.M.; Kasi, A.K. The effects of diagenesis on the reservoir characters in sandstones of the Late Cretaceous Pab Formation, Kirthar fold belt, southern Pakistan. J. Asian Earth Sci. 2011, 40, 622–635. [Google Scholar] [CrossRef]
- Li, Y.; Chang, X.; Yin, W.; Sun, T.; Song, T. Quantitative impact of diagenesis on reservoir quality of the Triassic Chang 6 tight oil sandstones, Zhenjing area, Ordos Basin, China. Mar. Pet. Geol. 2017, 86, 1014–1028. [Google Scholar] [CrossRef]
- Zhao, S.J.; Fu, Q.; Liu, X.Y.; Li, S.X.; Zhang, G.Y.; Teng, J. Effect of authigenic clay minerals and carbonate cements on quality of tight sandstone reservoirs: Insight from Triassic tight sandstones in the Huaqing area, Ordos Basin, Northern China. J. Asian Earth Sci. 2022, 229, 105099. [Google Scholar] [CrossRef]
- Li, G.M.; Cao, M.J.; Qin, K.Z.; Evans, N.J.; McInnes, B.I.A.; Liu, Y.S. Thermal-tectonic history of the Baogutu porphyry Cu deposit, West Junggar as constrained from zircon U–Pb, biotite Ar/Ar and zircon/apatite (U–Th)/He dating. J. Asian Earth Sci. 2014, 79, 741–758. [Google Scholar]
- Chang, J.; Qiu, N.S.; Li, C.X.; Zhang, J.Y.; Li, W.Z.; Fu, X.D. Zircon He diffusion kinetics models and its implications on the thermal history reconstruction of the ancient strata in the craton basins, China. Chin. J. Geophys. 2022, 65, 711–725, (In Chinese with English Abstract). [Google Scholar]
- Chang, J.; Yang, X.; Qiu, N.S.; Min, K.; Li, C.X.; Li, H.L.; Li, D. Zircon (U-Th)/He thermochronology and thermal evolution of the Tarim Basin, Western China. J. Asian Earth Sci. 2022, 230, 105210. [Google Scholar]
- Guenthner, W.R.; Reiners, P.W.; Ketcham, R.A.; Nasdala, L.; Giester, G. Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. Am. J. Sci. 2013, 313, 145–198. [Google Scholar]
- Ketcham, R.A. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. Rev. Mineral. Geochem. 2005, 58, 275–314. [Google Scholar]
- Orme, D.A.; Guenthner, W.R.; Laskowski, A.K.; Reiners, P.W. Long-term tectonothermal history of Laramide basement from zircon–He age-eU correlations. Earth Planet. Sci. Lett. 2016, 453, 119–130. [Google Scholar]
- Guenthner, W.R.; Reiners, P.W.; DeCelles, P.G.; Kendall, J. Sevier belt exhumation in central Utah constrained from complex zircon (U-Th)/He data sets: Radiation damage and He inheritance effects on partially reset detrital zircons. Bull. Geol. Soc. Am. 2014, 127, 323–348. [Google Scholar]
- Zhang, J.Y.; Lu, Y.C.; Wout, K.; Liu, J.S.; Li, X.Q.; Du, X.B.; Wang, C.; Liu, X.C.; Feng, L.; Wei, W.; et al. Source to sink transport in the Oligocene Huagang Formation of the Xihu Depression, East China Sea shelf basin. Mar. Pet. Geol. 2018, 98, 733–745. [Google Scholar]
- Krippner, A.; Meinhold, G.; Morton, A.C.; Schönig, J.; von Eynatten, H. Heavy minerals and garnet geochemistry of stream sediments and bedrocks from the Almklovdalen area, Western Gneiss Region, SW Norway: Implications for provenance analysis. Sediment. Geol. 2016, 336, 96–105. [Google Scholar]
- Liu, E.T.; Chen, S.; Yan, D.T.; Deng, Y.; Wang, H.; Jing, Z.H.; Pan, S.Q. Detrital zircon geochronology and heavy mineral composition constraints on provenance evolution in the western Pearl River Mouth basin, northern south China sea: A source to sink approach. Mar. Pet. Geol. 2022, 145, 105884. [Google Scholar]
- Zhao, H.; Jiang, Y.M.; Shen, W.C.; Chang, Y.S.; Qin, J. Study on Huagang Formation provenance characteristics and effects on reservoirs in Xihu Sag. Coal Sci. Technol. 2018, 46, 65–72, (In Chinese with English Abstract). [Google Scholar]
- Hao, L.W.; Liu, C.; Wang, Q.; Wang, H.; Ma, X.F.; Tang, J.; Mu, P. Provenance Characteristics of Huagang Formation (Paleogene) in Xihu Sag, East China Sea. Nat. Gas Geosci. 2011, 22, 315–323, (In Chinese with English Abstract). [Google Scholar]
- Gao, Y.F.; Fu, H.; Ge, H.B.; Zhao, L.X.; Xu, F.H. Provenance analysis of Pinghu Huagang Formation in Xihu Sag, East China Sea. Sci. Technol. Eng. 2013, 13, 6549–6552, (In Chinese with English Abstract). [Google Scholar]
- Wu, D.; Li, H.; Jiang, L.; Hu, S.H.; Wang, Y.H.; Zhang, Y.L.; Liu, Y. Diagenesis and reservoir quality in tight gas bearing sandstones of a tidally influenced fan delta deposit: The Oligocene Zhuhai Formation, western Pearl River Mouth Basin, South China Sea. Mar. Pet. Geol. 2019, 107, 278–300. [Google Scholar] [CrossRef]
- Beard, D.C.; Weyl, P.K. Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bull. 1973, 57, 349–369. [Google Scholar]
- Keith, M.L.; Weber, J.N. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochim. Cosmochim. Acta 1964, 28, 1787–1816. [Google Scholar] [CrossRef]
- Shackleton, N.J. Non-equilibrium isotopic fractionation between sea-water and planktonic foraminiferal test. Nature 1973, 242, 177–179. [Google Scholar] [CrossRef]
- Irwin, H.; Curtis, C.; Coleman, M. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 1977, 269, 209–213. [Google Scholar] [CrossRef]
- Fontes, J.C.; Mélières, F.; Gibert, E.; Liu, Q.; Gasse, F. Stable isotope and radiocarbon balances of two Tibetan lakes (Sumxi Co, Longmu Co) from 13,000 BP. Quat. Sci. Rev. 1993, 12, 875–887. [Google Scholar] [CrossRef]
- Wang, W.G.; Lin, C.Y.; Zhang, X.G.; Dong, C.M.; Ren, L.H.; Lin, J.L. Structural controls on sandstone compaction within the anticline crest and flank: An example from the Xihu Sag, East China Sea Basin. J. Pet. Sci. Eng. 2022, 211, 110157. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.H.; Wang, C.W.; Li, Q.; Li, P.J. Densification mechanism and diagenesis fluid evolution of low-porosity and low-permeability tight sandstone reservoir: An example from Huagang formation in the northern of the central anticlinal zone in Xihu depression, East China Sea. J. China Univ. Min. Technol. 2016, 45, 972–981, (In Chinese with English Abstract). [Google Scholar]
- Tian, T.; Yang, P.; Ren, Z.L.; Fu, D.L.; Zhou, S.X.; Yang, F.; Li, J. Hydrocarbon migration and accumulation in the Lower Cambrian to Neoproterozoic reservoirs in the Micangshan tectonic zone, China: New evidence of fluid inclusions. Energy Rep. 2020, 6, 721–733. [Google Scholar]
- Lou, R.X.; Wang, L.W.; Wang, L.X.; Yang, G.; Wang, J.P.; Liu, C.Y.; Pei, Y.; Zhang, C. Characteristics of fluid inclusions and hydrocarbon accumulation period of Huoshiling -Yingcheng Formations in Wangfu fault depression, Songliao Basin, China. J. Pet. Sci. Eng. 2022, 208, 109421. [Google Scholar]
- Guo, X.W.; He, S.; Liu, K.Y.; Song, G.Q.; Wang, X.J.; Shi, Z.S. Oil generation as the dominant overpressure mechanism in the cenozoic dongying depression Bohai Bay Basin, China. AAPG Bull. 2010, 94, 1859–1881. [Google Scholar]
- Zhao, J.; Huang, Z.L.; Fan, C.W.; Xu, M.G.; Hou, J.X. Diagenetic and hydrothermal fluid influence on tight sandstone reservoir quality: Gravity-flow deposits from the Huangliu Formation, Ledong area, Yinggehai Basin, South China Sea. J. Pet. Sci. Eng. 2022, 215, 110633. [Google Scholar]
- Wang, W.; Lin, C.; Zhang, X.; Dong, C.; Ren, L.; Lin, J. Seismic diagenetic facies prediction of tight sandstone in the offshore sparse well area: An example from the Xihu Depression of the East China Sea Basin. J. Pet. Sci. Eng. 2022, 216, 110825. [Google Scholar]
- Hong, D.D.; Cao, J.; Wu, T.; Dang, S.S.; Hu, W.X.; Yao, S.P. Authigenic clay minerals and calcite dissolution influence reservoir quality in tight sandstones: Insights from the central Junggar Basin, NW China. Energy Geosci. 2020, 1, 8–19. [Google Scholar]
- Liu, G.Z.; Hu, G.C.; Shi, X.Z.; Ma, Y.P.; Yin, X.Z.; Li, A.R. Carbonate cementation patterns and diagenetic reservoir facies of the triassic Yanchang Formation deep-water sandstone in the huangling area of the Ordos Basin, northwest China. J. Pet. Sci. Eng. 2021, 203, 108608. [Google Scholar] [CrossRef]
- Dutton, S.P. Calcite cement in Permian deep-water sandstones, Delaware Basin, west Texas: Origin, distribution, and effect on reservoir properties. AAPG Bull. 2008, 92, 765–787. [Google Scholar]
- Mansour, A.S.; Rifai, R.I.; Shaaban, M.N. Geochemical constraint on the origin of the multi-mineralogic carbonate cements in the subsurface Middle Jurassic sandstones, central Sinai, Egypt. J. Geochem. Explor. 2014, 143, 163–173. [Google Scholar]
- Denny, A.C.; Kozdon, R.; Kitajima, K.; Valley, J.W. Isotopically zoned carbonate cements in Early Paleozoic sandstones of the Illinois Basin: δ18O and δ13C records of burial and fluid flow. Sediment. Geol. 2017, 361, 93–110. [Google Scholar]
- Athy, L.F. Density, porosity, and compaction of sedimentary rocks. AAPG Bull. 1930, 14, 1–21. [Google Scholar]
- Lander, R.H.; Walderhaug, O. Predicting porosity through simulating sandstone compaction and quartz cementation. AAPG Bull. 1999, 83, 433–449. [Google Scholar]
- Walderhaug, O. Modeling quartz cementation and porosity in middle Jurassic brent group sandstones of the Kvitebjørn field, northern north Sea. AAPG Bull. 2000, 84, 1325–1339. [Google Scholar]
- Taylor, T.R.; Giles, M.R.; Hathon, L.A.; Diggs, T.G.; Braunsdorf, N.R.; Birbiglia, G.V.; Kittridge, M.G.; Macaulay, C.I.; Espejo, I.S. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG Bull. 2010, 94, 1093–1132. [Google Scholar]
- English, K.L.; English, J.M.; Bonnell, L.M.; Lander, R.H.; Hollis, C.; Redfern, J.; Guirham, C.; Garnham, J.; Cherif, R.Y. Controls on reservoir quality in exhumed basins: An example from the Ordovician sandstone, Illizi Basin, Algeria. Mar. Pet. Geol. 2017, 80, 203–227. [Google Scholar]
- Gier, S.; Worden, R.H.; Johns, W.D.; Kurzweil, H. Diagenesis and reservoir quality of Miocene sandstones in the Vienna Basin, Austria. Mar. Pet. Geol. 2008, 25, 681–695. [Google Scholar]
- Carvalho, A.D.S.G.; De Ros, L.F. Diagenesis of Aptian sandstones and conglomerates of the Campos Basin. J. Pet. Sci. Eng. 2015, 125, 189–200. [Google Scholar]
- Molenaar, N.; Felder, M.; Baer, K.; Gotz, A.E. What classic greywacke (litharenite) can reveal about feldspar diagenesis; an example from Permian Rotliegend Sandstone in Hessen, Germany. Sediment. Geol. 2015, 326, 79–93. [Google Scholar]
- Lai, J.; Wang, G.W.; Wang, S.; Cao, J.T.; Li, M.; Pang, X.J.; Zhou, Z.L.; Fan, X.Q.; Dai, Q.Q.; Yang, L.; et al. Review of diagenetic facies in tight sandstones: Diagenesis, diagenetic minerals, and prediction via well logs. Earth-Sci. Rev. 2018, 185, 234–258. [Google Scholar]
- Xiong, Y.; Xu, H.G.; Wang, Y.Q.; Zhou, W.S.; Wang, L.; Feng, K. The variation mechanism of petrophysical properties and the effect of compaction on the relative permeability of an unconsolidated sandstone reservoir. Mar. Pet. Geol. 2018, 92, 754–763. [Google Scholar]
Grain Size Lithologies | Median Grain Size (μm) | Sorting Coefficient | Po (%) | Porosity (%) | Permeability (mD) | Average Pore Radius (μm) |
---|---|---|---|---|---|---|
Fine sandstone | 81.0~161.3 | 1.34~1.52 | 36.01~37.95 | 13.5~20.5 | 0.80~190.00 | 1.02~7.02 |
/114.1 (11) | /1.43 (11) | /36.96 (11) | /18.3 (11) | /36.67 (11) | /3.12 (4) | |
Siltstone | 48.5~68.9 | 1.26~1.75 | 33.96~39.12 | 3.0~15.3 | 0.03~67.40 | 0.02~1.32 |
/55.5 (3) | /1.45 (3) | /37.01 (3) | /9.1 (26) | /6.38 (26) | /0.45 (4) | |
Fine sandstone | 78.4~222.4 | 1.33~1.88 | 33.06~38.14 | 4.8~19.8 | 0.06~244.00 | 0.09~6.83 |
/129.4 (34) | /1.47 (34) | /36.58 (34) | /11.6 (90) | /17.81 (90) | /1.93 (23) | |
Siltstone | 55.9~92.0 | 1.68~1.96 | 32.57~34.52 | 2.5~7.3 | 0.04~4.63 | 0.08~0.24 |
/65.9 (24) | /1.81 (24) | /33.57 (24) | /6.0 (50) | /0.30 (50) | /0.15 (17) | |
Fine sandstone | 76.8~317.9 | 1.53~2.00 | 32.36~35.86 | 3.6~10.5 | 0.06~6.31 | 0.09~10.72 |
/172.9 (98) | /1.66 (98) | /34.76 (98) | /7.8 (195) | /0.53 (195) | /1.40 (102) | |
Medium sandstone/pebbly sandstone | 224.8~629.2 | 1.31~2.17 | 31.44~38.33 | 5.1~12.0 | 0.19~15.20 | 0.28~10.03 |
/409.0 (18) | /1.72 (18) | /34.35 (18) | /8.2 (60) | /2.82 (60) | /4.36 (16) | |
Siltstone | 38.6~123.8 | 2.17~2.43 | 30.35~31.45 | 1.8~9.4 | 0.02~0.28 | 0.02~0.38 |
/68.7 (4) | /2.32 (4) | /30.81 (4) | /6.4 (46) | /0.12 (46) | /0.18 (7) | |
Fine sandstone | 34.9~359.7 | 1.83~2.38 | 30.52~33.44 | 1.6~15.0 | 0.03~82.20 | 0.08~6.52 |
/158.1 (65) | /2.17 (65) | /31.49 (65) | /8.7 (204) | /4.33 (204) | /1.29 (46) | |
Medium sandstone/pebbly sandstone | 200.1~1249.7 | 1.63~2.23 | 31.17~35.00 | 6.2~13.7 | 0.16~89.5 | 0.24~9.36 |
/518.4 (20) | /1.99 (20) | /32.51 (20) | /9.2 (79) | /10.75 (79) | /4.98 (16) |
Tectonic Zone | Strata | Number of Samples | Zircon (%) | Tourmaline (%) | Rutile (%) | Garnet (%) | Leucoxene (%) | Magnetite (%) | ZTR |
---|---|---|---|---|---|---|---|---|---|
Tiantai | H3–H5 | 4 | 5.5~9.4 /7.08 | 1.6~3.6 /2.78 | 0~0.3 /0.18 | 51.8~65.1 /59.48 | 14.3~15.8 /15.05 | 2.7~5.1 /3.68 | 9.56~14.74 /11.84 |
Huangyan | H3–H5 | 15 | 1.8~12.6 /7.06 | 0~4.8 /1.40 | 0~2.9 /1.10 | 14.3~87.8 /70.03 | 1.7~14.3 /7.99 | 0~12.0 /3.17 | 4.42~36.87 /11.91 |
Ningbo | H3 | 35 | 1.9~17.1 /4.79 | 0.3~2.0 /1.04 | 0~0.8 /0.07 | 30.6~88.3 /72.67 | 2.4~11.6 /5.82 | 0.6~3.5 /1.76 | 3.39~24.15 /7.08 |
H4–H5 | 14 | 1.4~16.9 /7.23 | 0~4.2 /2.43 | 0~0.6 /0.11 | 8.1~78.1 /42.75 | 4.9~21.8 /12.77 | 1.6~6.5 /3.55 | 6.89~34.43 /16.35 | |
Yuquan | H3 | 96 | 0.6~22.9 /6.41 | 0.3~5.9 /2.04 | 0~0.6 /0.05 | 2.6~88.9 /62.13 | 1.4~33.9 /10.74 | 0.3~14.1 /2.57 | 3.40~36.95 /10.74 |
H4 | 29 | 2.1~35.1 /12.56 | 0.5~8.6 /2.78 | 0~0.7 /0.07 | 1.1~82.9 /26.80 | 5.7~41.0 /16.37 | 1.5~11.4 /4.00 | 3.64~60.23 /29.25 | |
H5 | 33 | 1.9~41.7 /18.83 | 0~6.9 /3.66 | 0~0.7 /0.05 | 1.9~63.4 /22.65 | 4.0~38.9 /21.99 | 1.8~15.4 /6.92 | 6.60~65.33 /33.05 |
Tectonic Zone | Sedimentary Microfacies | Number of Samples | Carbonate Cement (%) | Quartz Cement (%) | Vcompaction (%) | Pcompaction (%) | Vdissolution (%) | Pdissolution (%) | Vcementation (%) |
---|---|---|---|---|---|---|---|---|---|
Tiantai | Distributary channel | 11 | 1.0~5.0/2.0 | 0.3~0.5/0.4 | 30.34~33.56/31.95 | 81.69~90.94/86.47 | 12.93~19.56/17.38 | 94.65~95.96/95.24 | 2.3~6.3/4.1 |
Huangyan | Flood plain | 2 | 1.0~11.0/6.0 | 0.3~0.5/0.4 | 26.98~32.26/29.62 | 68.95~85.01/76.98 | 7.26~10.61/8.93 | 70.73~91.84/81.28 | 1.3~11.5/6.4 |
Distributary channel | 31 | 0~6.0/0.8 | 0.3~1.0/0.5 | 27.76~35.62/32.73 | 74.90~96.89/89.04 | 5.93~13.28/10.04 | 59.35~93.39/81.59 | 0.5~6.5/1.7 | |
Ningbo | Low-energy braided channel | 14 | 0~11.0/1.43 | 0.5~1.5/1.0 | 22.92~33.56/31.98 | 63.92~97.10/91.26 | 5.70~8.70/7.41 | 82.57~100/92.08 | 1.0~11.5/2.5 |
High-energy braided channel | 5 | 0~0.5/0.26 | 1.0~1.5/1.3 | 28.90~37.33/32.52 | 90.73~97.39/93.42 | 6.34~9.39/7.25 | 84.54~100/91.44 | 1.0~2.0/1.56 | |
Yuquan | Low-energy braided channel | 14 | 0~8.0/2.14 | 0~2.0/1.1 | 20.73~31.18/26.83 | 66.49~98.82/84.50 | 6.74~12.31/8.69 | 64.94~95.85/87.36 | 0~9.0/3.5 |
High-energy braided channel | 7 | 0~4.0/1.36 | 0.5~2.0/1.5 | 25.13~29.07/27.47 | 79.19~90.20/85.24 | 5.26~9.47/7.69 | 71.17~91.15/81.28 | 1.5~5.0/2.86 |
Grain No. | 4He (ncc) | Mass (μg) | FT | U (ppm) | Th (ppm) | [eU] (ppm) | Corrected Age (Ma) | 1σ (Ma) | L (μm) | W (μm) | Rs (μm) |
---|---|---|---|---|---|---|---|---|---|---|---|
Sample 1, Well W1, sample depth range 4060–4079 m, Pinghu Formation | |||||||||||
z01 | 45.477 | 7.294 | 0.76 | 89.6 | 58.7 | 103.4 | 589.6 | 0.179 | 100 | 90 | 59.0 |
z02 | 5.963 | 3.618 | 0.67 | 200.4 | 89.1 | 221.3 | 83.7 | 0.027 | 76 | 53 | 41.7 |
z03 | 20.798 | 6.014 | 0.74 | 179.4 | 64.2 | 194.5 | 183.4 | 0.030 | 82 | 87 | 53.9 |
z04 | 75.156 | 7.272 | 0.76 | 547.5 | 152.8 | 583.4 | 178.9 | 0.049 | 90 | 99 | 58.9 |
z05 | 24.670 | 5.305 | 0.72 | 1334.6 | 631.9 | 1483.0 | 33.3 | 0.015 | 81 | 76 | 50.8 |
Sample 2, Well W3, sample depth range 4645–4660 m, Pinghu Formation | |||||||||||
z01 | 33.536 | 4.880 | 0.72 | 372.4 | 134.6 | 404.0 | 179.4 | 0.060 | 77 | 77 | 49.7 |
z02 | 5.507 | 5.420 | 0.73 | 156.2 | 54.7 | 169.0 | 63.2 | 0.021 | 86 | 78 | 52.1 |
z03 | 15.616 | 6.735 | 0.74 | 241.7 | 114.0 | 268.5 | 88.6 | 0.037 | 91 | 92 | 53.8 |
z04 | 21.051 | 7.497 | 0.76 | 264.9 | 165.9 | 303.8 | 93.6 | 0.036 | 102 | 96 | 59.5 |
z05 | 24.553 | 5.591 | 0.75 | 719.3 | 419.3 | 817.8 | 56.5 | 0.034 | 89 | 76 | 57.6 |
Sample 3, Well W5, sample depth range 4320–4338 m, E3H3 | |||||||||||
z01 | 4.961 | 8.286 | 0.77 | 25.2 | 24.0 | 30.8 | 194.6 | 0.105 | 120 | 88 | 62.0 |
z02 | 11.643 | 6.757 | 0.76 | 188.5 | 174.1 | 229.4 | 77.6 | 0.035 | 103 | 80 | 59.1 |
z03 | 16.786 | 9.422 | 0.78 | 258.1 | 224.1 | 310.8 | 57.2 | 0.026 | 111 | 110 | 66.4 |
z04 | 42.154 | 7.003 | 0.76 | 303.7 | 207.7 | 352.5 | 173.6 | 0.071 | 93 | 93 | 58.1 |
z05 | 19.448 | 6.564 | 0.75 | 323.0 | 279.0 | 388.5 | 78.8 | 0.018 | 91 | 88 | 56.4 |
Sample 4, Well W5, sample depth range 5102–5119 m, E3Hx | |||||||||||
z01 | 11.650 | 7.140 | 0.73 | 312.7 | 182.5 | 355.6 | 47.1 | 0.017 | 90 | 97 | 52.8 |
z02 | 6.425 | 6.861 | 0.76 | 115.6 | 75.2 | 133.3 | 72.4 | 0.031 | 90 | 89 | 58.7 |
z03 | 5.120 | 7.931 | 0.77 | 85.1 | 51.9 | 97.3 | 67.4 | 0.026 | 108 | 89 | 60.6 |
z04 | 7.901 | 9.532 | 0.77 | 143.6 | 105.0 | 168.3 | 49.2 | 0.015 | 108 | 108 | 60.9 |
z05 | 26.950 | 9.328 | 0.78 | 516.7 | 281.7 | 582.9 | 49.8 | 0.023 | 97 | 108 | 63.9 |
Experiment | Tectonic Zone | Well | Strata | Depth (m) | Occurrence | Diagenetic Stage | δ13CPDB (‰) | δ18OPDB (‰) | z Value | Temperature (°C) |
---|---|---|---|---|---|---|---|---|---|---|
Carbon and oxygen isotopes of carbonate cement | Huangyan | W4 | H5 | 3534.8 | Cryptocrystalline calcite | Eodiagenesis | −5.50 | −10.43 | 110.48 | 73.47 |
W4 | H5 | 3534.8 | Cryptocrystalline calcite | Eodiagenesis | −3.25 | −11.48 | 114.59 | 80.35 | ||
W4 | H5 | 3527.15 | Cryptocrystalline calcite | Eodiagenesis | −4.72 | −12.80 | 110.94 | 89.33 | ||
Ningbo | W5 | H3 | 4331.7 | Cryptocrystalline calcite | Eodiagenesis | −3.26 | −12.27 | 114.18 | 85.69 | |
W6 | H3 | 4303.59 | Cryptocrystalline calcite | Eodiagenesis | −4.60 | −12.18 | 111.46 | 85.11 | ||
W6 | H4 | 4475.3 | Cryptocrystalline calcite | Eodiagenesis | −4.52 | −10.48 | 112.47 | 73.77 | ||
W7 | H3 | 4336.35 | Cryptocrystalline calcite | Eodiagenesis | −3.57 | −12.56 | 113.39 | 87.71 | ||
W5 | H3 | 4324.9 | Crystal calcite | The early stage of mesolithogenesis | −5.25 | −15.84 | 108.36 | 111.36 | ||
W6 | H3 | 4303.59 | Crystal calcite | The early stage of mesolithogenesis | −4.04 | −15.87 | 110.82 | 111.60 | ||
W6 | H3 | 4303.59 | Crystal calcite | The early stage of mesolithogenesis | −3.61 | −15.89 | 111.68 | 111.72 | ||
W7 | H3 | 4335.45 | Crystal calcite | The early stage of mesolithogenesis | −3.25 | −16.41 | 112.17 | 115.71 | ||
Yuquan | W8 | H3 | 3849.26 | Crystal ferrocalcite/dolomite | The late stage of mesolithogenesis | −4.68 | −18.98 | 107.99 | 136.03 | |
W8 | H3 | 3852.11 | Crystal calcite | The early stage of mesolithogenesis | −4.40 | −17.79 | 109.14 | 126.48 | ||
W8 | H3 | 3855.9 | Crystal calcite | The early stage of mesolithogenesis | −3.66 | −16.77 | 111.16 | 118.44 | ||
W8 | H3 | 3848.16 | Crystal ferrocalcite/dolomite | The late stage of mesolithogenesis | −3.63 | −20.16 | 109.55 | 145.84 | ||
W9 | H3 | 3868.38 | Crystal ferrocalcite/dolomite | The late stage of mesolithogenesis | −4.01 | −20.04 | 108.83 | 144.81 | ||
W9 | H3 | 3870.65 | Crystal ferrocalcite/dolomite | The late stage of mesolithogenesis | −5.12 | −18.81 | 107.17 | 134.63 | ||
W9 | H3 | 3699.75 | Crystal ferrocalcite/dolomite | The late stage of mesolithogenesis | −4.20 | −20.14 | 108.41 | 145.63 | ||
Homogenization temperature of inclusions in carbonate cement | Ningbo | W6 | H4 | 4487.4 | Crystal calcite | The early stage of mesolithogenesis | / | / | / | 121 |
W6 | H4 | 4487.4 | Crystal calcite | The early stage of mesolithogenesis | / | / | / | 122 | ||
Yuquan | W10 | H4 | 3915.4 | Cryptocrystalline calcite | Eodiagenesis | 94 | ||||
W10 | H4 | 3915.4 | Cryptocrystalline calcite | Eodiagenesis | / | / | / | 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Huang, Z.; Qu, T.; Zhao, J.; Li, Z. Controlling Factors of Diagenetic Evolution on Reservoir Quality in Oligocene Sandstones, Xihu Sag, East China Sea Basin. Minerals 2025, 15, 394. https://doi.org/10.3390/min15040394
Yang Y, Huang Z, Qu T, Zhao J, Li Z. Controlling Factors of Diagenetic Evolution on Reservoir Quality in Oligocene Sandstones, Xihu Sag, East China Sea Basin. Minerals. 2025; 15(4):394. https://doi.org/10.3390/min15040394
Chicago/Turabian StyleYang, Yizhuo, Zhilong Huang, Tong Qu, Jing Zhao, and Zhiyuan Li. 2025. "Controlling Factors of Diagenetic Evolution on Reservoir Quality in Oligocene Sandstones, Xihu Sag, East China Sea Basin" Minerals 15, no. 4: 394. https://doi.org/10.3390/min15040394
APA StyleYang, Y., Huang, Z., Qu, T., Zhao, J., & Li, Z. (2025). Controlling Factors of Diagenetic Evolution on Reservoir Quality in Oligocene Sandstones, Xihu Sag, East China Sea Basin. Minerals, 15(4), 394. https://doi.org/10.3390/min15040394